Characteristics of Geochemistry and Hf Isotope from Meta-Gabbro in Longchang Area, Liaodong Peninsula: Implications on Evolution of the Jiao-Liao-Ji Paleoproterozoic Orogenic Belt
-
摘要: 辉长岩的成岩时代、成因等研究对限定胶辽吉造山带构造背景等关键问题具有重要意义.对其开展详细的岩石地球化学分析、全岩Nd同位素和锆石U-Pb测年及原位Hf同位素分析,结果显示样品受蚀变影响不大,TiO2含量较低(< 1.31%),FeOT(11.91%~14.25%)、MgO(6.88%~7.62%)含量不高,K2O含量中等偏高(0.85%~1.23%),属钙碱性-高钾钙碱性岩浆系列,岩石轻重稀土分馏不明显,富集Rb、Ba、K等大离子亲石元素,亏损高场强元素P、Hf等,岩石相对富集Nd同位素,εNd(t)值介于-1.6~2.6,(176Hf/177Hf)i比值变化于0.281 497~0.281 612之间,εHf(t)值变化于2.2~6.3之间,模式年龄tDM1(Hf)值介于2.25~2.33 Ga.多种特征元素地球化学图解显示辉长岩具有E-MORB特征,与裂谷构造环境中产出的MORB和OIB不同.研究认为胶辽吉造山带在~2.1 Ga已存在洋壳俯冲,并可能已存在古岛弧,造山带演化过程中存在弧陆碰撞.Abstract: The meta-gabbro, distributed in the Longchang area, eastern part of the North China craton, yields a zircon U-Pb age of 2 113±15 Ma by LA-ICP-MS. Detailed geochemistry analyses, whole rock Nd isotope and zircon U-Pb and in-situ Hf isotope analyses were made to confine tectonic settings of the Jiao-Liao-Ji orogenic belt and other crucial problems. The gabbro samples studied show calc-alkaline to high potassic alkaline series features with weak alteration and also low content of TiO2(< 1.31%), moderate content of MgO (6.88%-7.62%), FeOT(11.91%-14.25%) and K2O (0.85%-1.23%). The studied samples are characterized with low REE content and show weak REE fractionation and depletion in high field strength elements like P and Hf. The samples also show enrichment in large ion lithophile elements like Rb, Ba and K, and enrichment in Nd isotope content, with εNd(t) values of -1.6 to 2.6. (176Hf/177Hf)i of zircon from the meta-gabbro samples ranging from 0.281 497 to 0.281 612, and the calculated εHf(t) values ranging from 2.2 to 6.3. The calculated Hf modal ages are 2.25 to 2.33 Ga. Several crucial diagrams from meta-gabbro sample analysis results show far distance from MORB or OIB both of which are typical basalts distributed in a rift geological setting. E-MORB with continental crust component mixed in may be the exact origin of the meta-basalts in the Longchang area. It can be concluded that there was ocean crust subduction in~2.1 Ga within the Jiao-Liao-Ji orogenic belt, with possible paleo-arc and the evolution model of the Jiao-Liao-Ji orogenic belt is more like an arc-continental collision model.
-
Key words:
- North China craton /
- Jiao-Liao-Ji orogenic belt /
- Longchang area /
- Paleoproterozoic /
- meta-gabbro /
- geochemistry
-
图 3 隆昌地区辉长岩Zr/TiO2-Nb/Y图解(a)和FeOT/MgO-SiO2分类图解(b)
图a据Winchester and Floyd(1977); 图b据Miyashiro(1974)
Fig. 3. Zr/TiO2 vs. Nb/Y (a) and FeOT/MgO vs. SiO2 (b) diagrams for the gabbro samples from the Longchang area
图 5 隆昌地区辉长岩稀土元素配分曲线(a)和微量元素蛛网图(b)
OIB, E-MORB, N-MORB及标准化数据来自Sun and McDonough(1989)
Fig. 5. Chondrite-normalized REE patterns(a) and primitive mantle-normalized trace element patterns (b) for gabbro samples from the Longchang area
图 8 隆昌地区辉长岩锆石Hf同位素组成(a)与εNd(t)-εHf(t)(b)图解
图a据Griffin et al.(2002);图b据 Vervoort et al.(1999)
Fig. 8. Hf isotopic compositions of zircons(a) and εNd(t) vs. εHf(t) diagram(b) for the gabbro samples from the Longchang area
表 1 隆昌地区辉长岩锆石U-Pb测年数据
Table 1. In-situ zircon U-Pb isotopic dating for gabbro in the Longchang area, Liaodong peninsula
测试点 含量(10-6) Th/U 同位素比值 同位素年龄(Ma) Th U 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ LC-1 110 351 0.31 6.338 6 0.152 6 0.369 0 0.004 2 2 025 19.6 2 024 21.2 2 010 41.5 LC-2 161 196 0.82 6.894 9 0.128 9 0.378 9 0.002 9 2 071 13.5 2 098 16.6 2 118 31.6 LC-3 1 046 892 1.17 5.1142 0.081 4 0.299 9 0.002 4 1 691 11.9 1 838 13.6 2 003 27.9 LC-4 283 346 0.82 7.486 1 0.127 6 0.406 6 0.0040 2 199 18.6 2 171 15.3 2 139 21.1 LC-5 327 303 1.08 7.377 5 0.125 3 0.402 4 0.003 5 2 180 16.1 2 158 15.3 2 131 28.1 LC-6 174 273 0.64 6.986 1 0.133 6 0.378 7 0.003 1 2 070 14.7 2 110 17.0 2 140 31.3 LC-7 367 280 1.31 6.351 3 0.1144 0.349 9 0.002 7 1 934 12.8 2 026 15.9 2 122 31.2 LC-8 201 241 0.83 7.347 2 0.131 0 0.393 1 0.003 1 2 137 14.5 2 155 16.0 2 162 29.9 LC-9 128 165 0.78 7.294 1 0.1404 0.388 4 0.003 4 2 115 15.7 2 148 17.2 2 172 33.3 LC-10 147 172 0.86 7.563 6 0.159 9 0.397 8 0.003 7 2 159 17.2 2 181 19.0 2 192 37.0 LC-11 303 332 0.91 7.548 7 0.168 4 0.398 5 0.003 5 2 162 16.4 2 179 20.1 2 184 40.4 LC-12 202 264 0.77 7.475 1 0.197 9 0.396 7 0.0046 2 154 21.2 2 170 23.8 2 176 52.6 LC-13 585 702 0.83 5.231 3 0.122 6 0.296 3 0.002 6 1 673 12.9 1 858 20.0 2 057 42.6 LC-14 284 339 0.84 7.327 5 0.185 1 0.393 2 0.003 9 2 138 18.1 2 152 22.6 2 150 42.4 LC-15 299 313 0.95 7.485 4 0.148 6 0.396 6 0.003 9 2 153 17.8 2 171 17.8 2 173 33.6 LC-16 184 232 0.79 7.383 9 0.138 3 0.396 0 0.003 6 2 151 16.8 2 159 16.8 2 154 31.6 LC-17 134 206 0.65 7.267 1 0.137 2 0.392 7 0.003 7 2 136 17.1 2 145 16.9 2 139 32.1 LC-18 168 215 0.78 7.1447 0.136 9 0.387 9 0.003 7 2 113 17.1 2 130 17.1 2 131 33.5 LC-19 190 251 0.76 7.334 0 0.141 4 0.405 0 0.0045 2 192 20.7 2 153 17.3 2 103 33.6 LC-20 33 65 0.51 7.918 5 0.169 0 0.435 4 0.005 2 2 330 23.2 2 222 19.3 2 115 37.3 LC-21 371 369 1.00 7.109 9 0.112 4 0.392 2 0.003 3 2 133 15.1 2 125 14.2 2 106 27.2 LC-22 209 244 0.86 7.139 1 0.121 9 0.394 5 0.003 7 2 144 16.9 2 129 15.3 2 102 28.9 LC-23 223 265 0.84 7.776 3 0.149 7 0.424 3 0.005 5 2 280 24.7 2 205 17.4 2 128 28.7 LC-24 197 250 0.79 7.003 6 0.129 6 0.391 0 0.003 5 2 127 16.4 2 112 16.5 2 088 32.7 LC-25 137 238 0.58 6.643 7 0.125 3 0.374 5 0.003 1 2 051 14.5 2 065 16.7 2 069 32.7 LC-26 359 382 0.94 7.181 6 0.123 2 0.396 5 0.003 6 2 153 16.8 2 134 15.4 2 105 27.8 LC-27 106 146 0.72 7.371 8 0.135 9 0.408 9 0.0040 2 210 18.5 2 158 16.5 2 098 25.0 LC-28 548 444 1.24 7.045 8 0.113 0 0.389 2 0.002 9 2 119 13.5 2 117 14.3 2 103 27.6 LC-29 293 337 0.87 7.198 9 0.1341 0.397 4 0.0045 2 157 20.6 2 136 16.7 2 106 29.3 LC-30 1 368 753 1.82 6.495 6 0.138 3 0.358 2 0.0047 1 974 22.3 2 045 18.8 2 106 32.4 LC-31 270 329 0.82 7.432 8 0.145 4 0.409 9 0.0040 2 214 18.4 2 165 17.6 2 109 32.3 LC-32 159 179 0.89 7.417 7 0.135 3 0.408 0 0.003 9 2 206 18.1 2 163 16.4 2 117 31.3 LC-33 326 357 0.91 6.551 3 0.102 7 0.375 8 0.003 3 2 056 15.6 2 053 13.9 2 043 26.8 LC-34 268 278 0.96 7.245 2 0.123 3 0.400 1 0.003 9 2 170 17.9 2 142 15.3 2 109 27.5 LC-35 185 208 0.89 7.197 5 0.122 9 0.397 6 0.003 6 2 158 16.5 2 136 15.3 2 109 27.8 LC-36 262 288 0.91 7.283 1 0.1343 0.409 3 0.0043 2 212 19.6 2 147 16.5 2 079 29.5 LC-37 267 290 0.92 7.071 4 0.1306 0.401 0 0.003 9 2 174 18.0 2 120 16.5 2 062 30.6 LC-38 43 101 0.42 7.298 3 0.138 4 0.406 5 0.0040 2 199 18.2 2 149 17.0 2 094 31.2 LC-39 983 530 1.86 5.033 4 0.099 6 0.303 4 0.0041 1 708 20.5 1 825 16.8 1 950 25.9 LC-40 377 395 0.95 6.987 5 0.107 6 0.397 8 0.003 3 2 159 15.4 2 110 13.8 2 054 25.9 表 2 隆昌地区辉长岩主微量元素数据(主量元素的单位为%, 微量元素的单位为10-6)
Table 2. Whole rock chemical compositions of gabbro samples in the Longchang area, Liaodong peninsula
样号 LC-1 LC-2 LC-3 LC-4 LC-5 SiO2 46.67 45.83 48.42 46.72 47.65 TiO2 1.09 1.30 1.24 1.22 1.31 AI2O3 13.75 14.00 13.80 13.31 14.71 Fe2O3 4.29 3.28 3.85 4.18 4.03 FeO 8.63 10.29 9.21 9.57 7.87 MnO 0.17 0.20 0.19 0.21 0.15 MgO 7.62 7.32 7.36 7.37 6.88 CaO 8.79 7.50 8.68 9.35 8.83 Na2O 2.62 1.77 2.98 2.35 3.52 K2O 1.23 1.10 0.85 1.08 1.13 P2O5 0.083 0.130 0.130 0.120 0.088 LOI 5.00 7.05 3.65 4.66 3.54 SUM 99.94 99.76 100.36 100.12 99.70 Hf 0.37 0.38 0.45 0.36 0.49 Ta 0.25 0.70 0.55 0.86 0.75 Li 16.4 29.2 15.4 16.7 13.5 Be 0.50 0.48 0.63 0.55 1.44 Sc 41.6 42.3 42.3 43.3 59.7 Ni 51.6 47.5 50.4 53.7 31.3 Cs 0.83 0.75 0.53 0.37 0.79 Th 1.50 1.03 0.98 1.02 0.67 U 0.22 0.24 0.26 0.23 0.29 Ba 231 204 130 255 165 Pb 3.14 3.27 3.33 4.15 6.32 Nb 5.72 7.54 7.44 7.86 9.29 Rb 59.4 53.4 42.5 38.4 55.6 Sr 150 121 132 168 159 Zr 55.6 91.4 91.0 89.7 97.1 La 5.45 7.89 7.62 7.93 8.20 Ce 12.8 18.9 18.0 18.8 16.9 Pr 1.77 2.62 2.48 2.55 2.55 Nd 8.73 12.80 12.20 12.50 12.50 Sm 2.32 3.28 3.16 3.26 3.52 Eu 0.80 0.97 0.93 0.99 0.99 Gd 2.45 3.50 3.40 3.51 4.26 Tb 0.47 0.66 0.66 0.65 0.78 Dy 3.08 4.29 4.19 4.25 5.42 Ho 0.65 0.88 0.88 0.89 1.07 Er 1.85 2.49 2.44 2.49 3.04 Tm 0.30 0.39 0.40 0.40 0.49 Yb 2.07 2.71 2.72 2.74 3.20 Lu 0.29 0.37 0.38 0.38 0.39 Y 16.5 22.9 22.7 22.9 28.3 EREE 43.01 61.76 59.45 61.35 63.35 LREE 31.85 46.45 44.39 46.04 44.70 HREE 11.16 15.3 15.06 15.31 18.66 (La/Yb)N 1.88 2.08 2.01 2.08 1.84 δEu 1.02 0.87 0.86 0.89 0.78 表 3 隆昌地区辉长岩锆石原位Hf同位素组成
Table 3. In-situ zircon Hf isotopic data for gabbro in the Longchang area, Liaodong peninsula
点号 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ (176Hf/177Hf)i SHf(t) tDM1 tDM2 LCZ-1 0.098 214 0.002 597 0.281 660 0.000 020 0.281 556 4.2 2 327 2 440 LCZ-2 0.083 844 0.002 226 0.281 651 0.000018 0.281 562 4.5 2 317 2 427 LCZ-3 0.155 910 0.003 544 0.281 728 0.000019 0.281 585 5.3 2 290 2 376 LCZ-4 0.122 781 0.003 332 0.281 686 0.000018 0.281 552 4.1 2 337 2 449 LCZ-5 0.141 439 0.003 430 0.281 703 0.000022 0.281 565 4.6 2 318 2 419 LCZ-6 0.104 470 0.003 238 0.281 741 0.000037 0.281 610 6.2 2 251 2 321 LCZ-7 0.079 143 0.002 104 0.281 671 0.000020 0.281 586 5.3 2 281 2 374 LCZ-8 0.085 358 0.002 076 0.281 684 0.000015 0.281 601 5.8 2 261 2 342 LCZ-9 0.102 462 0.002 562 0.281 673 0.000020 0.281 570 4.7 2 307 2 410 LCZ-10 0.077 420 0.001 973 0.281 683 0.000016 0.281 603 5.9 2 256 2 336 LCZ-11 0.140 272 0.003 607 0.281 757 0.000019 0.281 612 6.3 2 250 2 316 LCZ-12 0.100 750 0.002 549 0.281 700 0.000019 0.281 597 5.7 2 267 2 349 LCZ-13 0.105 547 0.003 020 0.281 619 0.000017 0.281 497 2.2 2 414 2 568 LCZ-14 0.182 231 0.005 223 0.281 803 0.000020 0.281 593 5.6 2 287 2 360 LCZ-15 0.154 204 0.003 991 0.281 728 0.000016 0.281 567 4.7 2 319 2 416 注:所有点号的年龄都取2 113 Ma计算Hf同位素值. 表 4 隆昌地区辉长岩Nd同位素组成
Table 4. Whole rock Nd isotopic compositions for gabbro in the Longchang area, Liaodong peninsula
点号 Sm Nd 147Sm/144Nd 143Nd/144Nd 2σ εNd TDM1(Ma) TDM2(Ma) LC-1 2.32 8.73 0.160 56 0.509 909 0.000009 0.2 2 873 2 536 LC-2 3.28 12.8 0.154 39 0.510032 0.000011 2.6 2 482 2 342 LC-3 3.16 12.2 0.156 62 0.509 981 0.000010 1.6 2 631 2 423 LC-4 3.26 12.5 0.157 28 0.509 863 0.000015 -0.7 2 949 2 607 LC-5 3.52 12.5 0.17008 0.509 819 0.000006 -1.6 3 346 2 677 注:所有点号的年龄都取2 113 Ma计算Hf同位素值. -
[1] Amelin, Y., Lee, D. C., Halliday, A. N., et al., 1999. Nature of the Earth's Earliest Crust from Hafnium Isotopes in Single Detrital Zircons. Nature, 399(6733):252-255. https://doi.org/10.1038/20426 [2] Bai, J., 1993. The Precambrian Geology and Pb-Zn Mineralization in the Northern Margin of North China Platform.Geological Publishing House, Beijing, 47-89 (in Chinese). [3] Bouvier, A., Vervoort, J. D., Patchett, P. J., 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR:Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1-2):48-57. https://doi.org/10.1016/j.epsl.2008.06.010 [4] Cao, L., Chen, L., Duan, Q. F., et al., 2019. Geochronology and Petrogenesis of the Donghe Pt-Pd-Bearing Ultramafic Dykes in the Northern Margin of the Yangtze Block:Constraints from Zircon Geochronology, Geochemistry and Sr-Nd-Hf Isotopes. Earth Science, 44(2):366-386(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201902002 [5] Chen, J. S., Xing, D. H., Liu, M., et al., 2017. Zircon U-Pb Chronology and Geological Significance of Felsic Volcanic Rocks in the Liaohe Group from the Liaoyang Area, Liaoning Province. Acta Petrologica Sinica, 33(9):2792-2810(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201709010 [6] Chen, S., Li, X.P., Duan, W.Y., et al., 2018.Petrological and Geochronological Study of Amphibolite from Jiaobei Terrane. Earth Science, 43(3):716-732(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201803005 [7] Chen, S., Li, X. P., Kong, F. M., et al., 2018. Metamorphic Evolution and Zircon U-Pb Ages of the Nanshankou Mafic High Pressure Granulites from the Jiaobei Terrane, North China Craton. Journal of Earth Science, 29(5):1219-1235. https://doi.org/10.1007/s12583-017-0956-9 [8] Cheng, S.B., Liu, Z.J., Wang, Q.F., et al., 2017. SHRIMP Zircon U-Pb Dating and Hf Isotope Analyses of the Muniushan Monzogranite, Guocheng, Jiaobei Terrane, China:Implications for the Tectonic Evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 301:36-48. https://doi.org/10.1016/j.precamres.2017.09.002 [9] Dong, C.Y., Ma, M.Z., Liu, S.J., et al., 2012.Middle Paleoproterozoic Crustal Extensional Regime in the North China Craton:New Evidence from SHRIMP Zircon U-Pb Dating and Whole-Rock Geochemistry of Meta-Gabbro in the Anshan-Gongchangling Area. Acta Petrologica Sinica, 28(9):2785-2792(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=acb66955d00eb68888a06396bbb80d3c&encoded=0&v=paper_preview&mkt=zh-cn [10] Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000.The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 [11] Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3-4):237-269. https://doi.org/10.1016/s0024-4937(02)00082-8 [12] Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10):2595-2604(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200710025 [13] Li, S.Z., Han, Z.Z., Liu, Y.J., et al., 2001.Continental Dynam ics and Regional Metamorphism of the Liaohe Group.Geological Review, 47(1):9-18(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzlp200101001.htm [14] Li, Z., Chen, B., Liu, J.W., et al., 2015.Zircon U-Pb Ages and Their Implications for the South Liaohe Group in the Liaodong Peninsula, Northeast China. Acta Petrologica Sinica, 31(6):1589-1605(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201506008 [15] Li, S. Z., Zhao, G. C., Sun, M., et al., 2006. Are the South and North Liaohe Groups of North China Craton Different Exotic Terranes?. Nd Isotope Constraints. Gondwana Research, 9(1-2):198-208. https://doi.org/10.1016/j.gr.2005.06.011 [16] Li, Z., Chen, B., 2014. Geochronology and Geochemistry of the Paleoproterozoic Meta-Basalts from the Jiao-Liao-Ji Belt, North China Craton:Implications for Petrogenesis and Tectonic Setting. Precambrian Research, 255:653-667. https://doi.org/10.1016/j.precamres.2014.07.003 [17] Li, Z., Chen, B., Yan, X. L., 2019. The Liaohe Group:An Insight into the Paleoproterozoic Tectonic Evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 326:174-195. https://doi.org/10.1016/jprecamres.2018.01.009 [18] Li, Z.Y., Li, Y.L., Wijbrans, J.R., et al., 2018. Metamorphic P-T Path Differences between the Two UHP Terranes of Sulu Orogen, Eastern China:Petrologic Comparison between Eclogites from Donghai and Rongcheng. Journal of Earth Science, 29(5):1150-1166. https://doi.org/10.1007/s12583-018-0845-x [19] Liu, F., Lian, D. Y., Niu, X. L., et al., 2018. Dongbo MORB-Type Isotropic Gabbro Emplaced as an Oceanic Core Complex in Western Yarlung Zangbo Suture Zone, Tibet. Earth Science, 43(4):952-974(in Chinese with Eng-lish abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201804003 [20] Liu, F. L., Liu, C. H., Itano, K., et al., 2017. Geochemistry, U-Pb Dating, and Lu-Hf Isotopes of Zircon and Monazite of Porphyritic Granites within the Jiao-Liao-Ji Orogenic Belt:Implications for Petrogenesis and Tectonic Setting. Precambrian Research, 300:78-106. https://doi.org/10.1016/j.precamres.2017.08.007 [21] Lu, X.P., Wu, F.Y., Lin, J.Q., et al., 2004.Geochronological Successions of the Early Precambrian Granitic Magmatism in Southern Liaodong Peninsula and Its Constraints on Tectonic Evolution of the North China Craton. Chinese Journal of Geology, 39(1):123-138(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200401013 [22] Ludwig, K. R., 2003. ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California, Berkeley, 39. [23] Meng, E., Liu, F. L., Liu, P. H., et al., 2014. Petrogenesis and Tectonic Significance of Paleoproterozoic Meta-Mafic Rocks from Central Liaodong Peninsula, Northeast China:Evidence from Zircon U-Pb Dating and In Situ Lu-Hf Isotopes, and Whole-Rock Geochemistry.Precambrian Research, 247:92-109. https://doi.org/10.1016/j.precamres.2014.03.017 [24] Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 274(4):321-355. https://doi.org/10.2475/ajs.274.4.321 [25] Qin, Y., Liang, Y.H., Zhang, Q.W., et al., 2015.LA-ICP-MS Zircon U-Pb Age of Plagioclase Amphibolite from Shensixian Mafic Dyke Swarm in Liaodong Area, China and Its Significance. Acta Mineralogica Sinica, 35(4):540-544(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwxb201504019 [26] Rollison, H. R., 1993. Using Geochemical Data:Evaluation, Presentation, Interpretation. Group UK Ltd. Longman, London. [27] Scherer, E., Munker, C., Mezger, K., 2001. Calibration of the Lutetium-Hafnium Clock. Science, 293(5530):683-687. https://doi.org/10.1126/science.1061372 [28] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [29] Vervoort, J. D., Patchett, P. J., Blichert-Toft, J., et al., 1999. Relationships between Lu-Hf and Sm-Nd Isotopic Systems in the Global Sedimentary System. Earth and Planetary Science Letters, 168(1-2):79-99. https://doi.org/10.1016/s0012-821x(99)00047-3 [30] Wang, H.C., Lu, S.N., Chu, H., et al., 2011.Zircon U-Pb Age and Tectonic Setting of Meta-Basalts of Liaohe Group in Helan Area, Liaoyang, Liaoning Province. Journal of Jilin University (Earth Science Edition), 41(5):1322-1334, 1361(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201105006 [31] Wang, X. P., Peng, P., Wang, C., et al., 2016. Petrogenesis of the 2 115 Ma Haicheng Mafic Sills from the Eastern North China Craton:Implications for an Intra-Continental Rifting. Gondwana Research, 39:347-364. https://doi.org/10.1016/j.gr.2016.01.009 [32] Wang, X. P., Peng, P., Wang, C., et al., 2017. Nature of Three Episodes of Paleoproterozoic Magmatism (2 180 Ma, 2 115 Ma and 1 890 Ma) in the Liaoji Belt, North China with Implications for Tectonic Evolution. Precambrian Research, 298:252-267. https://doi.org/10.1016/j.precamres.2017.06.003 [33] Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2 [34] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007.Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2):185-220(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 [35] Xu, W., Liu, F. L., Tian, Z. H., et al., 2018. Source and Petrogenesis of Paleoproterozoic Meta-Mafic Rocks Intruding into the North Liaohe Group:Implications for Back-Arc Extension Prior to the Formation of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 307:66-81. https://doi.org/10.1016/j.precamres.2018.01.011 [36] Yang, C.H., Du, L.L., Song, H.X., et al., 2018.Stratigraphic Division and Correlation of the Paleoproterozoic Strata in the North China Craton:A Review. Acta Petrologica Sinica, 34(4):1019-1057, 1229-1232(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201804010 [37] Yu, J. J., Yang, D. B., Feng, H., et al., 2007. Chronology of Amphibolite Protolith in Haicheng of Southern Liaoning:Evidence from LA-ICP-MS Zircon U-Pb Dating. Global Geology, 26(4):391-396, 408(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=d45f7e4f4d9b16e1bd61db90d598392b&encoded=0&v=paper_preview&mkt=zh-cn [38] Zhang, Q. S., 1988. Early Crust and Mineral Deposits of Liaodong Peninsula. Geological Publishing House, Beijing, 218-450 (in Chinese). [39] Zheng, J.P., Zhao, Y., Xiong, Q., 2019. Genesis and Geological Significance of Zircons in Orogenic Peridotite. Earth Science, 44(4):1067-1082(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201904002 [40] Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assem bly of Rodinia:The Correlation of Early Neoproterozoic(ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290:32-48. https://doi.org/10.13039/501100001809 [41] Zou, Y., Zhai, M. G., Santosh, M., et al., 2018. Contrasting P-T-t Paths from a Paleoproterozoic Metamorphic Orogen:Petrology, Phase Equilibria, Zircon and Monazite Geochronology of Metapelites from the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 311:74-97. https://doi.org/10.13039/501100001809 [42] 白瑾, 1993.华北陆台北缘前寒武纪地质及铅锌成矿作用.北京:地质出版社, 47-89. [43] 曹亮, 陈林, 段其发, 等, 2019.扬子陆块北缘东河铂钯矿化超基性岩脉成岩时代与岩石成因:锆石年代学、地球化学和Sr-Nd-Hf同位素约束.地球科学, 44 (2):366-386. http://d.old.wanfangdata.com.cn/Periodical/dqkx201902002 [44] 陈井胜, 邢德和, 刘淼, 等, 2017.辽宁辽阳地区辽河群酸性火山岩锆石U-Pb年代学及其地质意义.岩石学报, 33(9):2792-2810. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201709010 [45] 陈爽, 李旭平, 段文勇, 等, 2018.胶北地块斜长角闪岩的岩石学与年代学研究.地球科学, 43(3):716-732. http://d.old.wanfangdata.com.cn/Periodical/dqkx201803005 [46] 董春艳, 马铭株, 刘守偈, 等, 2012.华北克拉通古元古代中期伸展体制新证据:鞍山-弓长岭地区变质辉长岩的锆石SHRIMP U-Pb定年和全岩地球化学.岩石学报, 28(9):2785-2792. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201209009 [47] 侯可军, 李延河, 邹天人, 等, 2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025 [48] 李三忠, 韩宗珠, 刘永江, 等, 2001.辽河群区域变质特征及其大陆动力学意义.地质论评, 47(1):9-18. http://d.old.wanfangdata.com.cn/Periodical/dzlp200101002 [49] 李壮, 陈斌, 刘经纬, 等, 2015.辽东半岛南辽河群锆石U-Pb年代学及其地质意义.岩石学报, 31(6):1589-1605. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201506008 [50] 辽宁省地质矿产局, 1989.辽宁省区域地质志.北京:地质出版社. [51] 刘飞, 连东洋, 牛晓露, 等, 2018.雅鲁藏布江缝合带西段东波MORB型均质辉长岩的大洋核杂岩成因.地球科学, 43(4):952-974. http://d.old.wanfangdata.com.cn/Periodical/dqkx201804003 [52] 路孝平, 吴福元, 林景仟, 等, 2004.辽东半岛南部早前寒武纪花岗质岩浆作用的年代学格架.地质科学, 39(1):123-138. doi: 10.3321/j.issn:0563-5020.2004.01.013 [53] 秦亚, 梁一鸿, 张青伟, 等, 2015.辽东地区什司县变质基性岩墙群的LA-ICP-MS锆石U-Pb测年及其意义.矿物学报, 35(4):540-544. http://d.old.wanfangdata.com.cn/Periodical/kwxb201504019 [54] 王惠初, 陆松年, 初航, 等, 2011.辽阳河栏地区辽河群中变质基性熔岩的锆石U-Pb年龄与形成构造背景.吉林大学学报(地球科学版), 41(5):1322-1334, 1361. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201105006 [55] 吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001 [56] 杨崇辉, 杜利林, 宋会侠, 等, 2018.华北克拉通古元古代地层划分与对比.岩石学报, 34(4):1019-1057, 1229-1232. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201804010 [57] 于介江, 杨德彬, 冯虹, 等, 2007.辽南海城斜长角闪岩原岩的形成时代:锆石LA-ICP-MS U-Pb定年证据.世界地质, 26(4):391-396, 408. doi: 10.3969/j.issn.1004-5589.2007.04.001 [58] 张秋生, 1988.辽东半岛早期地壳与矿床.北京:地质出版社, 218-450. [59] 郑建平, 赵伊, 熊庆, 2019.造山带橄榄岩中锆石的成因及其地质意义.地球科学, 44(4):1067-1082. http://d.old.wanfangdata.com.cn/Periodical/dqkx201904002