The Coupling Relationship between Paleofluid Pressure Evolution and Hydrocarbon-Charging Events in the Deep of Biyang Depression, Central China
-
摘要: 泌阳凹陷深凹区蕴含可观的岩性油气藏,现今压力大多显示为常压-弱超压系统.利用盆地数值模拟和流体包裹体热动力学模拟相结合,揭示了深凹区古压力演化历史.生烃历史显示泌阳凹陷持续埋藏到廖庄组沉积末期达到最大埋藏深度(约23.03 Ma)时,达到生烃高峰期;随后地层抬升,生烃强度减弱并趋近于停止.深凹区砂岩储层中检测到两种不同成分油包裹体,即成熟度低的橙黄色荧光油包裹体和成熟度相对较高的蓝绿色荧光油包裹体.包裹体均一温度结合埋藏史显示深凹区油气充注时间分别为35.4~30.3 Ma和27.8~26.5 Ma.盆地数值模拟显示深凹区从39.3 Ma开始压力持续增加,到约23.03 Ma时,即埋藏最深时发育显著的超压,压力系数可达1.5左右,之后超压减弱,演化至现今的常压-弱超压系统.包裹体热动力学模拟恢复的古压力也显示相似的演化趋势.总体上,生烃期,充注期以及超压形成期三者在时间上的耦合表明深凹区是由生烃增压下驱动两期油气充注以至形成现今的岩性油气藏.Abstract: The deep area of Biyang depression contains considerable lithologic hydrocarbon reservoirs, and the present pressure is mostly shown as normal-weak overpressure system. In this study, the paleopressure evolution history of the deep depression has been revealed combining with the numerical simulation and thermodynamics of fluid inclusion. The hydrocarbon generation history shows that the Biyang depression reached the peak of hydrocarbon generation when it reached the maximum burial depth at the end of the sedimentation of the Liaozhuang Formation (about 23.03 Ma). After the formation uplift, the hydrocarbon generation weakened and approached to a stop. Two different oil inclusions were detected in the deep sandstone reservoir, which were the orange-yellow fluorescent oil inclusion with low maturity and the blue-green fluorescent oil inclusion with relatively high maturity. The homogenization temperature of the inclusion combined with the burial history chart shows that the hydrocarbon charging time is 35.4-30.3 Ma and 27.8-26.5 Ma respectively. The numerical simulation results show that the pressure in the deep continued to increase from 39.3 Ma, and reached an obviously overpressure at about 23.03 Ma at the deepest burial. The pressure coefficient reached to about 1.5, and then the overpressure weakened and evolved into the present normal-weak overpressure system. The paleo-pressure of the thermodynamic simulation of the inclusions also shows a similar evolutionary trend. In conclusion, the coupling of the hydrocarbon generation period, the charging event and the overpressure period indicate that the present lithologic reservoir in deep is attributed to two-stage hydrocarbon charging driven by overpressure caused by hydrocarbon generation.
-
Key words:
- paleofluid pressure /
- hydrocarbon charging /
- fluid inclusion /
- Biyang depression /
- petroleum geology
-
表 1 泌阳凹陷深凹区砂岩储层中油包裹体和盐水包裹体的测试结果
Table 1. The test results of the oil inclusion and brine inclusion in sandstone reservoir in the deep of Biyang depression
井号 深度(m) 宿主矿物及产状 包裹体类型 成因 Th(℃) 荧光颜色 B214 1 833.6 穿石英颗粒裂纹 油 次生 77.2~80.2/78.7 橙黄色 伴生盐水 98.3~99.8/98.9 1 846.8 石英颗粒内裂纹 油 次生 59.3~62.6/60.7 橙黄色 盐水 83.6~92.0/87.1 1 860 石英内裂纹 油 次生 69.5 蓝绿色 盐水 100.6~109.3/106.1 石英内裂纹 油 次生 73.2 橙黄色 盐水 93.6~94.2/93.9 B94 2 108.7~2 109.0 穿石英颗粒裂纹 油 次生 75.2~85.3/80.6 蓝绿色 盐水 115.6~118.7/117.2(n=2)/92.9 粒间方解石胶结物 油 原生 83.4~108.5/96.0 橙黄色 93.9 盐水 103.8~108.8/106.3 B78 1 912.9 石英颗粒内裂纹 油 次生 80.1~84.6/82.0 蓝绿色 伴生盐水 75.7~80.1/78.3 B96 2 104.9 穿石英颗粒裂纹 油 次生 橙黄色 伴生盐水 77.4~84.9/80.1(n=3) B197 2 867.5 穿石英颗粒裂纹 油 次生 99.1~105.8/97.7(n=4) 橙黄色 盐水 104.1~116.5/108.8(n=5) 石英颗粒次生加大边 油 原生 87.6~91.5/89.6(n=2) 橙黄色 伴生盐水 104.5~116.8/109.6(n=5) 3 212.2 石英颗粒次生加大边 油 原生 99.0~111.5/103.6(n=4) 橙黄色 伴生盐水 122.9(n=1) B168 1 522.4 穿石英颗粒裂纹 油 次生 78.5(n=1) 橙黄色 盐水 77.9~86.9/82.6(n=3) 石英颗粒次生加大边 油 原生 80.9~85.0/83.0(n=2) 蓝绿色 伴生盐水 105.1~107.3/106.2(n=2) 1 664.3 穿石英颗粒裂纹 油 次生 58.9~63.1/61.0(n=3) 蓝绿色 盐水 89.5~101.1/95.8(n=6) 1 684.8 穿石英颗粒裂纹 油 次生 65.3(n=1) 蓝绿色 盐水 93.9~98.7/96.3(n=3) -
[1] Bao, Y. S., Zhang, L. Y., Zhang, S. C., et al., 2008. The Deep Abnormal Pressure and the Formation of Lithologic Reservoir in Dongying Sag. Xinjiang Petroleum Geology, 29(5):585-587 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjsydz200805013 [2] Burnham, A. K., Sweeney, J. J., 1989. A Chemical Kinetic Model of Vitrinite Maturation and Reflectance. Geochimica et Cosmochimica Acta, 53(10):2649-2657. doi: 10.1016/0016-7037(89)90136-1 [3] Chen, H. H., 2007. Advances in Geochronology of Hydrocarbon Accumulation. Oil & Gas Geology, 28(2):143-150 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201412007 [4] Chen, H. H., 2014. Microspectrofluorimetric Characterization and Thermal Maturity Assessment of Individual Oil Inclusion. Acta Petrolei Sinica, (3):584-590 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201403023 [5] Dong, T., He, S., Ling, D. Q., 2013. Organic Geochemical Characteristics and Thermal Evolution Maturity History Modeling of Source Rocks in Eocene Hetaoyuan Formation of Biyang Sag, Nanxiang Basin. Petroleum Geology & Experiment, 35(2):187-194 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201302016 [6] Fu, Y., Zhang, Y. A., Wang, W. X., 2008. The Controlling Factors and Abnormal Forming Mechanisms of Geothermal Field in Biyang Depression. Journal of Henan Polytechnic University (Natural Science), 27(2):177-181 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jzgxyxb200802010 [7] Galamay, A. R., Bukowski, K., Czapowski, G., 2003. Chemical Composition of Brine Inclusions in Halite from Clayey Salt (Zuber) Facies from the Upper Teritary (Miocene) Evaporate Basin (Poland). Journal of Geochemical Exploration, 78-79:509-511. doi: 10.1016/S0375-6742(03)00080-3 [8] Grimmer, J. O. W., Pironon, J., Teinturier, S., et al., 2003. Recognition and Differentiation of Gas Condensates and Other Oil Types Using Microthermometry of Petroleum Inclusions. Journal of Geochemical Exploration, 78-79:367-371. doi: 10.1016/S0375-6742(03)00137-7 [9] Hu, M., Wei, C. P., Wang, C. F., et al., 2009. Reconstruction of Paleogene Palaeogeomorphology of the Southern Steep Slope in Biyang Sag of Nanxiang Basin. Complex Hydrocarbon Reservoirs, 2(4):12-16 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200902390353 [10] Jia, Q. S., Yin, W., 2006. Discussion on Pool-Forming and Its Exploration Potential in Gucheng Oilfield, Biyang Sag. China Petroleum Exploration, 11(3):30-34 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsykt200603006 [11] Li, H., 2009. Tcetonic Characters and Their Dominancy in Hydrocarbon Accumulation at Complicated Faulted Area: A Case at Gucheng- Gaozhuang Block, Biyang Depression. China University of Geoscience, Beijing (in Chinese with English abstract). [12] Li, S. F., Hu, S. Z., He, S., et al., 2010. Oil-Source Correlation for Biodegraded Oils in the North Slope of the Biyang Depression. Acta Petrolei Sinica, 31(6):946-951(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201006012 [13] Liu, K. Y., Eadington, P., 2003. A New Method for Identifying Secondary Oil Migration Pathways. Journal of Geochemical Exploration, 78-79:389-394. doi: 10.1016/S0375-6742(03)00078-5 [14] Liu, W. B., Yao, S. P., Hu, W. X., et al., 2003. Research Method and Application of Fluid Inclusion. Xinjiang Petroleum Geology, 24(3):264-267 (in Chinese with English abstract). http://www.researchgate.net/publication/285464155_Research_methods_and_application_of_fluid_inclusions?_sg=4sZPwvGlpjqyTeceHSzbyg7OdoohBic3TrrnEBNsXVvQ_kXnz5vKHX3Agc-c335y6GIyyDKXdmSdknm1q2zahA [15] Lu, Z. Y., Chen, H. H., Yun, L., et al., 2016. The Coupling Relationship between Hydrothermal Fluids and the Hydrocarbon Gas Accumulation in Ordovician of Shunnan Gentle Slope, Northern Slope of Tazhong Uplift. Earth Science, 41(3):487-498 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201603016 [16] Okubo, S., 2005. Effects of Thermal Cracking of Hydrocarbon on the Homogenization Temperature of Fluid Inclusions from Niigata Oil and Gas Fields, Japan. Applied Geochemistry, 20:255-260. doi: 10.1016/j.apgeochem.2004.09.001 [17] Qin, W. J., Ling, D. Q., Cheng, Z., 2005. Hydrocarbon Accumulation and Reservoiring Pattern in Biyang Depression, Nangxiang Basin. Oil & Gas Geology, 26(5):668-673 (in Chinese with English abstract). doi: 10.1016/j.molcatb.2005.02.001 [18] Qiu, N. S., Liu, W., Xu, Q. C., et al., 2018. Temperature-Pressure Field and Hydrocarbon Accumulation in Deep-Ancient Marine Strata. Earth Science, 43(10):181-195(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201810014 [19] Tseng, H. S., Pottorf, R. J., 2002. Fluid Inclusion Constraints on Petroleum PVT and Compositional History of the Greater Alwyn-South Brent Petroleum System, Northern North Sea. Marine and Petroleum Geology, 19:797-809. doi: 10.1016/S0264-8172(02)00088-0 [20] Wang, M., Qing, W. J., Zhao, Z., 2001. Pool-Forming Condition and Accumulation Regularity of Oils and Gases in Biyang Depression, Nanxiang Basin. Oil & Gas Geology, 22(2):169-172 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz200102019 [21] Wang, Z. Y., Qi, J. F., Zhang, Y. F., et al., 2004. Cenozoic Structural Characteristics and Mechanism and Their Relationship with Oil and Gas Reservoir in the Biyang Depression. Acta Petrolei Sinica, 78(3):332-344 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200403006 [22] Xia, D. L., Yin, W., Li, Z., 2010. Hydrocarbon Accumulation Process in South Steep Slope, Biyang Sag, Nanxiang Basin. Petroleum Geology & Experiment, 32(3):247-251 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201003009 [23] 包友书, 张林晔, 张守春, 等, 2008.东营凹陷深部异常高压与岩性油气藏的形成.新疆石油地质, 29(5):585-587. http://d.old.wanfangdata.com.cn/Periodical/xjsydz200805013 [24] 陈红汉, 2007.油气成藏年代学研究进展.石油与天然气地质, 28(2):143-150. doi: 10.3321/j.issn:0253-9985.2007.02.003 [25] 陈红汉, 2014.单个油包裹体显微荧光特性与热成熟度评价.石油学报, (3):584-590. http://d.old.wanfangdata.com.cn/Periodical/syxb201403023 [26] 董田, 何生, 林社卿, 2013.泌阳凹陷核桃园组烃源岩有机地化特征及热演化成熟史.石油实验地质, 35(2):187-194. http://d.old.wanfangdata.com.cn/Periodical/sysydz201302016 [27] 符勇, 张友安, 王万新, 2008.泌阳凹陷地温场控制因素与地温异常形成机制.河南理工大学学报(自然科学版), 27(2):177-181. doi: 10.3969/j.issn.1673-9787.2008.02.010 [28] 胡敏, 魏迟鹏, 王朝锋, 等, 2009.南襄盆地泌阳凹陷南部陡坡带古近系古地貌恢复.复杂油气藏, 2(4):12-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200902390353 [29] 贾庆素, 尹伟, 2006.泌阳凹陷古城油田油气成藏过程分析及勘探方向.中国石油勘探, 11(3):30-34. doi: 10.3969/j.issn.1672-7703.2006.03.006 [30] 李辉, 2009.泌阳凹陷古城-高庄复杂断裂带构造特征及控油作用.北京:中国地质大学. [31] 李水福, 胡守志, 何生, 等, 2010.泌阳凹陷北部斜坡带生物降解油的油源对比.石油学报, 31(6):946-951. doi: 10.3969/j.issn.1001-8719.2010.06.019 [32] 刘文斌, 姚素平, 胡文暄, 等, 2003.流体包裹体的研究方法及应用.新疆石油地质, 24(3):264-267. doi: 10.3969/j.issn.1001-3873.2003.03.027 [33] 鲁子野, 陈红汉, 云露, 等, 2016.塔中顺南缓坡奥陶系热流体活动与天然气成藏的耦合关系.地球科学, 41(3):487-498. doi: 10.3799/dqkx.2016.040 [34] 秦伟军, 林社卿, 程哲, 2005.南襄盆地泌阳凹陷油气成藏作用及成藏模式.石油与天然气地质, 26(5):668-673. doi: 10.3321/j.issn:0253-9985.2005.05.018 [35] 邱楠生, 刘雯, 徐秋晨, 等, 2018.深层-古老海相层系温压场与油气成藏.地球科学, 43(10):181-195. doi: 10.3799/dqkx.2018.286 [36] 王敏, 秦伟军, 赵追, 2001.南襄盆地泌阳凹陷油气藏形成条件及聚集规律.石油与天然气地质, 22(2):169-172. doi: 10.3321/j.issn:0253-9985.2001.02.019 [37] 王子煜, 漆家福, 张永华, 等, 2004.泌阳凹陷新生代构造特征与形成机制及其与油气成藏的关系.地质学报, 78(3):332-344. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200403006 [38] 夏东领, 尹伟, 李治, 2010.南襄盆地泌阳凹陷南部陡坡带油气成藏过程分析.石油实验地质, 32(3):247-251. doi: 10.3969/j.issn.1001-6112.2010.03.009