[1] |
Brunauer, S., Emmett, P.H., Teller, E., 1938. Adsorption of Gases in Multimolecular Layers. Journal of American Chemical Society, 60:309-319. doi: 10.1021/ja01269a023
|
[2] |
Cao, T.T., Song, Z.G., Wang, S.B., et al., 2015. A Comparative Study of the Specific Surface Area and Pore Structure of Different Shales and Their Kerogens.Science in China (Seires D:Earth Sciences), 45(2):139-151(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=2fd16ef231ac41d575032258529366e1&encoded=0&v=paper_preview&mkt=zh-cn
|
[3] |
Chareonsuppanimit, P., Mohammad, S.A., Robinson, R.L., et al., 2012. High-Pressure Adsorption of Gases on Shales:Measurements and Modeling. International Journal of Coal Geology, 95:34-46. doi: 10.1016/j.coal.2012.02.005
|
[4] |
Chen, G., Lu, S., Liu, K., et al., 2019a. Critical Factors Controlling Shale Gas Adsorption Mechanisms on Different Minerals Investigated Using GCMC Simulations. Marineand Petroleum Geology, 100:31-42. doi: 10.1016/j.marpetgeo.2018.10.023
|
[5] |
Chen, G., Lu, S., Liu, K., et al., 2019b. Investigation of Pore Size Effects on Adsorption Behavior of Shale Gas. Marineand Petroleum Geology, 109:1-8. doi: 10.1016/j.marpetgeo.2019.06.011
|
[6] |
Chen, G., Lu, S., Zhang, J., et al., 2016. Research of CO2 and N2 Adsorption Behavior in K-Illite Slit Pores by GCMC Method. Scientific Reports, 6:1-10. doi: 10.1038/s41598-016-0001-8
|
[7] |
Chen, G., Lu, S., Zhang, J., et al., 2017. Keys to Linking GCMC Simulations and shale Gas Adsorption Experiments. Fuel, 199:14-21. doi: 10.1016/j.fuel.2017.02.063
|
[8] |
Cygan, R.T., Liang, J.J., Kalinichev, A.G., 2004. Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field. Journal of Physical Chemistry B, 108:1255-1266. doi: 10.1021/jp0363287
|
[9] |
Dai, J., Zou, C., Liao, S., et al., 2014. Geochemistry of the Extremely High Thermal Maturity Longmaxi Shale Gas, Southern Sichuan Basin. Organic Geochemistry, 74:3-12. doi: 10.1016/j.orggeochem.2014.01.018
|
[10] |
Fan, E., Tang, S., Zhang, C., et al., 2014. Methane Sorption Capacity of Organics and Clays in High-over Matured Shale-Gas Systems. Energy, Exploration & Exploitation, 32:927-942. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=44e6b7c4960ed826cae0b58628e95c5d
|
[11] |
Gasparik, M., Rexer, T.F.T., Aplin, A.C., et al., 2014. First International Inter-Laboratory Comparison of High-Pressure CH4, CO2 and C2H6 Sorption Isotherms on Carbonaceous Shales. International Journal of Coal Geology, 132:131-146. doi: 10.1016/j.coal.2014.07.010
|
[12] |
Gensterblum, Y., Busch, A., Krooss, B.M., 2014. Molecular Concept and Experimental Evidence of Competitive Adsorption of H2O, CO2 and CH4 on Organic Material. Fuel, 115:581-588. doi: 10.1016/j.fuel.2013.07.014
|
[13] |
He, Z.L., Hu, Z.Q., Zhang, Y.Y., 2016. The Main Factors of Shale Gas Enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and Its Adjacent Areas. Earth Science Frontiers, 23(2):8-17 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201602002
|
[14] |
Heller, R., Zoback, M., 2014. Adsorption of Methane and Carbon Dioxide on Gas Shale and Pure Mineral Samples. Journal of Unconventional Oil and Gas Resources, 8:14-24. doi: 10.1016/j.juogr.2014.06.001
|
[15] |
Hill, D.G., Nelson, C., 2000. Gas Productive Fractured Shales:An Overview and Update. Gas Tips, 6:4-13. http://cn.bing.com/academic/profile?id=e3cf7d4f22ed6ef98e5079913ace7d76&encoded=0&v=paper_preview&mkt=zh-cn
|
[16] |
Huang, L., Ning, Z., Wang, Q., et al., 2018. Molecular Simulation of Adsorption Behaviors of Methane, Carbon Dioxide and Their Mixtures on Kerogen:Effect of Kerogen Maturity and Moisture Content. Fuel, 211:159-172. doi: 10.1016/j.fuel.2017.09.060
|
[17] |
Ji, L., Zhang, T., Milliken, K.L., et al., 2012. Experimental Investigation of Main Controls to Methane Adsorption in Clay-Rich Rocks. Applied Geochemistry, 27:2533-2545. doi: 10.1016/j.apgeochem.2012.08.027
|
[18] |
Jin, Z.J., Hu, Z.Q., Gao, B., et al., 2016. Controlling Factors on the Enrichment and High Productivity of Shale Gas in the Wufeng-Longmaxi Formations, Southeastern Sichuan Basin. Earth Science Frontiers, 23(1):1-10. (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201601001
|
[19] |
Jorgensen, W.L., Schyman, P., 2012. Treatment of Halogen Bonding in the OPLS-AA Force Field; Application to Potent Anti-HIV Agents. Journal of Chemical Theory & Computation, 8:3895-3801. http://cn.bing.com/academic/profile?id=7423f2eae51c7a129199839d58af5331&encoded=0&v=paper_preview&mkt=zh-cn
|
[20] |
Krooss, B.M., van Bergen, F., Gensterblum, Y., et al., 2002. High-Pressure Methane and Carbon Dioxide Adsorption on Dry and Moisture-Equilibrated Pennsylvanian Coals. International Journal of Coal Geology, 51:69-92. doi: 10.1016/S0166-5162(02)00078-2
|
[21] |
Langmuir, I., 1916. The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids. Journal of American Chemical Society, 38:2221-2295. doi: 10.1021/ja02268a002
|
[22] |
Liu, Y., Wilcox, J., 2012. Molecular Simulation of CO2 Adsorption in Micro- and Mesoporous Carbons with Surface Heterogeneity. International Journal of Coal Geology, 104:83-95. doi: 10.1016/j.coal.2012.04.007
|
[23] |
Liu, Y., Zhu, Y., Li, W., et al., 2016. Molecular Simulation of Methane Adsorption in Shale Based on Grand Canonical Monte Carlo Method and Pore Size Distribution. Journal of Natural Gas Science and Engineering, 30:119-126. doi: 10.1016/j.jngse.2016.01.046
|
[24] |
Lorentz, H.A., 1881. Nachtrag zu der Abhandlung:Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Annalen der Physik, 248:660-661. doi: 10.1002/andp.18812480414
|
[25] |
Lu, S.F., Shen, B.J., Xu, C.X., et al., 2018. Study on Adsorption Behavior and Mechanism of Shale Gas by Using GCMC Molecular Simulation. Earth Science, 39(5):425-433 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201805037
|
[26] |
Martin, M.G., Siepmann, J.I., 1998. Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes. Journal of Physical Chemistry B, 102:2569-2577. doi: 10.1021/jp972543+
|
[27] |
Mosher, K., He, J., Liu, Y., et al., 2013. Molecular Simulation of Methane Adsorption in Micro- and Mesoporous Carbons with Applications to Coal and Gas Shale Systems. International Journal of Coal Geology, 109-110:36-44. doi: 10.1016/j.coal.2013.01.001
|
[28] |
Potoff, J.J., Siepmann, J.I., 2001. Vapor-Liquid Equilibria of Mixtures Containing Alkanes, Carbon Dioxide, and Nitrogen. AiChE Journal, 47:1676-1682. doi: 10.1002/aic.690470719
|
[29] |
Szczerba, M., Derkowski, A., Kalinichev, A.G., et al., 2015. Molecular Modeling of the Effects of 40Ar Recoil in Illite Particles on Their K-Ar Isotope Dating. Geochimica et Cosmochimica Acta, 159:162-176. doi: 10.1016/j.gca.2015.03.005
|
[30] |
Tian, H., Li, T., Zhang, T., et al., 2016. Characterization of Methane Adsorption on Overmature Lower Silurian-Upper Ordovician Shales in Sichuan Basin, Southwest China:Experimental Results and Geological Implications. International Journal of Coal Geology, 156:36-49. doi: 10.1016/j.coal.2016.01.013
|
[31] |
Wang, S., Feng, Q., Javadpour, F., et al., 2016. Breakdown of Fast Mass Transport of Methane through Calcite Nanopores. Journal of Physical Chemistry C, 120(26):14260-14269. doi: 10.1021/acs.jpcc.6b05511
|
[32] |
Wang, S., Feng, Q., Javadpour, F., et al., 2019. Competitive Adsorption of Methane and Ethane in Montmorillonite Nanopores of Shale at Supercritical Conditions:A Grand Canonical Monte Carlo Simulation Study. Chemical Engineering Journal, 355:76-90. doi: 10.1016/j.cej.2018.08.067
|
[33] |
Wang, S.B., Song, Z.G., Cao, T.T., 2013. Insights from Isotherm Adsorption of Methane on Shale and Keroge. The 14th National Conference on Organic Geochemistry, Zhuhai (in Chinese).
|
[34] |
Xiong, J., Liu, X., Liang, L., et al., 2017. Adsorption of Methane in Organic-Rich Shale Nanopores:An Experimental and Molecular Simulation Study. Fuel, 200:299-315. doi: 10.1016/j.fuel.2017.03.083
|
[35] |
Zhai, G., Wang, Y., Bao, S., et al., 2017. Major Factors Controlling the Accumulation and High Productivity of Marine Shale Gas and Prospect Forecast in Southern China. Earth Science, 42(7):1057-1068 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201707003
|
[36] |
Zhang, J., Clennell, M.B., Liu, K., et al., 2016. Methane and Carbon Dioxide Adsorption on Illite. Energy & Fuels, 30:10643-10652. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eda468932dbbcb7d6f097e81d92edcaa
|
[37] |
Zhao, J., Jin, Z., Hu, Q., et al., 2018. Mineral Composition and Seal Condition Implicated in Pore Structure Development of Organic-Rich Longmaxi Shales, Sichuan Basin, China. Marineand Petroleum Geology, 98:507-522. doi: 10.1016/j.marpetgeo.2018.09.009
|
[38] |
曹涛涛, 宋之光, 王思波, 等, 2015.不同页岩及干酪根比表面积和孔隙结构的比较研究.中国科学(D辑:地球科学), 45(2):139-151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201502002
|
[39] |
何治亮, 聂海宽, 张钰莹, 2016.四川盆地及其周缘奥陶系五峰组-志留系龙马溪组页岩气富集主控因素分析.地学前缘, 23(2):8-17. http://d.old.wanfangdata.com.cn/Periodical/dxqy201602002
|
[40] |
金之钧, 胡宗全, 高波, 等, 2016.川东南地区五峰组-龙马溪组页岩气富集与高产控制因素.地学前缘, 23(1):1-10. http://d.old.wanfangdata.com.cn/Periodical/dxqy201601001
|
[41] |
卢双舫, 沈博健, 许晨曦, 等, 2018.利用GCMC分子模拟技术研究页岩气的吸附行为和机理.地球科学, 39(5):425-433. doi: 10.3799/dqkx.2018.430
|
[42] |
王思波, 宋之光, 曹涛涛, 2013.页岩有机质和干酪根对甲烷等温吸附实验的认识.珠海: 第十四届全国有机地球化学学术会议.
|
[43] |
翟刚毅, 王玉芳, 包书景, 等, 2017.我国南方海相页岩气富集高产主控因素及前景预测.地球科学, 42(7): 1057-1068. doi: 10.3799/dqkx.2017.085
|