• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    页岩气在孔隙表面的赋存状态及其微观作用机理

    陈国辉 卢双舫 刘可禹 许晨曦 薛庆忠 田善思 李进步 卢书东 张钰莹

    陈国辉, 卢双舫, 刘可禹, 许晨曦, 薛庆忠, 田善思, 李进步, 卢书东, 张钰莹, 2020. 页岩气在孔隙表面的赋存状态及其微观作用机理. 地球科学, 45(5): 1782-1790. doi: 10.3799/dqkx.2019.194
    引用本文: 陈国辉, 卢双舫, 刘可禹, 许晨曦, 薛庆忠, 田善思, 李进步, 卢书东, 张钰莹, 2020. 页岩气在孔隙表面的赋存状态及其微观作用机理. 地球科学, 45(5): 1782-1790. doi: 10.3799/dqkx.2019.194
    Chen Guohui, Lu Shuangfang, Liu Keyu, Xu Chenxi, Xue Qingzhong, Tian Shansi, Li Jinbu, Lu Shudong, Zhang Yuying, 2020. Occurrence State and Micro Mechanisms of Shale Gas on Pore Walls. Earth Science, 45(5): 1782-1790. doi: 10.3799/dqkx.2019.194
    Citation: Chen Guohui, Lu Shuangfang, Liu Keyu, Xu Chenxi, Xue Qingzhong, Tian Shansi, Li Jinbu, Lu Shudong, Zhang Yuying, 2020. Occurrence State and Micro Mechanisms of Shale Gas on Pore Walls. Earth Science, 45(5): 1782-1790. doi: 10.3799/dqkx.2019.194

    页岩气在孔隙表面的赋存状态及其微观作用机理

    doi: 10.3799/dqkx.2019.194
    基金项目: 

    博士后创新人才支持计划项目 BX201700289

    国家自然科学基金项目 41802157

    国家自然科学基金项目 41330313

    国家自然科学基金项目 41672130

    中国博士后科学基金项目 2017M620296

    中国博士后科学基金项目 2018M630811

    山东省自然科学基金项目 ZR2018BD017

    青岛市博士后资助项目 BY20170216

    详细信息
      作者简介:

      陈国辉(1986-), 博士, 主要从事非常规油气地质学及分子模拟方面的研究

      通讯作者:

      卢双舫

      刘可禹

    • 中图分类号: P593

    Occurrence State and Micro Mechanisms of Shale Gas on Pore Walls

    • 摘要: 吸附态是页岩气的主要赋存状态之一,对吸附气含量的准确评价是页岩气勘探开发中的重要环节.在页岩吸附气含量评价过程中,所选用的等温吸附模型是否遵循页岩气的赋存状态及其微观作用机理,是决定模型适用性的关键所在,也是决定吸附气含量评价准确性的重要因素.因此,需要对页岩气在孔隙表面的赋存状态及其微观作用机理开展深入研究,为科学地优选或建立吸附气评价模型提供理论依据.利用巨正则蒙特卡洛(Grand Canonical Monte Carlo,简称GCMC)法分别模拟甲烷在有机质和伊利石孔隙中的吸附特征并得到分子构型,并进行分子动力学(MD)模拟使体系达到充分平衡.在此基础上,根据气体浓度分布、密度场分布以及分子间相互作用等特征阐明页岩气在孔隙表面的赋存状态及其微观作用机理.研究表明,页岩气在孔隙表面的吸附作用并非单层吸附,吸附相可划分为强吸附层、弱吸附层和二者之间的吸附层波谷.强吸附层主要受到矿物表面的吸附作用;吸附层波谷与弱吸附层既受到矿物表面的吸附作用,又受到不同吸附层之间的吸附作用.Langmiur模型与BET模型的假设条件与此机理不严格相符,可能对模型评价精度造成一定影响.对页岩气在孔隙表面赋存状态及其微观作用机理的研究,有望为吸附模型的优选或建立提供理论依据.

       

    • 图  1  有机孔隙(a)与伊利石孔隙(b)模拟单元剖面

      气体和钾离子为球状模型,有机质和伊利石骨架为球棍模型.色标:氧,红色;氢,白色;硅,黄色;铝,粉色;钾,紫色;有机质骨架:灰色,甲烷联合原子:橙色

      Fig.  1.  Snapshots of organic pore (a) and illite pore (b) with CH4 molecules

      图  2  等温吸附实验与分子模拟结果对比

      Fig.  2.  Comparison between molecular simulation results and experimental measurements

      图  3  伊利石与干酪根孔径分布

      Fig.  3.  Pore size distribution of illite and kerogen

      图  4  有机孔隙(a)与伊利石孔隙(b)表面气体分布特征与结合能分布特征对比

      Fig.  4.  Gas distribution and interaction distribution of gas on organic pore walls (a) and illite pore walls (b)

      图  5  垂直于有机质(a)与伊利石(b)孔隙表面的CH4密度场分布

      Fig.  5.  Density field of CH4 perpendicular to organic pore walls (a) and illite pore walls (b)

      图  6  孔隙内气体分布结构

      a.垂直于有机质孔隙表面;b.垂直于伊利石孔隙表面;c.平行于有机质孔隙表面;d.平行于伊利石孔隙表面

      Fig.  6.  Structure of gas molecules in pores

      图  7  孔隙表面与不同吸附层内气体分子之间结合能

      a.有机质孔隙; b.伊利石孔隙

      Fig.  7.  Interaction energy among pore walls and different adsorption layers

    • [1] Brunauer, S., Emmett, P.H., Teller, E., 1938. Adsorption of Gases in Multimolecular Layers. Journal of American Chemical Society, 60:309-319. doi: 10.1021/ja01269a023
      [2] Cao, T.T., Song, Z.G., Wang, S.B., et al., 2015. A Comparative Study of the Specific Surface Area and Pore Structure of Different Shales and Their Kerogens.Science in China (Seires D:Earth Sciences), 45(2):139-151(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=2fd16ef231ac41d575032258529366e1&encoded=0&v=paper_preview&mkt=zh-cn
      [3] Chareonsuppanimit, P., Mohammad, S.A., Robinson, R.L., et al., 2012. High-Pressure Adsorption of Gases on Shales:Measurements and Modeling. International Journal of Coal Geology, 95:34-46. doi: 10.1016/j.coal.2012.02.005
      [4] Chen, G., Lu, S., Liu, K., et al., 2019a. Critical Factors Controlling Shale Gas Adsorption Mechanisms on Different Minerals Investigated Using GCMC Simulations. Marineand Petroleum Geology, 100:31-42. doi: 10.1016/j.marpetgeo.2018.10.023
      [5] Chen, G., Lu, S., Liu, K., et al., 2019b. Investigation of Pore Size Effects on Adsorption Behavior of Shale Gas. Marineand Petroleum Geology, 109:1-8. doi: 10.1016/j.marpetgeo.2019.06.011
      [6] Chen, G., Lu, S., Zhang, J., et al., 2016. Research of CO2 and N2 Adsorption Behavior in K-Illite Slit Pores by GCMC Method. Scientific Reports, 6:1-10. doi: 10.1038/s41598-016-0001-8
      [7] Chen, G., Lu, S., Zhang, J., et al., 2017. Keys to Linking GCMC Simulations and shale Gas Adsorption Experiments. Fuel, 199:14-21. doi: 10.1016/j.fuel.2017.02.063
      [8] Cygan, R.T., Liang, J.J., Kalinichev, A.G., 2004. Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field. Journal of Physical Chemistry B, 108:1255-1266. doi: 10.1021/jp0363287
      [9] Dai, J., Zou, C., Liao, S., et al., 2014. Geochemistry of the Extremely High Thermal Maturity Longmaxi Shale Gas, Southern Sichuan Basin. Organic Geochemistry, 74:3-12. doi: 10.1016/j.orggeochem.2014.01.018
      [10] Fan, E., Tang, S., Zhang, C., et al., 2014. Methane Sorption Capacity of Organics and Clays in High-over Matured Shale-Gas Systems. Energy, Exploration & Exploitation, 32:927-942. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=44e6b7c4960ed826cae0b58628e95c5d
      [11] Gasparik, M., Rexer, T.F.T., Aplin, A.C., et al., 2014. First International Inter-Laboratory Comparison of High-Pressure CH4, CO2 and C2H6 Sorption Isotherms on Carbonaceous Shales. International Journal of Coal Geology, 132:131-146. doi: 10.1016/j.coal.2014.07.010
      [12] Gensterblum, Y., Busch, A., Krooss, B.M., 2014. Molecular Concept and Experimental Evidence of Competitive Adsorption of H2O, CO2 and CH4 on Organic Material. Fuel, 115:581-588. doi: 10.1016/j.fuel.2013.07.014
      [13] He, Z.L., Hu, Z.Q., Zhang, Y.Y., 2016. The Main Factors of Shale Gas Enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and Its Adjacent Areas. Earth Science Frontiers, 23(2):8-17 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201602002
      [14] Heller, R., Zoback, M., 2014. Adsorption of Methane and Carbon Dioxide on Gas Shale and Pure Mineral Samples. Journal of Unconventional Oil and Gas Resources, 8:14-24. doi: 10.1016/j.juogr.2014.06.001
      [15] Hill, D.G., Nelson, C., 2000. Gas Productive Fractured Shales:An Overview and Update. Gas Tips, 6:4-13. http://cn.bing.com/academic/profile?id=e3cf7d4f22ed6ef98e5079913ace7d76&encoded=0&v=paper_preview&mkt=zh-cn
      [16] Huang, L., Ning, Z., Wang, Q., et al., 2018. Molecular Simulation of Adsorption Behaviors of Methane, Carbon Dioxide and Their Mixtures on Kerogen:Effect of Kerogen Maturity and Moisture Content. Fuel, 211:159-172. doi: 10.1016/j.fuel.2017.09.060
      [17] Ji, L., Zhang, T., Milliken, K.L., et al., 2012. Experimental Investigation of Main Controls to Methane Adsorption in Clay-Rich Rocks. Applied Geochemistry, 27:2533-2545. doi: 10.1016/j.apgeochem.2012.08.027
      [18] Jin, Z.J., Hu, Z.Q., Gao, B., et al., 2016. Controlling Factors on the Enrichment and High Productivity of Shale Gas in the Wufeng-Longmaxi Formations, Southeastern Sichuan Basin. Earth Science Frontiers, 23(1):1-10. (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201601001
      [19] Jorgensen, W.L., Schyman, P., 2012. Treatment of Halogen Bonding in the OPLS-AA Force Field; Application to Potent Anti-HIV Agents. Journal of Chemical Theory & Computation, 8:3895-3801. http://cn.bing.com/academic/profile?id=7423f2eae51c7a129199839d58af5331&encoded=0&v=paper_preview&mkt=zh-cn
      [20] Krooss, B.M., van Bergen, F., Gensterblum, Y., et al., 2002. High-Pressure Methane and Carbon Dioxide Adsorption on Dry and Moisture-Equilibrated Pennsylvanian Coals. International Journal of Coal Geology, 51:69-92. doi: 10.1016/S0166-5162(02)00078-2
      [21] Langmuir, I., 1916. The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids. Journal of American Chemical Society, 38:2221-2295. doi: 10.1021/ja02268a002
      [22] Liu, Y., Wilcox, J., 2012. Molecular Simulation of CO2 Adsorption in Micro- and Mesoporous Carbons with Surface Heterogeneity. International Journal of Coal Geology, 104:83-95. doi: 10.1016/j.coal.2012.04.007
      [23] Liu, Y., Zhu, Y., Li, W., et al., 2016. Molecular Simulation of Methane Adsorption in Shale Based on Grand Canonical Monte Carlo Method and Pore Size Distribution. Journal of Natural Gas Science and Engineering, 30:119-126. doi: 10.1016/j.jngse.2016.01.046
      [24] Lorentz, H.A., 1881. Nachtrag zu der Abhandlung:Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Annalen der Physik, 248:660-661. doi: 10.1002/andp.18812480414
      [25] Lu, S.F., Shen, B.J., Xu, C.X., et al., 2018. Study on Adsorption Behavior and Mechanism of Shale Gas by Using GCMC Molecular Simulation. Earth Science, 39(5):425-433 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201805037
      [26] Martin, M.G., Siepmann, J.I., 1998. Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes. Journal of Physical Chemistry B, 102:2569-2577. doi: 10.1021/jp972543+
      [27] Mosher, K., He, J., Liu, Y., et al., 2013. Molecular Simulation of Methane Adsorption in Micro- and Mesoporous Carbons with Applications to Coal and Gas Shale Systems. International Journal of Coal Geology, 109-110:36-44. doi: 10.1016/j.coal.2013.01.001
      [28] Potoff, J.J., Siepmann, J.I., 2001. Vapor-Liquid Equilibria of Mixtures Containing Alkanes, Carbon Dioxide, and Nitrogen. AiChE Journal, 47:1676-1682. doi: 10.1002/aic.690470719
      [29] Szczerba, M., Derkowski, A., Kalinichev, A.G., et al., 2015. Molecular Modeling of the Effects of 40Ar Recoil in Illite Particles on Their K-Ar Isotope Dating. Geochimica et Cosmochimica Acta, 159:162-176. doi: 10.1016/j.gca.2015.03.005
      [30] Tian, H., Li, T., Zhang, T., et al., 2016. Characterization of Methane Adsorption on Overmature Lower Silurian-Upper Ordovician Shales in Sichuan Basin, Southwest China:Experimental Results and Geological Implications. International Journal of Coal Geology, 156:36-49. doi: 10.1016/j.coal.2016.01.013
      [31] Wang, S., Feng, Q., Javadpour, F., et al., 2016. Breakdown of Fast Mass Transport of Methane through Calcite Nanopores. Journal of Physical Chemistry C, 120(26):14260-14269. doi: 10.1021/acs.jpcc.6b05511
      [32] Wang, S., Feng, Q., Javadpour, F., et al., 2019. Competitive Adsorption of Methane and Ethane in Montmorillonite Nanopores of Shale at Supercritical Conditions:A Grand Canonical Monte Carlo Simulation Study. Chemical Engineering Journal, 355:76-90. doi: 10.1016/j.cej.2018.08.067
      [33] Wang, S.B., Song, Z.G., Cao, T.T., 2013. Insights from Isotherm Adsorption of Methane on Shale and Keroge. The 14th National Conference on Organic Geochemistry, Zhuhai (in Chinese).
      [34] Xiong, J., Liu, X., Liang, L., et al., 2017. Adsorption of Methane in Organic-Rich Shale Nanopores:An Experimental and Molecular Simulation Study. Fuel, 200:299-315. doi: 10.1016/j.fuel.2017.03.083
      [35] Zhai, G., Wang, Y., Bao, S., et al., 2017. Major Factors Controlling the Accumulation and High Productivity of Marine Shale Gas and Prospect Forecast in Southern China. Earth Science, 42(7):1057-1068 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201707003
      [36] Zhang, J., Clennell, M.B., Liu, K., et al., 2016. Methane and Carbon Dioxide Adsorption on Illite. Energy & Fuels, 30:10643-10652. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eda468932dbbcb7d6f097e81d92edcaa
      [37] Zhao, J., Jin, Z., Hu, Q., et al., 2018. Mineral Composition and Seal Condition Implicated in Pore Structure Development of Organic-Rich Longmaxi Shales, Sichuan Basin, China. Marineand Petroleum Geology, 98:507-522. doi: 10.1016/j.marpetgeo.2018.09.009
      [38] 曹涛涛, 宋之光, 王思波, 等, 2015.不同页岩及干酪根比表面积和孔隙结构的比较研究.中国科学(D辑:地球科学), 45(2):139-151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201502002
      [39] 何治亮, 聂海宽, 张钰莹, 2016.四川盆地及其周缘奥陶系五峰组-志留系龙马溪组页岩气富集主控因素分析.地学前缘, 23(2):8-17. http://d.old.wanfangdata.com.cn/Periodical/dxqy201602002
      [40] 金之钧, 胡宗全, 高波, 等, 2016.川东南地区五峰组-龙马溪组页岩气富集与高产控制因素.地学前缘, 23(1):1-10. http://d.old.wanfangdata.com.cn/Periodical/dxqy201601001
      [41] 卢双舫, 沈博健, 许晨曦, 等, 2018.利用GCMC分子模拟技术研究页岩气的吸附行为和机理.地球科学, 39(5):425-433. doi: 10.3799/dqkx.2018.430
      [42] 王思波, 宋之光, 曹涛涛, 2013.页岩有机质和干酪根对甲烷等温吸附实验的认识.珠海: 第十四届全国有机地球化学学术会议.
      [43] 翟刚毅, 王玉芳, 包书景, 等, 2017.我国南方海相页岩气富集高产主控因素及前景预测.地球科学, 42(7): 1057-1068. doi: 10.3799/dqkx.2017.085
    • 加载中
    图(7)
    计量
    • 文章访问数:  881
    • HTML全文浏览量:  268
    • PDF下载量:  78
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-08-06
    • 刊出日期:  2020-05-15

    目录

      /

      返回文章
      返回