Main Control Factors of Shale Gas Differential Vertical Enrichment in Lower Cambrian Qiongzhusi Formation, Southwest Sichuan Basin, China
-
摘要: 川西南地区筇竹寺组发育多套富有机质页岩,但上部优质页岩的含气性明显好于下部优质页岩.应用热解实验、物性测试、全岩矿物X衍射、低温氮气吸附、氩离子抛光-扫描电镜等方法对筇竹寺组页岩地化、储层、封盖条件等开展分析,揭示筇竹寺组页岩气纵向差异富集的主控因素.研究表明,页岩气差异富集的主要控制因素为:(1)页岩有机质富集程度:筇竹寺组上部页岩段TOC含量相对较高、分布集中,下部优质页岩段TOC含量较低且分布不均、分散,从而导致页岩纵向生烃物质条件、有机质孔隙发育及微孔(比表面)的差异.(2)页岩岩矿组成及储层特征:上部优质页岩段粘土含量高且以伊蒙混层为主,有利于吸附气富集,该页岩段以有机质孔隙为主,微孔相对比较发育但孔隙度较高,下部优质页岩以粘土矿物孔、脆性矿物粒间孔及微裂缝为主,介孔相对比较发育但孔隙度较低.(3)保存条件:上页岩段顶底板发育完整且岩性致密,对页岩气层具有较好的保护作用;下页优质岩段底部存在碳酸盐岩古风化壳,底板对页岩气的保存能力薄弱.因此,TOC含量高、粘土矿物含量高、有机质孔隙发育、顶底板条件好是决定上部优质页岩段含气性优于下部页岩段的主要因素.Abstract: Multiple shale gas intervals occur in the Qiongzhusi Formation in the Southwest Sichuan basin,where gas contents in upper shale section are significantly higher than those in the lower shale section. Main control factors of shale gas differential vertical enrichment in Qiongzhusi Formation were understood through analyzing geochemical feature,reservoir and sealing conditions with rock pyrolysis,physical experiements,XRD diffraction,and field-emission scanning electron microscopy. The main control factors can be summarized as follows. (1) TOC content. It is higher and enriched in the upper shale section but lower and scattered in the lower shale section,resulting in the difference in hydrocarbon generation,organic pores and micro-pore growth. (2) Mineral component and reservoir property. The upper shale is characterized by high clay mineral content,especially I/S content,which contributes to the absorbed gas. The porosity of upper shale is higher than that of lower shale,where organic pores are the main pore space. The lower shales are mainly composed of clay mineral pores,intergranular pores and micro-fractures. Compared with the lower shales,the clay mineral content in the upper shale is higher,which is dominated by I/S mixed layer that can make an important contribution to the enrichment of adsorbed gas. (3) Sealing conditions. The top and floor of the upper shale section are well developed,however,the bottom of the lower shale section is relatively weak due to the existence of paleo-weathering carbonate crust at the bottom of the shale. Therefore,high TOC,high clay mineral content and well-developed organic pores,good sealing conditions contribute to the enrichment of shale gas at upper shale section.
-
0. 引言
四川盆地位于我国西部,古生界发育寒武系、志留系与二叠系等多套海相富有机质页岩,是目前我国页岩气勘探开发的主要地区(黄金亮等,2012;董大忠等,2014).下寒武统筇竹寺组是其重要的页岩气勘探层系之一.前期针对四川盆地下寒武统筇竹寺组页岩36口老井复查统计发现其中30口井有富气显示,尤其是W5井在筇竹寺组页岩段中途测试获日产2.46×104 m3工业气流(闫存章等,2009).近年来,威远地区W201井筇竹寺组压裂测试获日产气1.08×104 m3、W201⁃H3井获日产气2.83×104 m3,井研-犍为地区JS1井和JY1井下寒武统筇竹寺组压裂测试获日产气4×104~6×104 m3,充分揭示了四川盆地寒武系筇竹寺组良好的页岩气勘探潜力.JY1井和JS1井层序与沉积旋回分析表明,川西南寒武系筇竹寺组富有机质页岩段纵向可进一步划分为2段,页岩横向可对比性好.不同层段页岩气富集特征存在差异,以JY1井为例,金页1井也在筇竹寺组共钻遇油气显示7层,共计247.00 m,其中钻遇页岩气层39.00 m/1层,页岩含气层206.00 m/5层,微含气层2.00 m/1层.岩心含气量分析表明,上部页岩层段含气量为0.53~4.69 m3/t,平均值为1.68 m3/t;下部页岩层段含气量为0.34~2.12 m3/t,平均值为0.64 m3/t.但是,寒武系筇竹寺组上部和下部页岩段天然气差异富集的主控因素仍不清楚,已成为制约寒武系深层页岩气勘探进程的重要瓶颈问题.本文以川西南地区JY1井和JS1井下寒武统筇竹寺组为例,采用热解实验、全岩矿物X衍射、低温氮气吸附、氩离子抛光-扫描电镜、氦气孔隙度测定等多种技术方法综合开展四川盆地筇竹寺组页岩气成藏条件研究,揭示筇竹寺组上、下优质页岩段页岩气差异富集主控因素.该研究对发展指导四川盆地及周缘下寒武统页岩气勘探具有重要的启示意义.
1. 地质概况
四川盆地寒武系筇竹寺组富有机质页岩地层厚度较大,一般为60~150 m,最大可达190 m,其主要受早寒武世筇竹寺组早期2个大型的深水陆棚相区控制(西南部资阳-长宁一线近南北向、四川盆地之外东南部鄂渝黔)(图 1).其差别在于前者为靠近西部古陆物源区,夹持于砂泥质浅水陆棚内部,受继承性克拉通内裂陷控制的带状展布的碳泥质深水陆棚相沉积,而后者为浅海大陆架上远离物源、靠近深海区的碳泥质深水陆棚沉积.城口-房县以北地区仍为硅碳质斜坡-深水盆地相沉积,主要发育薄层黑色硅质页岩、碳质页岩(马文辛等,2012;王淑芳等,2016);整体而言,四川盆地早寒武世岩相及沉积相类型丰富多样,砂泥质、泥质、碳酸盐质、混积等均有发育,如江油-井研-昭通-禄劝以西的地区发育滨岸相中-细砂岩及浅水砂泥质陆棚沉积,利川地区发育浅水灰泥质陆棚沉积,丁山地区发育浅水砂泥灰质互层的混积陆棚沉积,其发育除受相对海平面升降变化(快速海侵-缓慢海退)控制外,还与砂质碎屑古陆物源区及碳酸盐岩水下隆起的发育密切相关.
川西南下寒武统筇竹寺组泥页岩段整体沉积厚度大、粉砂质含量高.纵向上表现为快速海侵-缓慢海退的沉积特点,发育4套(本文将其划分为上页岩段和下页岩段)深水陆棚相富有机质页岩层段(图 2),富有机质页岩段与其他段相比具有高自然伽马值、砂质含量相对低、TH/U比低(< 2)的特点,如JY1井取心段3 276.0~3 315.0 m,岩性为黑色碳质页岩夹薄层灰质条带、灰质粉砂岩,受陆源碎屑影响较小,水体较深,黄铁矿较发育,反映其处于还原环境,主要为深水陆棚相碳质页岩沉积.
2. 页岩有机地化特征
筇竹寺组富有机质页岩有机质以固体沥青、藻类体为主,占到有机显微组分总含量的90%左右,矿物沥青基质含量较低,占到10%左右.藻类体主要以球形藻类和具刺异源类为主,其次为细菌类和浮游宏观藻类,且上部和下部富有机质页岩段无明显的差异(赵相宽等,2018).固体沥青主要分布于裂缝或粒间孔隙(图 3a),藻类体降解呈微粒化分布(图 3b),干酪根类型指数多大于90%.扫描电镜下有机质以腐泥型为主,呈无定形絮状,含量多在95%以上,反映出低等浮游生物是有机质的重要母质来源(张慧等,2015).干酪根碳同位素偏负,δ13C值为-28.8‰~-33.7‰,多小于-29‰,属于Ⅰ型干酪根,生烃能力强.岩心实测等效镜质体反射率(Ro)主要分布在2.7%~3.1%,平均值为2.9%,页岩处于高演化过成熟阶段.
有机质是页岩生烃的物质基础,其富集程度不仅决定页岩生烃潜力,也决定了页岩储层有机孔隙发育(Chalmers et al., 2012;Curtis et al., 2012;Wood and Hazra, 2017;Liu et al., 2018;王鹏威等,2019).研究区筇竹寺组页岩有机质丰度具有上下高、中间低的特点,其中筇竹寺组上部3 285~3 308 m产气页岩段TOC含量为0.55%~3.44%,平均值为1.39%;中部页岩TOC含量基本小于0.5%(由于测试原因,部分TOC < 0.5%的样品已剔除),下部页岩层段中富有机质页岩含气量为0.58%~2.52%,平均值为1.19%(图 4);可见有机质含量较高的层段主要集中在筇竹寺组上部和下部页岩层段,且上部优质页岩段TOC含量比下部页岩段高.
除了有机质丰度的差异之外,上部优质页岩段主要为薄层碳质页岩,有机质分布较为集中(图 5a),但是下部优质页岩岩性混杂,主要为磷质白云岩、泥质云岩夹碳质页岩,有机质分布分散且不均匀(图 5b).
3. 页岩储层储集能力
页岩岩心样品常规物性分析表明,纵向上不同层段孔隙度存在差异性(图 6).上部优质页岩段3 285~3 305 m孔隙度最好,实测样品孔隙度为0.94%~4.74%,平均值为2.50%;筇竹寺组下部页岩孔隙度普遍偏低,下部优质页岩段3 575~ 3 619 m实测样品孔隙度为0.16%~2.65%,平均值为0.90%.整体而言,JY1井页岩孔隙度具有自上而下逐渐降低的趋势,上部产气页岩层段物性明显好于下部页岩层段.
氩离子抛光扫描电镜鉴定分析显示,JY1井筇竹寺组页岩储集空间类型包括有机质孔、无机矿物孔(粘土矿物孔、脆性矿物粒间孔和粒内孔)、微裂缝3种类型(于炳松,2013; Pommer and Milliken, 2015).筇竹寺组上部优质页岩段主要以有机质孔为主(图 7a),局部发育少量粘土矿物孔和微裂缝.有机质孔隙主要发育于板状粘土矿物层间有机质内部及草莓状黄铁矿晶间有机质内部(王香增等,2018)(图 7b),孔径大小从几十纳米到150 nm不等,纳米孔圆度较差,形态不规则,无定向性,较大纳米孔多分布在有机质中部,纳米孔隙在有机质中占比在30%以上;下部优质页岩段主要以粘土矿物孔(图 7c)、脆性矿物粒间孔、粒内孔及微裂缝为主(图 7d),局部发育磷灰石粒内溶蚀孔及少量有机质纳米孔(图 7e).孔隙形态不规则,孔径大小从几十纳米到2 mm不等,最大超过2 μm.从有机质纳米孔隙与粘土矿物的接触关系来看,局部无黄铁矿支撑的两粘土矿物层具有明显收敛闭合趋势,反映黄铁矿晶粒对于粘土矿物层具有支撑作用,使得早期粘土矿物层间孔隙在压实作用下仍然得以保存,有机质才能进一步的充填并保存下来(图 7f)(罗小平等,2015;马中良等,2017).
因此,通过对比可知,有机质孔隙对筇竹寺组上部优质页岩储层储集空间具有重要的贡献,其中,高TOC含量是其有机质孔发育的重要物质基础(Loucks et al., 2009;Milliken et al., 2013;刘忠宝等, 2017),而粘土矿物间的黄铁矿晶粒对有机质孔的发育具有重要促进作用.
对比孔径统计结果表明,筇竹寺组页岩孔径以小于50 nm为主,100 nm以上孔较为少见(图 8a),其中,上部页岩段页岩孔径小于2 nm和2~50 nm的孔隙占比分别为26.99%和57.81%(表 1);下部页岩段与上部相比,2 nm以下的孔隙明显减少,但2~50 nm的孔隙略有增加(图 8b),小于2 nm和2~50 nm的页岩孔径占比约为10.16%和73.6%(表 1).对比页岩有机质孔隙和无机孔隙的孔径可知,有机孔隙为纳米级别,细粒矿物相关孔隙的孔径多为微米-纳米级(李军等,2016).结合筇竹寺组不同层段页岩孔隙类型和孔径可知,上部优质页岩中微孔较多主要是由有机孔发育造成.对比不同页岩层段的TOC与比表面可发现,上部优质页岩TOC与比表面呈正相关关系,而下部优质页岩TOC与比表面没有明显的相关性(图 9).由此说明,上部优质页岩高TOC含量(有机孔隙发育)对提高页岩储层的吸附能力具有重要意义(Hickey and Henk, 2007;Ross and Bustin, 2008, 2009; Wang et al., 2018).
表 1 JY1井筇竹寺组上部优质页岩和下部优质页岩孔径比例Table Supplementary Table Pore populations of upper and lower organic-rich shale in the Qiongzhusi Formation, Well JY1优质页岩段 < 2 nm 2~10 nm 10~50 nm 50~100 nm 100~500 nm > 500 nm 上部 26.99% 34.08% 23.73% 0.74% 3.41% 11.04% 下部 10.16% 33.66% 39.94% 0.66% 0.98% 14.6% JY1井X衍射全岩定量分析结果表明(图 10a):筇竹寺组主要由粘土矿物和脆性矿物组成,脆性矿物以石英和长石为主.其中粘土矿物含量为12.5%~58.4%,平均值为35%;石英含量为19.6%~39.3%,平均值为28.8%;钾长石含量为2.3%~12.8%,平均值为5.7%;斜长石含量为6.9%~27.6%,平均值为18.3%;方解石与白云石总含量在10%左右.上部优质页岩层段粘土含量明显高于下部优质页岩段,以水平井钻进深度3 300 m为界,其上部和下部页岩粘土矿物含量分别为52%和30%,粘土含量平均值相差22%;但上部和下部优质页岩脆性矿物含量没有明显差异,上部优质页岩石英含量为20.6%~38.5%,平均值为26.5%,下部优质页岩的石英含量为15.4%~43.9%,平均值为29.7%.
JY1井页岩样粘土矿物成分分析结果表明(图 10b),粘土矿物以伊蒙混层和伊利石为主,约占80%以上,其次为绿泥石和高岭石.伊蒙混层含量约为20%~55%,平均值为35.8%;伊利石含量约为36%~63%,平均值为45.2%;绿泥石含量约为2%~30%,平均值为13.4%.上部优质页岩层段粘土矿物成分与下部优质泥页岩层段相比,其差异主要表现为其伊蒙混层含量更高,伊利石、绿泥石与高岭石含量低的特点.其中,上部优质页岩段伊蒙混层含量和伊利石含量分别为41.1%和45.9%,下部优质页岩段伊蒙混层含量和伊利石含量分别为31.9%和68.1%,反映其成岩作用阶段及演化程度与下段存在一定差异.对比上下优质页岩段的页岩粘土矿物含量可以看出:上部优质页岩段粘土矿物中伊蒙混层相对含量较高,更有利于吸附气的富集(吉利明等, 2012a, 2012b).
4. 顶底板条件
受喜山期构造运动的影响,川南-川西南地区筇竹寺组泥页岩由构造沉降转为构造快速抬升,在井研-犍为地区构造抬升幅度较小(约3 500~ 4 000 m).以JY1井为例,晚期构造抬升可分为3期(图 11a),其中第1期和第3期抬升幅度较大,反映出这2期构造挤压相对强烈,有利于构造裂缝的发育.JY1井岩心观察表明,筇竹寺组泥页岩中构造裂缝较为发育,且表现为多期裂缝相互切割的特征(图 11b).如果没有良好的顶底板条件,裂缝可形成页岩气的散失通道,从而不利于页岩气的富集和保存.由此可见,页岩顶底板条件对于页岩气保存具有重要的控制作用(郭旭升,2014;郭旭升等,2014;金之钧等,2016;聂海宽等,2016).
井研-犍为地区下寒武统筇竹寺组上部优质页岩段远离震旦系不整合面,顶底板发育完整,保存条件较好.JS1井、JY1井上部优质页岩段的顶板主要为一套深灰色泥页岩及灰色粉砂质页岩,厚度为95~102 m,分布相对稳定;底板主要为一套灰色、深灰色粉砂岩、泥质粉砂岩、粉砂质页岩、页岩,其中JY1井底板主要以泥质粉砂岩、粉砂质页岩为主(图 12),JS1井底板主要以粉砂质页岩、页岩为主,厚度约为167~212 m,且顶底板孔隙度、渗透率均极低,裂缝欠发育;下部优质页岩段的顶板为上部页岩段的底板,特征相似,其底板为震旦系灯影组白云岩(图 12),两者之间为不整合接触,存在古风化壳.目前已在风化壳内获工业气流,日产气为4.737×104 m3,进一步说明底板白云岩储集性能较好,对筇竹寺组下部页岩气的保存不利.因此,下寒武统筇竹寺组页岩顶底板保存条件差异也是造成二者含气性差异的重要原因.
5. 结论
(1) 筇竹寺组页岩纵向TOC含量存在差异:上部优质页岩段TOC含量相对较高且分布集中,下部优质页岩段TOC含量较低且较分散.该差异导致上部页岩和下部页岩生烃物质条件、有机质孔隙以及微孔(比表面)发育有所不同.
(2) 上部优质页岩段与下部优质页岩段的岩矿组成和储集条件均存在明显差异.上部优质页岩粘土矿物含量较高,且粘土矿物以伊蒙混层为主,可对吸附气的富集具有重要的贡献.上部优质页岩以有机孔隙为主,微孔发育程度较高但孔隙度较大;下部优质页岩段主要以粘土矿物孔、脆性矿物粒间孔及微裂缝为主,介孔发育程度较高但孔隙度较小.
(3) 下寒武统筇竹寺组页岩顶底板发育存在差异.上部优质页岩段顶底板发育完整且岩性致密,具有较好的屏蔽作用.下部优质页岩段的顶板发育,但是由于存在碳酸盐岩古风化壳,底板相对薄弱,从而导致下部页岩气的逸散.
因此,TOC含量高、粘土矿物含量高、有机质孔隙发育、顶底板条件好是下寒武统筇竹寺组上部优质页岩段页岩气富集的主要控制因素.
致谢: 感谢匿名审稿人给予的宝贵建议. -
表 1 JY1井筇竹寺组上部优质页岩和下部优质页岩孔径比例
Table 1. Pore populations of upper and lower organic-rich shale in the Qiongzhusi Formation, Well JY1
优质页岩段 < 2 nm 2~10 nm 10~50 nm 50~100 nm 100~500 nm > 500 nm 上部 26.99% 34.08% 23.73% 0.74% 3.41% 11.04% 下部 10.16% 33.66% 39.94% 0.66% 0.98% 14.6% -
[1] Chalmers, G. R., Bustin, R. M., Power, I. M., 2012. Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy image Analyses:Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units. AAPG Bulletin, 96(6):1099-1119. https://doi.org/10.1306/10171111052 [2] Curtis, M. E., Cardott, B. J., Sondergeld, C. H., et al., 2012. Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 103:26-31. https://doi.org/10.1016/j.coal.2012.08.004 [3] Dong, D.Z., Gao, S.K., Huang, J.L., et al., 2014. A Discussion on the Shale Gas Exploration & Development Prospect in the Sichuan Basin. Natural Gas Industry, 34(12):1-15 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201202029 [4] Guo, X.S., 2014. Rules of Two-Factor Enrichment for Marine Shale Gas in Southern China-Understanding from the Longmaxi Formation Shale Gas in Sichuan Basin and Its Surrounding Area. Acta Geologica Sinica, 88(7):1209-1218 (in Chinese with English abstract). [5] Guo, X.S., Hu, D.F., Wen, Z.D., et al., 2014. Major Factors Controlling the Accumulation and High Productivity in Marine Shale Gas in the Lower Paleozoic of Sichuan Basin and Its Periphery:A Case Study of the Wufeng-Longmaxi Formation of Jiaoshiba Area. Geology in China, 41(3):893-901 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201403016.htm [6] Hickey, J. J., Henk, B., 2007. Lithofacies Summary of the Mississippian Barnett Shale, Mitchell 2 T.P. Sims Well, Wise County, Texas. AAPG Bulletin, 91(4): 437-443. https://doi.org/10.1306/12040606053 [7] Huang, J.L., Zou, C.N., Li, J.Z., et al., 2012. Shale Gas Generation and Potential of the Lower Cambrian Qiongzhusi Formation in Southern Sichuan Basin, China. Petroleum Exploration and Development, 39(1):69-75 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201201008 [8] Ji, L.M., Qiu, J.L., Xia, Y.Q., et al., 2012a. Micro-Pore Characteristics and Methane Adsorption Properties of Common Clay Minerals by Electron Microscope Scanning. Acta Petrolei Sinica, 33(2):249-256 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201202009 [9] Ji, L.M., Qiu, J.L., Zhang, T.W., et al., 2012b. Experiments on Methane Adsorption of Common Clay Minerals in Shale. Earth Science, 37(5):1043-1050 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2012.111 [10] Jin, Z.J., Hu, Z.Q., Gao, B., et al., 2016. Controlling Factors on the Enrichment and High Productivity of Shale Gas in the Wufeng-Longmaxi Formations, Southeastern Sichuan Basin. Earth Science Frontiers, 23(1):1-10 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201601001 [11] Li, J., Jin, W.J., Wang, L., et al., 2016. Quantitative Evaluation of Organic and Inorganic Pore Size Distribution by NMR:A Case from the Silurian Longmaxi Formation Gas Shale in Fuling Area, Sichuan Basin. Oil & Gas Geology, 37(1):129-134 (in Chinese with English abstract). [12] Liu, S.G., Deng, B., Luba J., et al., 2018. Multi-Stage Basin Development and Hydrocarbon Accumulations:A Review of the Sichuan Basin at Eastern Margin of the Tibetan Plateau. Journal of Earth Science, 29(2):307-325. doi: 10.1007/s12583-017-0904-8 [13] Liu, Z.B., Gao, B., Hu, Z.Q., et al., 2017. Reservoir Characteristics and Pores Formation and Evolution of High Maturated Organic Rich Shale:A Case Study of Lower Cambrian Jiumenchong Formation, Southern Guizhou Area. Acta Petrolei Sinica, 38(12):1381-1389 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syxb201712005 [14] Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12):848-861. https://doi.org/10.2110/jsr.2009.092 [15] Luo, X.P., Wu, P., Zhao, J.H., et al., 2015. Study Advances on Organic Pores in Organic Matter-Rich Mud Shale. Journal of Chengdu University of Technology (Science & Technology Edition), 42(1):50-59 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201501007 [16] Ma, W.X., Liu, S.G., Huang, W. M., et al., 2012. Mud Shale Reservoirs Characteristics of Qiongzhusi Formation on the Margin of Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 39(2):182-189 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201202011 [17] Ma, Z.L., Zheng, L.J., Xu, X.H., et al., 2017. Thermal Simulation Experiment on the Formation and Evolution of Organic Pores in Organic-Rich Shale. Acta Petrolei Sinica, 38(1):23-30 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201701003 [18] Milliken, K. L., Rudnicki, M., Awwiller, D. N., et al., 2013. Organic Matter-Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania. AAPG Bulletin, 97(2):177-200. https://doi.org/10.1306/07231212048 [19] Nie, H.K., Jin, Z.J., Bian, R.K., et al., 2016. The "Source-Cap Hydrocarbon-Controlling" Enrichment of Shale Gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation of Sichuan Basin and Its periphery. Acta Petrolei Sinica, 37(5):557-571 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201605001 [20] Pommer, M., Milliken, K., 2015. Pore Types and Pore-Size Distributions across Thermal Maturity, Eagle Ford Formation, Southern Texas. AAPG Bulletin, 99(9):1713-1744. https://doi.org/10.1306/03051514151 [21] Ross, D. J. K., Bustin, R. M., 2008. Characterizing the Shale Gas Resource Potential of Devonian-Mississippian Strata in the Western Canada Sedimentary Basin:Application of an Integrated Formation Evaluation. AAPG Bulletin, 92(1):87-125. https://doi.org/10.1306/09040707048 [22] Ross, D. J. K., Bustin, R.M., 2009. The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs. Marine and Petroleum Geology, 26(6):916-927. https://doi.org/10.1016/j.marpetgeo.2008.06.004 [23] Wang, P. W., Chen, Z. H., Jin, Z. J., et al., 2018. Shale Oil and Gas Resources in Organic Pores of the Devonian Duvernay Shale, Western Canada Sedimentary Basin Based on Petroleum System Modeling. Journal of Natural Gas Science and Engineering, 50:33-42. https://doi.org/10.1016/j.jngse.2017.10.027 [24] Wang, P.W., Chen, Z.H., Jin, Z.J., et al., 2019. Optimizing Parameter "Total Organic Carbon Content" for Shale Oil and Gas Resource Assessment:Taking West Canada Sedimentary Basin Devonian Duvernay Shale as an Example. Earth Science, 44(2):504-512 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2019.191 [25] Wang, S.F., Zhang, Z.Y., Dong, D.Z., et al., 2016. Microscopic Pore Structure and Reasons Making Reservoir Property Weaker of Lower Cambrian Qiongzhusi Shale, Sichuan Basin, China. Natural Gas Geoscience, 27(9):1619-1628 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201609007 [26] Wang, X.Z., Zhang, L.X., Lei, Y.H., et al., 2018. Characteristics of Migrated Solid Organic Matters and Organic Pores in Low Maturity Lacustrine Shale:A Case Study of the Shale in Chang 7 Oil-Bearing Formation of Yanchang Formation, Southeastern Ordos Basin. Acta Petrolei Sinica, 39(2):141-151 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syxb201802002 [27] Wood, D. A., Hazra, B., 2017. Characterization of Organic-Rich Shales for Petroleum Exploration & Exploitation:A Review-Part 2:Geochemistry, Thermal Maturity, Isotopes and Biomarkers. Journal of Earth Science, 28(5):758-778. https://doi.org/10.1007/s12583-017-0733-9 [28] Yan, C.Z., Huang, Y.Z., Ge, C.M., et al., 2009.Shale Gas:Enormous Potential of Unconventional Natural Gas Resources. Natural Gas Industry, 29(5):1-6 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201712001 [29] Yu, B.S., 2013. Classification and Characterization of Gas Shale Pore System. Earth Science Frontiers, 20(4):211-220 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201304017 [30] Zhang, H., Jiang, S.J., Pang, Q.F., et al., 2015. SEM Observation of Organic Matter in the Eopaleozoic Shale in South China. Oil & Gas Geology, 36(4):675-680 (in Chinese with English abstract). [31] Zhao, X.R., Shi, X.Y., Wang, X.Q., et al., 2018. Stepwise Oxygenation of Early Cambrian Ocean Drove Early Metazoan Diversification. Earth Science, 43(11):3873-3890 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.143 [32] 董大忠, 高世葵, 黄金亮, 等, 2014.论四川盆地页岩气资源勘探开发前景.天然气工业, 34(12):1-15. doi: 10.3787/j.issn.1000-0976.2014.12.001 [33] 郭旭升, 2014.南方海相页岩气"二元富集"规律——四川盆地及周缘龙马溪组页岩气勘探实践认识.地质学报, 88(7):1209-1218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201407001 [34] 郭旭升, 胡东风, 文治东, 等, 2014.四川盆地及周缘下古生界海相页岩气富集高产主控因素——以焦石坝地区五峰组-龙马溪组为例.中国地质, 41(3):893-901. doi: 10.3969/j.issn.1000-3657.2014.03.016 [35] 黄金亮, 邹才能, 李建忠, 等, 2012.川南下寒武统筇竹寺组页岩气形成条件及资源潜力.石油勘探与开发, 39(1):69-75. http://d.old.wanfangdata.com.cn/Periodical/syktykf201201008 [36] 吉利明, 邱军利, 夏燕青, 等, 2012a.常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性.石油学报, 33(2):249-256. http://d.old.wanfangdata.com.cn/Periodical/syxb201202009 [37] 吉利明, 邱军利, 张同伟, 等, 2012b.泥页岩主要黏土矿物组分甲烷吸附实验.地球科学, 37(5):1043-1050. http://www.earth-science.net/article/id/2308 [38] 金之钧, 胡宗全, 高波, 等, 2016.川东南地区五峰组-龙马溪组页岩气富集与高产控制因素.地学前缘, 23(1):1-10. http://d.old.wanfangdata.com.cn/Periodical/dxqy201601001 [39] 李军, 金武军, 王亮, 等, 2016.利用核磁共振技术确定有机孔与无机孔孔径分布——以四川盆地涪陵地区志留系龙马溪组页岩气储层为例.石油与天然气地质, 37(1):129-134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201601018 [40] 刘忠宝, 高波, 胡宗全, 等, 2017.高演化富有机质页岩储层特征及孔隙形成演化——以黔南地区下寒武统九门冲组为例.石油学报, 38(12):1381-1389. doi: 10.7623/syxb201712005 [41] 罗小平, 吴飘, 赵建红, 等, 2015.富有机质泥页岩有机质孔隙研究进展.成都理工大学学报(自然科学版), 42(1):50-59. doi: 10.3969/j.issn.1671-9727.2015.01.07 [42] 马文辛, 刘树根, 黄文明, 等, 2012.四川盆地周缘筇竹寺组泥页岩储层特征.成都理工大学学报(自然科学版), 39(2):182-189. doi: 10.3969/j.issn.1671-9727.2012.02.011 [43] 马中良, 郑伦举, 徐旭辉, 等, 2017.富有机质页岩有机孔隙形成与演化的热模拟实验.石油学报, 38(1):23-30. http://d.old.wanfangdata.com.cn/Periodical/syxb201701003 [44] 聂海宽, 金之钧, 边瑞康, 等, 2016.四川盆地及其周缘上奥陶统五峰组-下志留统龙马溪组页岩气"源-盖控藏"富集.石油学报, 37(5):557-571. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201605001 [45] 王鹏威, 谌卓恒, 金之钧, 等, 2019.页岩油气资源评价参数之"总有机碳含量"的优选:以西加盆地泥盆系Duvernay页岩为例.地球科学, 44(2):504-512. doi: 10.3799/dqkx.2018.191 [46] 王淑芳, 张子亚, 董大忠, 等, 2016.四川盆地下寒武统筇竹寺组页岩孔隙特征及物性变差机制探讨.天然气地球科学, 27(9):1619-1628. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201609007 [47] 王香增, 张丽霞, 雷裕红, 等, 2018.低熟湖相页岩内运移固体有机质和有机质孔特征——以鄂尔多斯盆地东南部延长组长7油层组页岩为例.石油学报, 39(2):141-151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201802002 [48] 闫存章, 黄玉珍, 葛春梅, 等, 2009.页岩气是潜力巨大的非常规天然气资源.天然气工业, 29(5):1-6. doi: 10.3787/j.issn.1000-0976.2009.05.001 [49] 于炳松, 2013.页岩气储层孔隙分类与表征.地学前缘, 20(4):211-220. http://d.old.wanfangdata.com.cn/Periodical/qgsj201715138 [50] 张慧, 焦淑静, 庞起发, 等, 2015.中国南方早古生代页岩有机质的扫描电镜研究.石油与天然气地质, 36(4):675-680. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201504018 [51] 赵相宽, 史晓颖, 王新强, 等, 2018.寒武纪早期海洋阶段性氧化驱动早期后生动物多样化进程.地球科学, 43(11):3873-3890. doi: 10.3799/dqkx.2018.143 期刊类型引用(20)
1. 杨学锋,张成林,赵圣贤,张鉴,罗超,陈玉龙,施振生,谢圣阳,任春昱,陈鑫,周天琪,谢睿. 川南地区筇竹寺组页岩气藏特征及勘探启示. 天然气地球科学. 2025(01): 13-24 . 百度学术
2. 周杨,金思丁,刘岩,刘四兵,张全林. 川西南下寒武统筇竹寺组页岩旋回地层学研究. 沉积学报. 2024(01): 142-157 . 百度学术
3. 梁峰,吴伟,张琴,罗超,王玉满,刘宇,姜巍,卢斌. 四川盆地南部下寒武统筇竹寺组页岩孔隙结构特征与页岩气赋存模式. 天然气工业. 2024(03): 131-142 . 百度学术
4. 赵延铭,高平,肖贤明,周秦. 中上扬子区下寒武统页岩有机岩石学特征及成熟度综合评价. 地球化学. 2024(03): 386-398 . 百度学术
5. 王鹏威,刘忠宝,张殿伟,李雄,杜伟,刘皓天,李鹏,王濡岳. 川东地区二叠系海相页岩有机质富集对有机质孔发育的控制作用. 石油与天然气地质. 2023(02): 379-392 . 百度学术
6. 孟康,邵德勇,张六六,李立武,张瑜,罗欢,宋辉,张同伟. 鄂西宜昌地区寒武系水井沱组页岩破碎气地球化学特征及其对页岩含气性的指示意义. 地学前缘. 2023(03): 14-27 . 百度学术
7. 张同伟,罗欢,孟康. 我国南方不同地区寒武系页岩含气性差异主控因素探讨. 地学前缘. 2023(03): 1-13 . 百度学术
8. 何陈诚,陈红汉,肖雪薇,刘秀岩,苏奥. 中-上扬子地区下寒武统筇竹寺阶泥页岩差异成气过程分析. 地学前缘. 2023(03): 44-65 . 百度学术
9. 马子杰,唐玄,张金川,翟刚毅,王玉芳,梁国栋,罗欢. 上扬子地区寒武系牛蹄塘组页岩有机质孔隙发育特征及主控因素. 地学前缘. 2023(03): 124-137 . 百度学术
10. 张六六,陈更新,乐幸福,张瑜,邵德勇,闫建萍,孟康,张同伟. 宜昌地区寒武系页岩层段吸水特征、孔隙结构差异性及对页岩储层评价的意义. 地学前缘. 2023(03): 138-150 . 百度学术
11. 周桦,董晓霞,魏力民,王同,张南希,罗思聪. 井研—犍为地区筇竹寺组粉砂质页岩储层特征. 天然气技术与经济. 2023(02): 23-31+46 . 百度学术
12. 刘瑞崟,周文,徐浩,周秋媚,曹茜,高雯璐,宋威国,蒋柯,蒲飞龙,杨国梁,尚福华. 层序格架下构造—沉积分异对页岩气储层特征的控制——以四川盆地西南部筇竹寺组为例. 沉积学报. 2023(05): 1478-1494 . 百度学术
13. 杨涛,曹涛涛,肖娟宜,邓伟,胡永兴,刘子锐. 武威盆地石炭系页岩气储层特征研究. 煤炭技术. 2023(12): 109-113 . 百度学术
14. 王鹏威,陈筱,刘忠宝,杜伟,李东晖,金武军,王濡岳. 海相富有机质页岩储层压力预测方法——以涪陵页岩气田上奥陶统五峰组-下志留统龙马溪组页岩为例. 石油与天然气地质. 2022(02): 467-476 . 百度学术
15. 李依林,伏美燕,邓虎成,刘四兵,胥旺,吴冬. 滨岸闭塞环境中有机质富集模式——以川西南峨边葛村剖面筇竹寺组为例. 天然气地球科学. 2022(04): 588-604 . 百度学术
16. 马龙,徐学金,闫剑飞,曹竣锋,门玉澎,淡永,熊国庆,孙媛媛,邓奇,杨菲. 古隆起边缘页岩气富集规律与选区——以雪峰西南缘下寒武统牛蹄塘组为例. 沉积与特提斯地质. 2022(03): 426-443 . 百度学术
17. Yanqi Zhang,Li Liu. Insights into the Formation Mechanism of Low Water Saturation in Longmaxi Shale in the Jiaoshiba Area, Eastern Sichuan Basin. Journal of Earth Science. 2021(04): 863-871 . 必应学术
18. Shangbin Chen,Zhuo Gong,Xueyuan Li,Huijun Wang,Yang Wang,Yingkun Zhang. Pore structure and heterogeneity of shale gas reservoirs and its effect on gas storage capacity in the Qiongzhusi Formation. Geoscience Frontiers. 2021(06): 198-214 . 必应学术
19. 彭军,褚江天,陈友莲,文舰,李亚丁,邓思思. 四川盆地高石梯——磨溪地区下寒武统沧浪铺组沉积特征. 岩性油气藏. 2020(04): 12-22 . 百度学术
20. 文舰,彭军,陈友莲,褚江天,邓思思,戴鑫. 云南永善苏田剖面寒武系沧浪铺组层序地层与沉积特征. 地层学杂志. 2020(03): 268-276 . 百度学术
其他类型引用(6)
-