Geological Characteristics and Application of Short Wavelength Infra-Red Technology (SWIR) in the Fukeshan Porphyry Copper Deposit in the Great Xing'an Range Area
-
摘要: 富克山铜钼矿是黑龙江省近年来的重大找矿成果之一.详细的野外观察和室内研究发现该矿床具有典型斑岩矿化特征.该矿床致矿斑岩为闪长玢岩,该岩性的侵位导致其自身及围岩中的钾化、黄铁绢英岩化和晚期绿泥石-黄铁矿三期蚀变.矿化主要赋存在与黄铁绢英岩化相关的伟晶岩和花岗闪长岩中.蚀变矿化与致矿闪长玢岩枝的空间分布特征指示矿区南西向深部可能存在大规模致矿岩体.白云母族矿物Pos2200和绿泥石的Pos2250峰位值研究发现,二者受原岩成分影响较大,不宜作为下一步找矿的勘查指标.白云母族IC值(伊利石结晶度)和绿泥石中MnO则主要受到温度的控制,是寻找热液矿化中心的有力工具.该项研究表明,蚀变矿化特征与SWIR分析结合将对矿床勘查起到较为重要的指示作用.Abstract: The Fukeshan copper depositis one of the major prospecting breakthroughs recently made in Heilongjiang Province. After detailed field work and microscopic observation,we found that this deposit has typical porphyry style characteristics. Out study shows that the diorite porphyry is the mineralization-causative porphyry. The emplacement of the diorite porphyry caused the potassic alteration,phyllicalteration and latest age chlorite-pyrite alteration in and around this porphyry. Mineralization in the Fukeshan deposit is mainly associated with phyllic alteration. Mineralization is mostly confined within diorite porphyry and granodiorite. Distribution of alteration and the causative diorite porphyry indicate that there may be a large-scale causative porphyry at depth in the southwest of the deposit. Detailed SWIR study indicates that the Pos2200 of muscovite and Pos2250 of chlorite are controlled by the composition of the original altered minerals,thus not suitable to be used as a vector for exploration. The IC values of muscovite group and MnO concentration in chlorite are controlled by temperature and can be used to be a vector to find the hydrothermal center at Fukeshan.This research highlights that the combination of alteration mapping and SWIR analysis can be of great help in mineral exploration.
-
Key words:
- Great Xing'an range /
- Fukeshan /
- porphyry deposit /
- SWIR /
- mineral exploration /
- geochemistry
-
图 1 大兴安岭地区地质图
据Deng et al.(2019);该图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2019)1699号的标准地图制作,底图无修改.1.多宝山铜钼矿;2.铜山铜钼矿;3.争光金矿;4.八大关铜钼矿;5.太平川铜钼矿;6.乌努格土山铜钼矿;7.三矿沟铁铜矿;8.二十一站铜钼矿;9.岔路口钼矿;10.大黑山钼铜矿;11.富克山铜钼矿;12.小柯勒河铜钼矿;13.霍洛台铜钼矿;14.甲乌拉银铅锌矿;15.查干布拉格银铅锌矿;16.孟恩套力盖银矿;17.太平沟钼矿;18.砂宝斯金矿;19.洛古河铅锌矿;20.宝兴沟金矿;21.三道湾子金矿
Fig. 1. Geological map of the Great Xing'an range, Northeast China
图 8 富克山铜钼矿蚀变矿化特征
a.闪长玢岩中的石英-黑云母脉;b.岩体中的石英脉,石英脉中的矿物组合为磁铁矿-赤铁矿-黄铜矿-黄铁矿;c.黑云母被绿泥石-黄铜矿交代;d.浸染状黄铜矿和斑铜矿;e.黄铜矿-斑铜矿-磁铁矿组合;f.岩体中的石英脉,石英脉中见自形黄铁矿、辉钼矿和黄铜矿;g.金红石-黄铁矿-黄铜矿组合;h.钾化阶段磁铁矿颗粒被金红石-黄铜矿-黄铁矿脉切割;i. D脉(黝铜矿-黄铜矿-黄铁矿脉);j.伟晶岩中发育的黄铁绢英岩化蚀变(石英-绢云母-黄铁矿脉);k.晚期绿泥石-黄铁矿蚀变
Fig. 8. Photos show alteration and mineralization in the Fukeshan deposit
-
[1] Chang, Z.S., Yang, Z.M., 2012. Evaluation of Inter-Instrument Variations among Short Wavelength Infrared (SWIR) Devices. Economic Geology, 107:1479-1488. doi: 10.2113/econgeo.107.7.1479 [2] Chen, S.B., Huang, B.Q., Li, C., et al., 2018. Alteration and Mineralization of the Yuhai Cu Deposit in Eastern Tianshan, Xinjiang and Applications of Short Wavelength Infra-Red (SWIR) in Exploration.Earth Science, 43(9):2911-2928 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.156 [3] Chen, Y. J., Chen, H. Y., Liu, Y. L., et al., 2000. Progress and Records in the Study of Endogenetic Mineralization during Collisional Orogenesis. Chinese Science Bulletin, 45(1):1-10. https://doi.org/10.1007/bf02884893 [4] Chen, Y. J., Chen, H. Y., Zaw, K., et al., 2007. Geodynamic Settings and Tectonic Model of Skarn Gold Deposits in China:An Overview. Ore Geology Reviews, 31(1-4):139-169. https://doi.org/10.1016/j.oregeorev.2005.01.001 [5] Chen, Y.J., Zhai, M.G., Jiang, S.Y., et al., 2009. Significant Achievements and Open Issues in Study of Orogenesis and Metallogenesis Surrounding the North China Continent. Acta Petrologica Sinica, 25(11):2695-2726 (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200911001 [6] Chen, Y.J., Zhang, C., Li, N., et al., 2012. Geology of the Mo Deposits in Northeast China. Journal of Jilin University (Earth Science Edition), 42(5):1223-1268 (in Chinese with English abstract) [7] Chen, Y. J., Zhang, C., Wang, P., et al., 2017. The Mo Deposits of Northeast China:A Powerful Indicator of Tectonic Settings and Associated Evolutionary Trends. Ore Geology Reviews, 81:602-640. https://doi.org/10.1016/j.oregeorev.2016.04.017 [8] Cooke, D. R., Baker, M., Hollings, P., et al., 2014. New Advances in Detecting the Distal Geochemical Footprints of Porphyry Systems-Epidote Mineral Chemistry as a Tool for Vectoring and Fertility Assessments.In: Kelley, K. D., Golden, H. C., eds., Building Exploration Capability for the 21st Century. Society of Economic Geologists, New York. [9] Deng, C. Z., Sun, D. Y., Han, J. S., et al., 2019. Late-Stage Southwards Subduction of the Mongol-Okhotsk Oceanic Slab and Implications for Porphyry CuMo Mineralization:Constraints from Igneous Rocks Associated with the Fukeshan Deposit, NE China. Lithos, 326/327:341-357. https://doi.org/10.1016/j.lithos.2018.12.030 [10] Deng, J.F., Zhao, G.C., Su, S.G., et al., 2005. Structure Overlap and Tectonic Setting of Yanshanorogenic Belt in Yanshan Era. Geotectonica et Metalbgenia, 105:157-165 (in Chinese with English abstract) [11] Duke, E. F., 1994. Near Infrared Spectra of Muscovite, Tschermak Substitution, and Metamorphic Reaction Progress:Implications for Remote Sensing. Geology, 22(7):621. https://doi.org/10.1130/0091-7613(1994)0220621:nisomt>2.3.co; 2 doi: 10.1130/0091-7613(1994)0220621:nisomt>2.3.co;2 [12] Herrmann, W., Blake, M., Doyle M., et al., 2001. Short Wavelength Infrared (SWIR) Spectral Analysis of Hydrothermal Alteration Zones Associated with Base Metal Sulfide Deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland. Economic Geology, 96(5):939-955. https://doi.org/10.2113/96.5.939 [13] Hu, J.M., Liu, X.W., Zhao, Y., et al., 2004. On Yanshan Intraplate Orogene:An Example from Taiyanggouarea, Lingyuan, Western Liaoning Province, Northeast China. Earth Science Frontiers, 11(3):255-271 (in Chinese with English abstract). [14] Huang, J. H., Chen, H. Y., Han, J. S., et al., 2018. Alteration Zonation and Short Wavelength Infrared (SWIR) Characteristics of the Honghai VMS Cu-Zn Deposit, Eastern Tianshan, NW China. Ore Geology Reviews, 100:263-279. https://doi.org/10.1016/j.oregeorev.2017.02.037 [15] Jones, S., Herrmann, W., Gemmell, J. B., 2005. Short Wavelength Infrared Spectral Characteristics of the HW Horizon:Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp, Vancouver Island, British Columbia, Canada. Economic Geology, 100(2):273-294. https://doi.org/10.2113/100.2.273 [16] Laakso, K., Peter, J. M., Rivard, B., etal., 2016. Short-Wave Infrared Spectral and Geochemical Characteristics of Hydrothermal Alteration at the Archean Izok Lake Zn-Cu-Pb-Ag Volcanogenic Massive Sulfide Deposit, Nunavut, Canada: Application in Exploration Target Vectoring.Economic Geology, 111(5): 1223-1239. https: //doi.org/10.2113/econgeo.111.5.1223 [17] Laakso, K., Rivard, B., Peter, J. M., et al., 2015. Application of Airborne, Laboratory, and Field Hyperspectral Methods to Mineral Exploration in the Canadian Arctic:Recognition and Characterization of Volcanogenic Massive Sulfide-Associated Hydrothermal Alteration in the Izok Lake Deposit Area, Nunavut, Canada. Economic Geology, 110(4):925-941. https://doi.org/10.2113/econgeo.110.4.925 [18] Li, N., Chen, Y. J., Ulrich, T., et al., 2012. Fluid Inclusion Study of the Wunugetu Cu-Mo Deposit, Inner Mongolia, China. Mineralium Deposita, 47(5):467-482. https://doi.org/10.1007/s00126-011-0384-1 [19] Liu, J.M., Zhang, R., Zhang, Q.Z, 2004. The Regional Metallogeny of Da Hinggan Ling, China. Earth Science Frontiers, 11(1): 269-277 (in Chinese with English abstract). [20] Pontual, S., 2001. Implementing Field-Based and Hy Logging Spectral Datasets in Exploration and Mining. AusSpec International, Unpublished Manual. [21] Post, J. L., Noble, P. N., 1993. The Near-Infrared Combination Band Frequencies of Dioctahedral Smectites, Micas, and Illites. Clays and Clay Minerals, 41(6):639-644. https://doi.org/10.1346/ccmn.1993.0410601 [22] Qi, J.P., Chen, Y.J., Pirajno, F, 2005. Geological Characteristics and Tectonic Setting of the Epithermal Deposits in the Northeast China. Journal of Mineralogy and Petrology, 25(2): 47-59 (in Chinese with English abstract). [23] Shao, J.A., Zhang, L.Q., Mou, B.L., 1999. Magmatism in the Mesozoic Extending Orogenic Process of Da Hinggan MTS. Earth Science Frontiers, 6(4):339-346 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy199904017 [24] Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105(1):3-41. https://doi.org/10.2113/gsecongeo.105.1.3 [25] Sun, W.L., Peng, S.X., Bai, J.K., et al., 2018. Fluid Inclusions and Geochronology of Wulunbulake Copper Deposit in Xinjiang. Earth Science, 43(12):4475-4489 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201812016 [26] Thompson, A., Scott, K., Huntington, J., et al., 2009. Mapping Mineralogy with Reflectance Spectroscopy:Examples from Volcanogenic Massive Sulfide Deposits. Reviews in Economic Geology, 16:25-40. [27] Wang, H. Z., Mo, X. X., 1995. An Outline of the Tectonic Evolution of China. Episodes, 18(1/2):6-16. https://doi.org/10.18814/epiiugs/1995/v18i1.2/003 [28] Wu, G., Chen, Y.J., Sun, F.Y., et al., 2006. Geological Characteristics and Tectonic Settings of Gold Deposits in the Central Segment of the Mongolia-Okhotsk Metallogenic Belt. Mineral Deposits, 25(S1):51-54 (in Chinese with English abstract) [29] Xiao, W. J., Windley, B. F., Hao, J., et al., 2003. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt. Tectonics, 22(6):00-00. https://doi.org/10.1029/2002tc001484 [30] Yang, K., Huntington, J., 1996. Spectral Signatures of Hydrothermal Alteration in the Metasediments at Dead Bullock Soak, Tanami Desert, Northern Territory. Australian Journal of Earth Sciences, 25:257. [31] Yang, K., Lian, C., Huntington, J. F., et al., 2005. Infrared Spectral Reflectance Characterization of the Hydrothermal Alteration at the Tuwu Cu-Au Deposit, Xinjiang, China. Mineralium Deposita, 40(3):324-336. https://doi.org/10.1007/s00126-005-0479-7 [32] Yang, Z.M., Hou, Z.Q., Yang, Z.S., et al., 2012. Application of Short Wavelength Infrared (SWIR) Technique in Exploration of Poorly Eroded Porphyry Cu District:ACase Study of Niancun Ore District, Tibet. Mineral Deposits, 31(4):699-717 (in Chinese with English abstract). [33] Zhang, G., Lian, C.Y., Yuan, C.H., 2004. Application of SWIR Reflectance Spectroscopy to Identify the Alteration Minerals in the Pulang Porphyry Copper Ore District, Yunnan Province.Earth Science Frontiers, 11(4):460-460 (in Chinese with English abstract). [34] Zhang, S.T., Chen, H.Y., Zhang, X.B., et al., 2017. Application of Short Wavelength Infrared (SWIR) Technique to Exploration of Skarn Deposit:A Case Study of Tonglvshan Cu-Fe-Au Deposit, Edongnan (Southeast Hubei) Ore Concentration Area. Mineral Deposits, 36(6):1263-1288 (in Chinese with English abstract). [35] Zhao, Y., Xu, G., Zhang, S.H., et al., 2004. Yanshanian Movement and Conversion Oftectonic Regimes in East Asia. Earth Science Frontiers, 11(3):319-328 (in Chinese with English abstract). [36] Zheng, H.T., Zheng, Y.Y., Xu, J., et al., 2018. Zircon U-Pb Ages and Petrogenesis of Ore-Bearing Porphyry for Qingcaoshan Porphyry Cu-Au Deposit, Tibet. Earth Science, 43(8):2858-2874 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201808023 [37] Zorin, Y. A., Zorina, L. D., Spiridonov, A. M., et al., 2001. Geodynamic Setting of Gold Deposits in Eastern and Central Trans-Baikal (Chita Region, Russia). Ore Geology Reviews, 17(4):215-232. https://doi.org/10.1016/s0169-1368(00)00015-9 [38] 陈寿波, 黄宝强, 李琛, 等, 2018.新疆东天山玉海铜矿蚀变矿化特征及SWIR勘查应用研究.地球科学, 43(9):2911-2928. doi: 10.3799/dqkx.2018.156 [39] 陈衍景, 翟明国, 蒋少涌, 2009.华北大陆边缘造山过程与成矿研究的重要进展和问题.岩石学报, 25:3-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200911001 [40] 陈衍景, 张成, 李诺, 等, 2012.中国东北钼矿床地质.吉林大学学报(地球科学版), 42:1223-1268. [41] 邓晋福, 赵国春, 苏尚国, 等, 2005.燕山造山带燕山期构造叠加及其大地构造背景.大地构造与成矿学, 29:3-11. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx200502001 [42] 胡健民, 刘晓文, 赵越, 等, 2004.燕山板内造山带早期构造变形演化:以辽西凌源太阳沟地区为例.地学前缘, 11(3):255-271. doi: 10.3321/j.issn:1005-2321.2004.03.025 [43] 刘建明, 张锐, 张庆洲, 2004.大兴安岭地区的区域成矿特征.地学前缘, 11(1):269-277. doi: 10.3321/j.issn:1005-2321.2004.01.024 [44] 祁进平, 陈衍景, Pirajno, F., 2005.东北地区浅成低温热液矿床的地质特征和构造背景.矿物岩石, 25(2):47-59. doi: 10.3969/j.issn.1001-6872.2005.02.009 [45] 邵济安, 张履桥, 牟保磊, 1999.大兴安岭中生代伸展造山过程中的岩浆作用.地学前缘, 6:339-346. doi: 10.3321/j.issn:1005-2321.1999.04.017 [46] 孙万龙, 彭素霞, 白建科, 等, 2018.新疆乌伦布拉克铜矿流体包裹体特征及含矿岩体年代学.地球科学, 43(12):4475-4489 doi: 10.3799/dqkx.2018.166 [47] 武广, 陈衍景, 孙丰月, 等, 2006.蒙古-鄂霍茨克成矿带中段金矿床地质特征及构造背景.矿床地质, 25(S1):51-54. http://d.old.wanfangdata.com.cn/Conference/6278189 [48] 杨志明, 侯增谦, 杨竹森, 等, 2012.短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用:以西藏念村矿区为例.矿床地质, 31(4):699-717. doi: 10.3969/j.issn.0258-7106.2012.04.004 [49] 章革, 连长云, 元春华, 2004. PIMA在云南普朗斑岩铜矿矿物识别中的应用.地学前缘, 11:460-460. doi: 10.3321/j.issn:1005-2321.2004.04.036 [50] 张世涛, 陈华勇, 张小波, 等, 2017.短波红外光谱技术在矽卡岩型矿床中的应用:以鄂东南铜绿山铜铁金矿床为例.矿床地质, 36(6):1263-1288. http://d.old.wanfangdata.com.cn/Periodical/kcdz201706002 [51] 郑海涛, 郑有业, 徐净, 等, 2018.西藏青草山斑岩铜金矿床含矿斑岩锆石U-Pb年代学及岩石成因.地球科学, 43(8):2858-2874. doi: 10.3799/dqkx.2018.111 [52] 赵越, 徐刚, 张拴宏, 等, 2004.燕山运动与东亚构造体制的转变.地学前缘, 11(3):319-328. doi: 10.3321/j.issn:1005-2321.2004.03.030 [53] 郑海涛, 郑有业, 徐净, 等, 2018.西藏青草山斑岩铜金矿床含矿斑岩锆石U-Pb年代学及岩石成因.地球科学, 43(8):336-352. doi: 10.3799/dqkx.2018.111