Advances in LA-ICP-MS Analysis for Individual Fluid Inclusions and Applications
-
摘要: 独立封存的单个流体包裹体,能够准确地反演被捕获时期的流体信息.激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)是单个流体包裹体微区分析的重要手段,展现了原位、实时、高空间分辨率、高灵敏度、高精密度、低检出限、多元素同时检测的优点.单个流体包裹体组成信息的LA-ICP-MS测定技术,在单个流体包裹体选取、激光剥蚀采样方式、气溶胶传输与电离、质谱瞬时信号采集效率、定量校准与内标元素准确测定等方面逐步突破,且该技术应用于成矿元素来源及分配、成矿流体来源及特征、建立成矿模式等方面的研究广泛.因此提高单个流体包裹体分析成功率、降低小体积流体包裹体元素检出限、测定矿石矿物流体包裹体成分等成为该分析技术亟待解决的问题.
-
关键词:
- 单个流体包裹体 /
- 激光剥蚀电感耦合等离子质谱 /
- 分析技术 /
- 成矿流体 /
- 地球化学
Abstract: Individual fluid inclusions can accurately indicate the fluid characteristics of the trapped period and avoid the mixed interference of multi-stage inclusions. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is an important method for microanalysis of individual fluid inclusions, owing to its analytical superiority of in-situ, timeliness, high spatial resolution and sensitivity, high precision, low detection limits and a large dynamic line range. The technique of LA-ICP-MS for determining the composition of individual fluid inclusions focuses on selection criteria for fluid inclusions suitable for analysis, ablation procedure, aerosol transport and ionization within the ICP, transient signals acquisition efficiency, quantitative calibration and determination of internal standard elements. Meanwhile, the source and distribution of the ore-forming elements, the source and characteristics of the ore-forming fluid, the establishment of the metallogenic model also are widely studied. The results show that it is urgent for LA-ICP-MS analysis technology to improve the success rate of individual ore-forming fluid inclusions, reduce the detection limits of elements for small-sized fluid inclusions, and determine mineral fluid inclusions.-
Key words:
- individual fluid inclusion /
- LA-ICP-MS /
- analytic technique /
- ore-forming fluid /
- geochemistry
-
图 2 典型的2种打开单个流体包裹体策略示意图
a~d.分段剥蚀;e~h.直接剥蚀.图a~d修改自Günther et al. (1998); 图e~h修改自Pettke (2008)
Fig. 2. Two typical strategies for opening fluid individual inclusions
图 6 Cu和Au在气相和液相之间的分配与流体密度差异对照(a)和宿主石英中流体包裹体的H+、Na+和Au+再平衡扩散示意图(b, c)
图a引自Pokrovski et al. (2013), Schlöglova et al. (2017b);图b、c引自Guo and Audétat (2018)
Fig. 6. Partitioning of Cu and Au between vapor and brine (lgKV/L) based on the fluid density contrast (lgρV/L) (a); diffusion paths of H+, Na+ and Au+ of fluid inclusions through the host quartz(b, c)
图 7 LA-ICP-MS测定天然流体包裹体的卤素摩尔含量比值与来源分析
Fig. 7. Halogen of natural fluid inclusions analyzed by LA-ICP-MS
-
[1] Albrecht, M., Derrey, I. T., Horn, I., et al., 2014. Quantification of Trace Element Contents in Frozen Fluid Inclusions by UV-Fs-LA-ICP-MS Analysis. Journal of Analytical Atomic Spectrometry, 29(6):1034-1041. https://doi.org/10.1039/c4ja00015c doi: 10.1039/C4JA00015C [2] Allan, M. M., Yardley, B.W.D., Forbes, L.J. et al., 2005. Validation of LA-ICP-MS Fluid Inclusion Analysis with Synthetic Fluid Inclusions. American Mineralogist, 90(11-12):1767-1775. https://doi.org/10.2138/am.2005.1822 [3] Audétat, A., Günther, D., Heinrich, C.A., 1998. Formation of a Magmatic-Hydrothermal Ore Deposit:Insights with LA-ICP-MS Analysis of Fluid Inclusions. Science, 279(5359):2091-2094. https://doi.org/10.1126/science.279.5359.2091 [4] Bleiner, D., Günther, D., 2001. Theoretical Description and Experimental Observation of Aerosol Transport Processes in Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 16(5):449-456. https://doi.org/10.1039/b009729m doi: 10.1039/B009729M [5] Bodnar, R. J., 1993. Revised Equation and Table for Determining the Freezing Point Depression of H2O-NaCl Solutions. Geochimica et Cosmochimica Acta, 57(3):683-684. https://doi.org/10.1016/0016-7037(93)90378-a doi: 10.1016/0016-7037(93)90378-A [6] Borisova, A. Y., Thomas, R., Salvi, S., et al., 2012. Tin and Associated Metal and Metalloid Geochemistry by Femtosecond LA-ICP-QMS Microanalysis of Pegmatite-Leucogranite Melt and Fluid Inclusions:New Evidence for Melt-Melt-Fluid Immiscibility. Mineralogical Magazine, 76(1):91-113. https://doi.org/10.1180/minmag.2012.076.1.91 [7] Burisch, M., Walter, B. F., Gerdes, A., et al., 2018. Late-Stage Anhydrite-Gypsum-Siderite-Dolomite-Calcite Assemblages Record the Transition from a Deep to a Shallow Hydrothermal System in the Schwarzwald Mining District, SW Germany. Geochimica et Cosmochimica Acta, 223:259-278. https://doi.org/10.1016/j.gca.2017.12.002 [8] Chang, J., Li, J. W., Audétat, A., 2018. Formation and Evolution of Multistage Magmatic-Hydrothermal Fluids at the Yulong Porphyry Cu-Mo Deposit, Eastern Tibet:Insights from LA-ICP-MS Analysis of Fluid Inclusions. Geochimica et Cosmochimica Acta, 232:181-205. https://doi.org/10.1016/j.gca.2018.04.009 [9] Chen, P. W., Zeng, Q. D., Zhou, T. C., et al., 2019. Evolution of Fluids in the Dasuji Porphyry Mo Deposit on the Northern Margin of the North China Craton:Constraints from Microthermometric and LA-ICP-MS Analyses of Fluid Inclusions. Ore Geology Reviews, 104:26-45. https://doi.org/10.1016/j.oregeorev.2018.10.012 http://cn.bing.com/academic/profile?id=579777ef0f68ee3dc23e9d19438fb34e&encoded=0&v=paper_preview&mkt=zh-cn [10] Eggins, S. M., Kinsley, L. P. J., Shelley, J. M. G., 1998. Deposition and Element Fractionation Processes during Atmospheric Pressure Laser Sampling for Analysis by ICP-MS. Applied Surface Science, 127-129:278-286. https://doi.org/10.1016/s0169-4332(97)00643-0 doi: 10.1016/S0169-4332(97)00643-0 [11] Fernández, B., Claverie, F., Pécheyran, C., et al., 2007. Direct Analysis of Solid Samples by fs-LA-ICP-MS. TrAC Trends in Analytical Chemistry, 26(10):951-966. https://doi.org/10.1016/j.trac.2007.08.008 [12] Fu, L.B., Wei, J.H., Zhang, D.H., et al., 2015. A Review of LA-ICP-MS Analysis for Individual Fluid Inclusions and Its Applications in Ore Deposits. Journal of Central South University (Science and Technology), 46(10):3832-3840 (in Chinese with English abstract). doi: 10.11817/j.issn.1672-7207.2015.10.037 [13] Fusswinkel, T., Giehl, C., Beermann, O., et al., 2018. Combined LA-ICP-MS Microanalysis of Iodine, Bromine and Chlorine in Fluid Inclusions. Journal of Analytical Atomic Spectrometry, 33(5):768-783. https://doi.org/10.1039/c7ja00415j doi: 10.1039/C7JA00415J [14] Fusswinkel, T., Wagner, T., Sakellaris, G., 2017. Fluid Evolution of the Neoarchean Pampalo Orogenic Gold Deposit (E Finland):Constraints from LA-ICPMS Fluid Inclusion Microanalysis. Chemical Geology, 450:96-121. https://doi.org/10.1016/j.chemgeo.2016.12.022 [15] Ghazi, A. M., Shuttleworth, S., 2000. Trace Element Determination of Single Fluid Inclusions by Laser Ablation ICP-MS:Applications for Halites from Sedimentary Basins. The Analyst, 125(1):205-210. https://doi.org/10.1039/a908980b http://cn.bing.com/academic/profile?id=2ee7d9d3bed943a49f3aef12a4df4d07&encoded=0&v=paper_preview&mkt=zh-cn [16] Gomes, S. D., Berger, S., Figueiredo e Silva, R. C., et al., 2018. Oxide Chemistry and Fluid Inclusion Constraints on the Formation of Itabirite-Hosted Iron Ore Deposits at the Eastern Border of the Southern Espinhaço Range, Brazil. Ore Geology Reviews, 95:821-848. https://doi.org/10.1016/j.oregeorev.2018.03.025 [17] Guillong, M., Latkoczy, C., Seo, J. H., et al., 2008a. Determination of Sulfur in Fluid Inclusions by Laser Ablation ICP-MS. Journal of Analytical Atomic Spectrometry, 23(12):1581-1589. https://doi.org/10.1039/b807383j [18] Guillong, M., Meier, D.L., Allan, M., et al., 2008b. Sills: A Matlab-Based Program for the Reduction of Laser Ablation ICP-MS Data of Homogeneous Materials and Inclusions. In: Sylvester, P., ed., Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course Series, 328-333. [19] Guillong, M., Pettke, T., 2012. Depth Dependent Element Ratios in Fluid Inclusion Analysis by Laser Ablation ICP-MS. Journal of Analytical Atomic Spectrometry, 27(3):505-508. https://doi.org/10.1039/c2ja10147e [20] Günther, D., Audétat, A., Frischknecht, R., et al., 1998. Quantitative Analysis of Major, Minor and Trace Elements in Fluid Inclusions Using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 13(4):263-270. https://doi.org/10.1039/a707372k doi: 10.1039/A707372K [21] Günther, D., Frischknecht, R., Müschenborn, H. J., et al., 1997. Direct Liquid Ablation:A New Calibration Strategy for Laser Ablation-ICP-MS Microanalysis of Solids and Liquids. Fresenius' Journal of Analytical Chemistry, 359(4-5):390-393. https://doi.org/10.1007/s002160050594 [22] Günther, D., Hattendorf, B., 2005. Solid Sample Analysis Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry. TrAC Trends in Analytical Chemistry, 24(3):255-265. https://doi.org/10.1016/j.trac.2004.11.017 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ026541946/ [23] Günther, D., Heinrich, C. A., 1999. Enhanced Sensitivity in Laser Ablation-ICP Mass Spectrometry Using Helium-Argon Mixtures as Aerosol Carrier. Journal of Analytical Atomic Spectrometry, 14(9):1363-1368. https://doi.org/10.1039/a901648a doi: 10.1039/A901648A [24] Guo, H. H., Audétat, A., 2018. Gold Diffusion into and out of Quartz-Hosted Fluid Inclusions during Re-Equilibration Experiments at 600-800℃ and 2 kbar. Chemical Geology, 476:1-10. https://doi.org/10.1016/j.chemgeo.2017.09.031 [25] Guo, H. H., Audétat, A., Dolejš, D., 2018. Solubility of Gold in Oxidized, Sulfur-Bearing Fluids at 500-850℃ and 200-230 MPa:A Synthetic Fluid Inclusion Study. Geochimica et Cosmochimica Acta, 222:655-670. https://doi.org/10.1016/j.gca.2017.11.019 [26] Halter, W. E., Pettke, T., Heinrich, C.A., 2002. The Origin of Cu/Au Ratios in Porphyry-Type Ore Deposits. Science, 296(5574):1844-1846. https://doi.org/10.1126/science.1070139 http://cn.bing.com/academic/profile?id=ea08911094a92ac7a0cdfc2ce62ba552&encoded=0&v=paper_preview&mkt=zh-cn [27] Harlaux, M., Borovinskaya, O., Frick, D.A., et al., 2015. Capabilities of Sequential and Quasi-Simultaneous LA-ICPMS for the Multi-Element Analysis of Small Quantity of Liquids (Pl to Nl):Insights from Fluid Inclusion Analysis. Journal of Analytical Atomic Spectrometry, 30(9):1945-1969. https://doi.org/10.1039/c5ja00111k doi: 10.1039/C5JA00111K [28] Heinrich, C. A., Günther, D., Audétat, A., et al., 1999. Metal Fractionation between Magmatic Brine and Vapor, Determined by Microanalysis of Fluid Inclusions. Geology, 27(8):755-758. https://doi.org/10.1130/0091-7613(1999)027 < 0755:mfbmba>2.3.co; 2 doi: 10.1130/0091-7613(1999)027<0755:MFBMBA>2.3.CO;2 [29] Heinrich, C. A., Pettke, T., Halter, W. E., et al., 2003. Quantitative Multi-Element Analysis of Minerals, Fluid and Melt Inclusions by Laser-Ablation Inductively-Coupled-Plasma Mass-Spectrometry. Geochimica et Cosmochimica Acta, 67(18):3473-3497. https://doi.org/10.1016/s0016-7037(03)00084-x http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0fd5986e3babe0790d5455e8b15751fb [30] Horn, I., Günther, D., 2003. The Influence of Ablation Carrier Gasses Ar, He and Ne on the Particle Size Distribution and Transport Efficiencies of Laser Ablation-Induced Aerosols:Implications for LA-ICP-MS. Applied Surface Science, 207(1-4):144-157. https://doi.org/10.1016/s0169-4332(02)01324-7 doi: 10.1016/S0169-4332(02)01324-7 [31] Hu, S.H., Hu, Z.C., Liu, Y.C., et al., 2001. New Techniques of Major and Minor Elemental Analysis in Individual Fluid Inclusion-Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Earth Science Frontiers, (4):434-440 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200104026 [32] Jian, W., Albrecht, M., Lehmann, B., et al., 2018. UV-fs-LA-ICP-MS Analysis of CO2-Rich Fluid Inclusions in a Frozen State:Example from the Dahu Au-Mo Deposit, Xiaoqinling Region, Central China. Geofluids, (1):1-17. https://doi.org/10.1155/2018/3692180 [33] Lan, T.G., Hu, R.Z., Fan, H.R., et al., 2017. In-Situ Analysis of Major and Trace Elements in Fluid Inclusion and Quartz:LA-ICP-MS Method and Applications to Ore Deposits. Acta Petrologica Sinica, 33(10):3239-3262(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201710017.htm [34] Leisen, M., Boiron, M. C., Richard, A., et al., 2012a. Determination of Cl and Br Concentrations in Individual Fluid Inclusions by Combining Microthermometry and LA-ICPMS Analysis:Implications for the Origin of Salinity in Crustal Fluids. Chemical Geology, 330-331:197-206. https://doi.org/10.1016/j.chemgeo.2012.09.003 [35] Leisen, M., Dubessy, J., Boiron, M. C., et al., 2012b. Improvement of the Determination of Element Concentrations in Quartz-Hosted Fluid Inclusions by LA-ICP-MS and Pitzer Thermodynamic Modeling of Ice Melting Temperature. Geochimica et Cosmochimica Acta, 90:110-125. https://doi.org/10.1016/j.gca.2012.04.040 [36] Li, C. Y., Jiang, Y. H., Zhao, Y., et al., 2018. Trace Element Analyses of Fluid Inclusions Using Laser Ablation ICP-MS. Solid Earth Sciences, 3(1):8-15. https://doi.org/10.1016/j.sesci.2017.12.001 http://cn.bing.com/academic/profile?id=290178fbd6e420468cb6959e275485d7&encoded=0&v=paper_preview&mkt=zh-cn [37] Li, X.C., Fan, H.R., Hu, F.F., et al., 2010. An Analysis of the Individual Fluid Inclusion by LA-ICP-MS and Its Application to Ore Deposits. Mineral Deposits, 29(6):1017-1028 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201006006 [38] Lindner, H., Autrique, D., Pisonero, J., et al., 2010. Numerical Simulation Analysis of Flow Patterns and Particle Transport in the HEAD Laser Ablation Cell with Respect to Inductively Coupled Plasma Spectrometry. Journal of Analytical Atomic Spectrometry, 25(3):295. https://doi.org/10.1039/b920905k http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6aa337b5fff9e5ebb8e4dfbc9b3a0939 [39] Liu, C., Mao, X. L., Mao, S. S., et al., 2004. Nanosecond and Femtosecond Laser Ablation of Brass:Particulate and ICPMS Measurements. Analytical Chemistry, 76(2):379-383. https://doi.org/10.1021/ac035040a [40] Liu, H., Bi, X., Lu, H. et al., 2018. Nature and Evolution of Fluid Inclusions in the Cenozoic Beiya Gold Deposit, Sw China Genesis of the Wulong Gold Deposit, Northeastern North China Craton:Constraints from Fluid Inclusions, H-O-S-Pb Isotopes, and Pyrite Trace Element Concentrations. Journal of Asian Earth Sciences, 161:35-56. https://doi.org/10.1016/j.jseaes.2018.04.034 [41] Liu, Y. S., Hu, Z. C., Yuan, H. L., et al., 2007. Volume-Optional and Low-Memory (VOLM) Chamber for Laser Ablation-ICP-MS:Application to Fiber Analyses. Journal of Analytical Atomic Spectrometry, 22(5):582. https://doi.org/10.1039/b701718a [42] Loucks, R. R., Mavrogenes, J.A., 1999. Gold Solubility in Supercritical Hydrothermal Brines Measured in Synthetic Fluid Inclusions. Science, 284(5423):2159-2163. https://doi.org/10.1126/science.284.5423.2159 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e2798df058b1fad5e166b0d4b9945fbe [43] Lu, H.Z., Fan, H.R., Ni, P., et al., 2004. Fluid Inclusion. Science Press, Beijing(in Chinese). [44] Ma, L., Li, Y.K., Wang, A.J., et al., 2014. An Analysis of the Individual Fluid Inclusion by LA-ICP-MS and SRXRF. Mineral Deposits, 33(S1):547-548 (in Chinese with English abstract). [45] Ni, P., Fan, H.R., Ding, J.Y., 2014. Progress in Fluid Inclusion. Bulletin of Mineralogy, Petrology and Geochemistry, 33(1):1-5 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwxb201201005 [46] Pettke, T., 2008. Analytical Protocols for Element Concentration and Isotope Ratlo Measurements in Fluid Inclusions by LA-(MC-)ICP-MS. Mineralogical Association on Canada, 40:189-217 [47] Pettke, T., Oberli, F., Audétat, A., et al., 2012. Recent Developments in Element Concentration and Isotope Ratio Analysis of Individual Fluid Inclusions by Laser Ablation Single and Multiple Collector ICP-MS. Ore Geology Reviews, 44:10-38. https://doi.org/10.1016/j.oregeorev.2011.11.001 [48] Pokrovski, G. S., Akinfiev, N. N., Borisova, A. Y., et al., 2014. Gold Speciation and Transport in Geological Fluids:Insights from Experiments and Physical-Chemical Modelling. Geological Society, London, Special Publications, 402(1):9-70. https://doi.org/10.1144/sp402.4 doi: 10.1144/SP402.4 [49] Pokrovski, G. S., Borisova, A. Y., Bychkov, A. Y., 2013. Speciation and Transport of Metals and Metalloids in Geological Vapors. Reviews in Mineralogy and Geochemistry, 76(1):165-218. https://doi.org/10.2138/rmg.2013.76.6 [50] Schlegel, T. U., Wälle, M., Steele-MacInnis, M., et al., 2012. Accurate and Precise Quantification of Major and Trace Element Compositions of Calcic-Sodic Fluid Inclusions by Combined Microthermometry and LA-ICPMS Analysis. Chemical Geology, 334:144-153. https://doi.org/10.1016/j.chemgeo.2012.10.001 [51] Schlöglova, K., Walle, M., Heinrich, C.A., et al., 2017a. LA-ICP-MS Analysis of Fluid Inclusions:Contamination Effects Challenging Micro-Analysis of Elements Close to Their Detection Limit. Journal of Analytical Atomic Spectrometry, 32(5):1052-1063. https://doi.org/10.1039/c7ja00022g doi: 10.1039/C7JA00022G [52] Schlöglova, K., Walle, M., Heinrich, C.A. et al., 2017b. Copper, Gold and Bismuth Behavior in Magmatichydrothermal Systems:Fluid-Inclusion LA-ICP-MS Study. Mineral Resources to Discover, 1-4:95-98. http://cn.bing.com/academic/profile?id=55f783df21b5dab0e710d1aebf52b784&encoded=0&v=paper_preview&mkt=zh-cn [53] Seo, J. H., Guillong, M., Aerts, M., et al., 2011. Microanalysis of S, Cl, and Br in Fluid Inclusions by LA-ICP-MS. Chemical Geology, 284(1-2):35-44. https://doi.org/10.1016/j.chemgeo.2011.02.003 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=592b1121e8b29d934455f0402211895e [54] Seo, J. H., Guillong, M., Heinrich, C. A., 2009. The Role of Sulfur in the Formation of Magmatic-Hydrothermal Copper-Gold Deposits. Earth and Planetary Science Letters, 282(1-4):323-328. https://doi.org/10.1016/j.epsl.2009.03.036 [55] Seo, J. H., Zajacz, Z., 2016. Fractionation of Cl/Br during Fluid Phase Separation in Magmatic-Hydrothermal Fluids. Geochimica et Cosmochimica Acta, 183:125-137. https://doi.org/10.1016/j.gca.2016.04.009 [56] Shepherd, T. J., Chenery, S. R., 1995. Laser Ablation ICP-MS Elemental Analysis of Individual Fluid Inclusions:An Evaluation Study. Geochimica et Cosmochimica Acta, 59(19):3997-4007. https://doi.org/10.1016/0016-7037(95)00294-a doi: 10.1016/0016-7037(95)00294-A [57] Steele-MacInnis, M., Bodnar, R. J., Naden, J., 2011. Numerical Model to Determine the Composition of H2O-NaCl-CaCl2 Fluid Inclusions Based on Microthermometric and Microanalytical Data. Geochimica et Cosmochimica Acta, 75(1):21-40. https://doi.org/10.1016/j.gca.2010.10.002 [58] Steele-MacInnis, M., Ridley, J., Lecumberri-Sanchez, P., et al., 2016. Application of Low-Temperature Microthermometric Data for Interpreting Multicomponent Fluid Inclusion Compositions. Earth-Science Reviews, 159:14-35. https://doi.org/10.1016/j.earscirev.2016.04.011 [59] Stoffell, B., Appold, M. S., Wilkinson, J. J., et al., 2008. Geochemistry and Evolution of Mississippi Valley-Type Mineralizing Brines from the Tri-State and Northern Arkansas Districts Determined by LA-ICP-MS Microanalysis of Fluid Inclusions. Economic Geology, 103(7):1411-1435. https://doi.org/10.2113/gsecongeo.103.7.1411 [60] Su, W., Heinrich, C. A., Pettke, T., et al., 2009. Sediment-Hosted Gold Deposits in Guizhou, China:Products of Wall-Rock Sulfidation by Deep Crustal Fluids. Economic Geology, 104(1):73-93. https://doi.org/10.2113/gsecongeo.104.1.73 [61] Sun, H., Xiao, Y.L., 2009. Fluid Inclusion:Latest Development, Geological Applications and Prospect. Advances in Earth Science, 24(10):1105-21 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkxjz200910005 [62] Sun, W.L., Peng, S.X., Bai, J.K., et al., 2018.Fluid Inclusions and Geochronology of Wulunbulake Copper Deposit in Xinjiang. Earth Science, 43(12):4475-4489(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201812016 [63] Sun, X.H., Hu, M.Y., Liu, C.L., et al., 2013. Composition Determination of Single Fluid Inclusions in Salt Minerals by Laser Ablation ICP-MS. Chinese Journal of Analytical Chemistry, 41(2):235-241(in Chinese with English abstract). doi: 10.1016/S1872-2040(13)60631-3 [64] Tsui, T. F., Holland, H. D., 1979. The Analysis of Fluid Inclusions by Laser Microprobe. Economic Geology, 74(7):1647-1653. https://doi.org/10.2113/gsecongeo.74.7.1647 [65] Ulrich, T., Günther, D., Heinrich, C. A., 1999. Gold Concentrations of Magmatic Brines and the Metal Budget of Porphyry Copper Deposits. Nature, 399(6737):676-679. https://doi.org/10.1038/21406 [66] Wagner, T., Fusswinkel, T., Wälle, M., et al., 2016. Microanalysis of Fluid Inclusions in Crustal Hydrothermal Systems Using Laser Ablation Methods. Elements, 12(5):323-328. https://doi.org/10.2113/gselements.12.5.323 [67] Wälle, M., Heinrich, C.A., 2014. Fluid Inclusion Measurements by Laser Ablation Sector-Field ICP-MS. Journal of Analytical Atomic Spectrometry, 29(6):1052-1057. https://doi.org/10.1039/c4ja00010b doi: 10.1039/C4JA00010B [68] Wang, L.J., Wang, Y.W., Wang, J.B., et al., 2006. Fluid-Forming of a Dajing Tin-Polymetallic Deposit in Inner Mongolia:Evidence of a Individual Fluid Inclusion Component of LA-ICP-MS. Chinese Science Bulletin, (10):1203-1210 (in Chinese). [69] Wei, N., Huang, F., Wang, Y., et al., 2018.Genesis of Yuanlingzhai Large Porphyry Molybdenum Deposits in East Section of Nanling:Evidence from Fluid Inclusions and Stable Isotope. Earth Science, 43(S2):135-148(in Chinese with English abstract. [70] Wilkinson, J. J., 2001. Fluid Inclusions in Hydrothermal Ore Deposits. Lithos, 55(1-4):229-272. https://doi.org/10.1016/s0024-4937(00)00047-5 doi: 10.1016/S0024-4937(00)00047-5 [71] Wilkinson, J. J., Stoffell, B., Wilkinson, C. C., et al., 2009. Anomalously Metal-Rich Fluids Form Hydrothermal Ore Deposits. Science, 323(5915):764-767. https://doi.org/10.1126/science.1164436 [72] Yuan, H.L., Gao, S., Dai, M.N., et al., 2009.In Situ Strontium Isotope Analysis of Fluid Inclusion Using LA-MC-ICPMS. Bulletin of Mineralogy, Petrology and Geochemistry, 28(4):313-317(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb200904001 [73] Zhang, W.D., Wu, X.B., Deng, X.H., et al., 2018.Fluid Inclusions Constraints on the Origin of the Xiaorequanzi Deposit in Eastern Tianshan. Earth Science, 43(9):3036-3048(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201809009 [74] Zhou, H., Xi, A.H., Xiong, Y.X., et al., 2013.Progress in the Research on Fluid Inclusions. Acta Mineralogica Sinica, 33(1):92-100(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwxb201301014 [75] 付乐兵, 魏俊浩, 张道涵, 等, 2015.单个流体包裹体成分LA-ICP-MS分析与矿床学应用进展.中南大学学报(自然科学版), 46(10):3832-3840. doi: 10.11817/j.issn.1672-7207.2015.10.037 [76] 胡圣虹, 胡兆初, 刘勇胜, 等, 2001.单个流体包裹体元素化学组成分析新技术——激光剥蚀电感耦合等离子体质谱(LA-ICP-MS).地学前缘, (4):434-440. doi: 10.3321/j.issn:1005-2321.2001.04.026 [77] 蓝廷广, 胡瑞忠, 范宏瑞, 等, 2017.流体包裹体及石英LA-ICP-MS分析方法的建立及其在矿床学中的应用.岩石学报, 33(10):3239-3262. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201710017 [78] 李晓春, 范宏瑞, 胡芳芳, 等, 2010.单个流体包裹体LA-ICP-MS成分分析及在矿床学中的应用.矿床地质, 29(6):1017-1028. doi: 10.3969/j.issn.0258-7106.2010.06.006 [79] 卢焕章, 范宏瑞, 倪培, 等, 2004.流体包裹体.北京:科学出版社. [80] 马莉, 李以科, 王安建, 等, 2014. LA-ICP-MS与SRXRF测试流体包裹体的应用研究.矿床地质, 33(S1):547-548. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=8451027 [81] 倪培, 范宏瑞, 丁俊英, 2014.流体包裹体研究进展.矿物岩石地球化学通报, 33(1):1-5. doi: 10.3969/j.issn.1007-2802.2014.01.001 [82] 孙贺, 肖益林, 2009.流体包裹体研究:进展、地质应用及展望.地球科学进展, 24(10):1105-1121. doi: 10.3321/j.issn:1001-8166.2009.10.005 [83] 孙万龙, 彭素霞, 白建科, 等, 2018.新疆乌伦布拉克铜矿流体包裹体特征及含矿岩体年代学.地球科学, 43(12):4475-4489. doi: 10.3799/dqkx.2018.166 [84] 孙小虹, 胡明月, 刘成林, 等, 2013.激光剥蚀ICP-MS法测定盐类矿物单个流体包裹体的成分.分析化学, 41(2):235-241. http://d.old.wanfangdata.com.cn/Periodical/fxhx201302013 [85] 王莉娟, 王玉往, 王京彬, 等, 2006.内蒙古大井锡多金属矿床流体成矿作用研究:单个流体包裹体组分LA-ICP-MS分析证据.科学通报, (10):1203-1210. doi: 10.3321/j.issn:0023-074X.2006.10.012 [86] 魏娜, 黄凡, 王岩, 等, 2018.南岭东段园岭寨斑岩型钼矿成因——流体包裹体和稳定同位素证据.地球科学, 43(S2):135-148. doi: 10.3799/dqkx.2018.194 [87] 袁洪林, 高山, 戴梦宁, 等, 2009.流体包裹体中Sr同位素的激光剥蚀多接收等离子体质谱原位微区分析.矿物岩石地球化学通报, 28(4):313-317. doi: 10.3969/j.issn.1007-2802.2009.04.001 [88] 张文东, 吴湘滨, 邓小华, 等, 2018.东天山小热泉子矿床流体包裹体及矿床成因.地球科学, 43(9):3036-3048. doi: 10.3799/dqkx.2018.150 [89] 周慧, 郗爱华, 熊益学, 等, 2013.流体包裹体的研究进展.矿物学报, 33(1):92-100. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200001015