• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    页岩剪切摩擦与非稳态滑移特性实验

    付利 申瑞臣 庞飞 杨恒林 陈科

    付利, 申瑞臣, 庞飞, 杨恒林, 陈科, 2019. 页岩剪切摩擦与非稳态滑移特性实验. 地球科学, 44(11): 3783-3793. doi: 10.3799/dqkx.2019.189
    引用本文: 付利, 申瑞臣, 庞飞, 杨恒林, 陈科, 2019. 页岩剪切摩擦与非稳态滑移特性实验. 地球科学, 44(11): 3783-3793. doi: 10.3799/dqkx.2019.189
    Fu Li, Shen Ruichen, Pang Fei, Yang Henglin, Chen Ke, 2019. Experiments on Friction and Non-Steady Slip for Shale. Earth Science, 44(11): 3783-3793. doi: 10.3799/dqkx.2019.189
    Citation: Fu Li, Shen Ruichen, Pang Fei, Yang Henglin, Chen Ke, 2019. Experiments on Friction and Non-Steady Slip for Shale. Earth Science, 44(11): 3783-3793. doi: 10.3799/dqkx.2019.189

    页岩剪切摩擦与非稳态滑移特性实验

    doi: 10.3799/dqkx.2019.189
    基金项目: 

    国家科技重大专项 2016ZX05022-001

    国家科技重大专项 2017ZX05063-003

    中国石油西南油气田分公司科学研究与技术开发项目 20180601-17

    详细信息
      作者简介:

      付利(1985-), 男, 高级工程师, 硕士, 主要从事非常规油气钻完井地质力学一体化技术与应用研究工作

    • 中图分类号: P554

    Experiments on Friction and Non-Steady Slip for Shale

    • 摘要: 龙一1亚段页岩是川南页岩气开发的主要目的层,实践表明水平井单井产气量对井轨迹所在小层较为敏感.龙一1亚段页岩各层脆性矿物组分、弹性模量变化幅度小,采用常规页岩脆性评价方法和模型不能有效评价川南龙一1亚段各小层页岩的可压性,借鉴地震学地震成核原因研究思路,提出利用稳态-非稳态破坏特征来表征各小层可压性.优化设计一种页岩剪切摩擦、稳态-非稳态特性实验方法,利用川南页岩地面露头进行线切割制样开展相关实验测试,分析研究页岩摩擦系数受层理性构造、矿物组分、法向应力大小的影响,表征量化不同矿物组分下的页岩稳态-非稳态特征,确定了速度弱化向速度强化转换的粘土矿物含量临界值.以川南昭通YS108井区龙一1亚段页岩储层为例,对各小层可压性进行整体评价,得到:龙一11~2层较易开启剪切滑移,且易形成网状裂纹,储层整体可压性好;龙一13层较难开启剪切滑移,但裂纹为单一裂纹、网状裂纹过渡状态,储层整体可压性较差;龙一14层较易开启剪切滑移,但裂纹则呈现单一状态,储层整体可压性较差.

       

    • 图  1  页岩剪切摩擦实验示意

      a.实验初始状态; b.实验状态; 1, 2, 3表示3块页岩试样; 4表示U型实验夹具; 5表示平板实验夹具; 6表示U型实验夹具上岩心槽; 7表示U型实验夹具U型槽; 8表示U型实验夹具限位固定

      Fig.  1.  The schematic diagram of the shear and friction experiment for the shale samples

      图  2  剪切摩擦实验用试样

      Fig.  2.  The shale sample for the shear and friction experiment

      图  3  四组试样摩擦系数-位移测试曲线

      Fig.  3.  The testing plot between friction factor and displacement for the four samples

      图  4  改变法向应力时的五峰组页岩摩擦系数-位移曲线

      a.平行层理; b.垂直层理

      Fig.  4.  The testing plot between friction factor and displacement for the Wufeng samples in different normal stress

      图  5  改变法向应力时的龙马溪组页岩摩擦系数-位移曲线

      a.平行层理; b.垂直层理

      Fig.  5.  The testing plot between friction factor and displacement for the Longmaxi samples in different normal stress

      图  6  五峰组和龙马溪组平行层理、垂直层理页岩在不同水平应力加载速度下的摩擦系数-位移曲线

      a.五峰组平行层理页岩在不同水平应力加载速度下的摩擦系数-位移曲线; b.五峰组垂直层理页岩在不同水平应力加载速度下的摩擦系数-位移曲线; c.龙马溪组平行层理页岩在不同水平应力加载速度下的摩擦系数-位移曲线; d.龙马溪组垂直层理页岩在不同水平应力加载速度下的摩擦系数-位移曲线

      Fig.  6.  The testing plots between friction factor and displacement in different loading velocities for the parallel and vertical bedding samples from Wufeng Formation and Longmaxi Formation

      图  7  粘土矿物含量与a-b值的拟合曲线

      Fig.  7.  The fitting curve between the clay mineral content and a-b

      图  8  龙一1亚段扫描电镜图

      a.龙一14层; b.龙一13层; c.龙一12

      Fig.  8.  The scanning electron photomicrographs for the different layers in the L11 sub-section

      图  9  龙一1亚段各层单向拉伸破坏形貌

      a.龙一14层; b.龙一13层; c.龙一12

      Fig.  9.  The failure patterns of tension for different layers in the L11 sub-section

      图  10  龙一1亚段各层裂纹扩展特征

      Fig.  10.  The extension characteristics of the fracture for the different layers in the L11 sub-section

      表  1  四组试样全岩矿物XRD衍射测试数据

      Table  1.   The whole-rock analysis data of the four shale samples by XRD diffraction

      组别 矿物种类和含量(%) 粘土矿物总量(%)
      石英 钾长石 斜长石 黄铁矿 脆性矿物 白云石 方解石 碳酸盐岩矿物
      五峰平行 27.9 0.4 2.2 3.4 33.9 13.6 39.1 52.7 13.4
      五峰垂直 28.6 0.6 4.3 2.4 35.9 11.4 38.3 49.7 14.4
      龙马溪平行 33.3 0.2 4.9 3.7 42.1 12.6 25.5 38.1 19.8
      龙马溪垂直 38.3 0.5 5.0 4.3 48.1 9.2 27.4 36.6 15.3
      下载: 导出CSV

      表  2  五峰组平行层理页岩的a-b值计算表

      Table  2.   The values of a-b for the parallel bedding shale from Wufeng Formation

      速度(μm/s) 摩擦系数 a-b
      10 0.616 /
      3 0.616 0
      10 0.610 -0.004 98
      30 0.610 0
      3 0.630 -0.008 69
      10 0.622 -0.006 64
      平均值 -0.007 95
      下载: 导出CSV

      表  3  五峰组垂直层理页岩的a-b值计算表

      Table  3.   The values of a-b for the vertical bedding shale from Wufeng Formation

      速度(μm/s) 摩擦系数 a-b
      3 0.675 /
      10 0.668 -0.005 81
      30 / /
      10 / /
      3 / /
      10 0.672 /
      30 0.662 -0.009 1
      平均值 -0.007 46
      下载: 导出CSV

      表  4  龙马溪组平行层理页岩的a-b值计算表

      Table  4.   The values of a-b for the parallel bedding shale from Longmaxi Formation

      速度(μm/s) 摩擦系数 a-b
      10 0.643 /
      30 0.640 -0.002 73
      10 0.649 -0.008 19
      30 0.644 -0.004 55
      10 / /
      30 / /
      10 / /
      平均值 -0.005 16
      下载: 导出CSV

      表  5  龙马溪组垂直层理页岩的a-b值计算表

      Table  5.   The values of a-b for the vertical bedding shale from Longmaxi Formation

      速度(μm/s) 摩擦系数 a-b
      10 0.663 /
      30 0.663 0
      10 0.670 -0.006 37
      3 0.670 0
      10 0.670 0
      30 0.670 0
      3 0.670 0
      平均值 -0.006 37
      下载: 导出CSV

      表  6  YS108井区龙一1亚段地应力状态

      Table  6.   The crustal stress state of L11 sub-section in the YS108 well block

      井区 小层 顶深(m) 底深(m) Sv(g/cm3 Shmax(g/cm3 Shmin(g/cm3 水平地应力非均匀系数
      YS108 龙一14 2 483.52 2 495.70 2.52 2.98 2.26 0.32
      龙一13 2 495.70 2 502.78 2.52 2.75 2.22 0.24
      龙一12 2 502.78 2 509.54 2.52 3.15 2.31 0.36
      龙一11 2 509.54 2 511.01 2.53 3.10 2.32 0.34
      五峰 2 511.01 2 516.05 2.52 3.06 2.39 0.28
      下载: 导出CSV
    • [1] Das, I., Zoback, M.D., 2011. Long-Period, Long-Duration Seismic Events during Hydraulic Fracture Stimulation of a Shale Gas Reservoir. The Leading Edge, 30(7):778-786. https://doi.org/10.1190/1.3609093
      [2] Das, I., Zoback, M.D., 2012. Microearthquakes Associated with Long Period, Long Duration Seismic Events during Stimulation of a Shale Gas Reservoir. 2012 SEG Annual Meeting, Las Vegas.
      [3] Dieterich, J.H., 1978. Time-Dependent Friction and the Mechanics of Stick-Slip. Pure and Applied Geophysics, 116(4/5): 790-806. https://doi.org/10.1007/bf00876539
      [4] Dieterich, J.H., 1979. Modeling of Rock Friction: 1. Experimental Results and Constitutive Equations. Journal of Geophysical Research, 84(B5): 2161-2168. https://doi.org/10.1029/jb084ib05p02161
      [5] Elsworth, D., 2017. Deformation and Permeability Evolution in Reservoir and Seals with a Focus on Well Survivability. Shale Gas Engineering Geomechanics International Conference, Beijing.
      [6] Jiang, T.X., Bian, X.B., Su, Y., et al., 2014. A New Method for Evaluating Shale Fracability Index and Its Application. Petroleum Drilling Techniques, 42(5): 16-20 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syztjs201405003
      [7] Jiang, Z.X., Duan, H.J., Liang, C., et al., 2017.Classification of Hydrocarbon-Bearing Fine-Grained Sedimentary Rocks. Journal of Earth Science, 28(6):963-976. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx-e201706001
      [8] Li, J.Q., Zhang, P.F., Lu, S.F., et al., 2019. Scale-Dependent Nature of Porosity and Pore Size Distribution in Lacustrine Shales: An Investigation by BIB-SEM and X-Ray CT Methods. Journal of Earth Science, 30(4):823-833. doi: 10.1007/s12583-018-0835-z
      [9] Li, Q.H., Chen, M., Jin, Y., 2012a. Experimental Research on Failure Modes and Mechanical Behaviors of Gas-Bearing Shale. Chinese Journal of Rock Mechanics and Engineering, 31(S2): 3763-3771 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=80a36d4bbfbba9aec1d0442bb0f137e6&encoded=0&v=paper_preview&mkt=zh-cn
      [10] Li, Q.H., Chen, M., Jin, Y., et al., 2012b. Rock Mechanical Properties and Brittleness Evaluation of Shale Gas Reservoir. Petroleum Drilling Techniques, 40(4): 17-22 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201706004
      [11] Li, W.Y., Zou, H.L., Wu, C.Z., et al., 2013. An Analysis of Shale Gas Development in View of Engineering Technologies. Acta Petrolei Sinica, 34(6): 1218-1224 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201306026
      [12] Li, Z., Jiang, Z.X., Tang, X.L., et al., 2017. Lithofacies Characteristics and Its Effect on Pore Structure of the Marine Shale in the Low Silurian Longmaxi Formation, Southeastern Chongqing. Earth Science, 42(7): 1116-1123 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.090
      [13] Liang, X., Wang, G.C., Xu, Z.Y., et al., 2016. Comprehensive Evaluation Technology for Shale Gas Sweet Spots in the Complex Marine Mountains, South China: A Case Study from Zhaotong National Shale Gas Demonstration Zone. Natural Gas Industry, 36(1): 33-42 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S2352854016300122
      [14] Lu, B.P., 2013. SINOPEC Engineering Technical Advance and Its Developing Tendency in Shale Gas. Petroleum Drilling Techniques, 41(5): 1-8 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syztjs201305001
      [15] Mulen, M., Enderlin, M., 2012. Fracability Index-More than just Calculating Rock Properties. SPE Annual Technical Conferenceand Exhibition, San Antonio. https: //doi.org/10.2118/159755-MS
      [16] Palmer, I.D., Moschovidis, Z.A., Cameron, J.R., 2007. Modeling Shear Failure and Stimulation of the Barnett Shale after Hydraulic Fracturing. SPE Hydraulic Fracturing Technology Conference, Texas.
      [17] Simpson, R.W., 1997. Quantifying Anderson's Fault Types. Journal of Geophysical Research: Solid Earth, 102(B8):17909-17919. https://doi.org/10.1029/97jb01274
      [18] Wu, Q., Xu, Y., Zhang, S.L., et al., 2014.The Core Theories and Key Optimization Designs of Volume Stimulation Technology for Unconventional Reservoirs. Acta Petrolei Sinica, 35(4):706-714 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201404011
      [19] Xu, Y., Lei, Q., Chen, M., et al., 2018.Progress and Development of Volume Stimulation Techniques. Petroleum Exploration and Development, 45(5):874-887 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syktykf201805014
      [20] Yang, H.L., Qiao, L., Tian, Z.L., 2017. Advances in Shale Gas Reservoir Engineering and Geomechanics Integration Technology and Relevant Discussions. Petroleum Drilling Techniques, 45(2):25-31 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syztjs201702005
      [21] Yang, H.L., Zhang, J.J., Wang, G.C., et al., 2018. Fabric Difference and Mineral Nanomechanics Characteristics of High-Quality Shale in Longmaxi Formation, Weiyuan Block in Sichuan Basin and Zhaotong Block in Yunnan Province. Natural Gas Exploration and Development, 41(1):16-22 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqktykf201801004
      [22] Yao, X.X., 1984. The Experimental Studies of Stable and Unstable Cracking by Using a Ultrasmall Testing Machine. Acta Geophysica Sinica, 27(5):439-445 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=2282abed8e635cb1891029437739a097&encoded=0&v=paper_preview&mkt=zh-cn
      [23] Yuan, J.L., Deng, J.G., Zhang, D.Y., et al., 2013. Fracability Evaluation of Shale-Gas Reservoirs. Acta Petrolei Sinica, 34(3): 523-527 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dkyqt201801016
      [24] Yue, P.S., Shi, Q., Yue, L.Q., et al., 2017. The Latest Progress of Shale Gas Exploration and Development in China. Natural Gas Exploration and Development, 40(3):38-44 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=12368d33ed14a61e57dce360c8117275&encoded=0&v=paper_preview&mkt=zh-cn
      [25] Zhang, S.C., 2017. Research on the Rule of Crack Propagation during Hydraulic Fracturing in Shale Gas Reservoir (Dissertation). Liaoning Technical University, Fuxin, 82-86 (in Chinese with English abstract).
      [26] Zhu, R.K., Jin, X., Wang, X.Q., et al., 2018. Multi-Scale Digital Rock Evaluation on Complex Reservoir. Earth Science, 43(5):1773-1782 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.429
      [27] Zoback, M.D., Kohli, A., Das, I., et al., 2012. The Importance of Slow Slip on Faults during Hydraulic Fracturing Stimulation of Shale Gas Reservoirs. SPE Americas Unconventional Resources Conference, Pittsburgh. https: //doi.org/10.2118/155476-MS
      [28] Zou, C.N., Dong, D.Z., Wang, Y. M., et al., 2016. Shale Gas in China: Characteristics, Challenges and Prospects (Ⅱ). Petroleum Exploration and Development, 43(2):166-178(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SKYK201602003.htm
      [29] 蒋廷学, 卞晓冰, 苏瑗, 等, 2014.页岩可压性指数评价新方法及应用.石油钻探技术, 42(5): 16-20. http://d.old.wanfangdata.com.cn/Periodical/syztjs201405003
      [30] 李庆辉, 陈勉, 金衍, 2012a.含气页岩破坏模式及力学特性的试验研究.岩石力学与工程学报, 31(S2): 3763-3771. http://www.cnki.com.cn/Article/CJFDTotal-YSLX2012S2044.htm
      [31] 李庆辉, 陈勉, 金衍, 等, 2012b.页岩气储层岩石力学特性及脆性评价.石油钻探技术, 40(4): 17-22. http://d.old.wanfangdata.com.cn/Periodical/syztjs201204004
      [32] 李文阳, 邹洪岚, 吴纯忠, 等, 2013.从工程技术角度浅析页岩气的开采.石油学报, 34(6): 1218-1224. http://d.old.wanfangdata.com.cn/Periodical/syxb201306026
      [33] 李卓, 姜振学, 唐相路, 等, 2017.渝东南下志留统龙马溪组页岩岩相特征及其对孔隙结构的控制.地球科学, 42(7): 1116-1123. doi: 10.3799/dqkx.2017.090
      [34] 梁兴, 王高成, 徐政语, 等, 2016.中国南方海相复杂山地页岩气储层甜点综合评价技术——以昭通国家级页岩气示范区为例.天然气工业, 36(1):33-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201601004
      [35] 路保平, 2013.中国石化页岩气工程技术进步及展望.石油钻探技术, 41(5): 1-8. doi: 10.3969/j.issn.1001-0890.2013.05.001
      [36] 吴奇, 胥云, 张守良, 等, 2014.非常规油气层体积改造技术核心理论与优化设计关键.石油学报, 35(4):706-714. http://www.cnki.com.cn/Article/CJFDTotal-SYXB201404011.htm
      [37] 胥云, 雷群, 陈铭, 等, 2018.体积改造技术理论研究进展与发展方向.石油勘探与开发, 45(5):874-887. http://d.old.wanfangdata.com.cn/Periodical/syktykf201805014
      [38] 杨恒林, 乔磊, 田中兰, 2017.页岩气储层工程地质力学一体化技术进展与探讨.石油钻探技术, 45(2):25-31. http://d.old.wanfangdata.com.cn/Periodical/syztjs201702005
      [39] 杨恒林, 张俊杰, 王高成, 等, 2018.四川威远及云南昭通区块龙马溪组优质页岩组构差异性与矿物纳米力学特征.天然气勘探与开发, 41(1):16-22. http://d.old.wanfangdata.com.cn/Periodical/trqktykf201801004
      [40] 姚孝新, 1984.用超小型压力机研究裂纹的稳态与非稳态扩展.地球物理学报, 27(5):439-445. doi: 10.3321/j.issn:0001-5733.1984.05.004
      [41] 袁俊亮, 邓金根, 张定宇, 等, 2013.页岩气储层可压裂性评价技术.石油学报, 34(3): 523-527. http://d.old.wanfangdata.com.cn/Periodical/syxb201303015
      [42] 岳鹏升, 石乔, 岳来群, 等, 2017.中国页岩气近期勘探开发进展.天然气勘探与开发, 40(3): 38-44. http://d.old.wanfangdata.com.cn/Periodical/trqktykf201703007
      [43] 张树翠, 2017.页岩气储层水力压裂裂纹扩展规律研究(博士学位论文).阜新: 辽宁工程技术大学, 82-86. http://cdmd.cnki.com.cn/Article/CDMD-10147-1018261624.htm
      [44] 朱如凯, 金旭, 王晓琦, 等, 2018.复杂储层多尺度数字岩石评价.地球科学, 43(5):1773-1782. doi: 10.3799/dqkx.2018.429
      [45] 邹才能, 董大忠, 王玉满, 等, 2016.中国页岩气特征、挑战及前景(二).石油勘探与开发, 43(2):166-178. doi: 10.11698/PED.2016.02.02
    • 加载中
    图(10) / 表(6)
    计量
    • 文章访问数:  2754
    • HTML全文浏览量:  1084
    • PDF下载量:  33
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-08-01
    • 刊出日期:  2019-11-15

    目录

      /

      返回文章
      返回