• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    川西南地区下寒武统筇竹寺组页岩气纵向差异富集主控因素

    王鹏威 刘忠宝 金之钧 刘光祥 聂海宽 冯动军 陈筱

    王鹏威, 刘忠宝, 金之钧, 刘光祥, 聂海宽, 冯动军, 陈筱, 2019. 川西南地区下寒武统筇竹寺组页岩气纵向差异富集主控因素. 地球科学, 44(11): 3628-3638. doi: 10.3799/dqkx.2019.183
    引用本文: 王鹏威, 刘忠宝, 金之钧, 刘光祥, 聂海宽, 冯动军, 陈筱, 2019. 川西南地区下寒武统筇竹寺组页岩气纵向差异富集主控因素. 地球科学, 44(11): 3628-3638. doi: 10.3799/dqkx.2019.183
    Wang Pengwei, Liu Zhongbao, Jin Zhijun, Liu Guangxiang, Nie Haikuan, Feng Dongjun, Chen Xiao, 2019. Main Control Factors of Shale Gas Differential Vertical Enrichment in Lower Cambrian Qiongzhusi Formation, Southwest Sichuan Basin, China. Earth Science, 44(11): 3628-3638. doi: 10.3799/dqkx.2019.183
    Citation: Wang Pengwei, Liu Zhongbao, Jin Zhijun, Liu Guangxiang, Nie Haikuan, Feng Dongjun, Chen Xiao, 2019. Main Control Factors of Shale Gas Differential Vertical Enrichment in Lower Cambrian Qiongzhusi Formation, Southwest Sichuan Basin, China. Earth Science, 44(11): 3628-3638. doi: 10.3799/dqkx.2019.183

    川西南地区下寒武统筇竹寺组页岩气纵向差异富集主控因素

    doi: 10.3799/dqkx.2019.183
    基金项目: 

    中国博士后科学基金项目 2017M610150

    国家重大专项 2017ZX05036-004-007

    国家自然科学基金项目 41872124

    详细信息
      作者简介:

      王鹏威(1986-), 男, 博士, 主要从事非常规油气地质研究工作

      通讯作者:

      金之钧

    • 中图分类号: P618

    Main Control Factors of Shale Gas Differential Vertical Enrichment in Lower Cambrian Qiongzhusi Formation, Southwest Sichuan Basin, China

    • 摘要: 川西南地区筇竹寺组发育多套富有机质页岩,但上部优质页岩的含气性明显好于下部优质页岩.应用热解实验、物性测试、全岩矿物X衍射、低温氮气吸附、氩离子抛光-扫描电镜等方法对筇竹寺组页岩地化、储层、封盖条件等开展分析,揭示筇竹寺组页岩气纵向差异富集的主控因素.研究表明,页岩气差异富集的主要控制因素为:(1)页岩有机质富集程度:筇竹寺组上部页岩段TOC含量相对较高、分布集中,下部优质页岩段TOC含量较低且分布不均、分散,从而导致页岩纵向生烃物质条件、有机质孔隙发育及微孔(比表面)的差异.(2)页岩岩矿组成及储层特征:上部优质页岩段粘土含量高且以伊蒙混层为主,有利于吸附气富集,该页岩段以有机质孔隙为主,微孔相对比较发育但孔隙度较高,下部优质页岩以粘土矿物孔、脆性矿物粒间孔及微裂缝为主,介孔相对比较发育但孔隙度较低.(3)保存条件:上页岩段顶底板发育完整且岩性致密,对页岩气层具有较好的保护作用;下页优质岩段底部存在碳酸盐岩古风化壳,底板对页岩气的保存能力薄弱.因此,TOC含量高、粘土矿物含量高、有机质孔隙发育、顶底板条件好是决定上部优质页岩段含气性优于下部页岩段的主要因素.

       

    • 图  1  四川盆地筇竹寺组沉积相平面分布

      Fig.  1.  Deposition map of the Qiongzhusi Formation in Southwest Sichuan basin

      图  2  JY1井筇竹寺组综合柱状图

      Fig.  2.  Comprehensive stratigraphic column of Well JY1

      图  3  筇竹寺组页岩有机显微组分特征

      a.裂缝与粒间孔隙中的固体沥青,JY1井,3 275 m;b.微粒化藻类体,JY1井,3 312 m

      Fig.  3.  Characteristics of organic macerals in the Qiongzhusi shales

      图  4  筇竹寺组页岩TOC随深度变化

      Fig.  4.  Histogram showing TOC variations with depth in the Qiongzhusi shales

      图  5  筇竹寺组上部优质页岩和下部优质页岩富集特征对比

      a. JY1井,筇竹寺组页岩,3 294.9 m;b. JY1井,筇竹寺组页岩,3 616.2 m

      Fig.  5.  Enrichment difference of upper and lower organic-rich shales in the Qiongzhusi Formation

      图  6  筇竹寺组不同页岩层段孔隙度变化

      Fig.  6.  Variations of porosity in different shale reservoirs in the Qiongzhusi Formation

      图  7  JY1井筇竹寺组页岩孔隙分类及孔隙结构特征

      a.粘土矿物间有机孔隙,3 294.9 m;b.草莓状黄铁矿间的有机孔隙,3 294.9 m;c~d.下部优质页岩段发育粘土矿物孔,粒间孔、粒内孔及微裂缝,3 584.0 m(c)、3 309.1 m(d);e.下部页岩局部发育有机孔隙,3 544.6 m;f.粘土矿物被黄铁矿晶粒支撑,3 296.3 m

      Fig.  7.  Pore types and pore structure in the Qiongzhusi shales from Well JY1

      图  8  JY1井筇竹寺组上部优质页岩(a)和下部优质页岩(b)孔径分布

      Fig.  8.  Pore diameters of upper organic-rich shale (a) and lower organic-rich shale (b) in the Qiongzhusi Formation, Well JY1

      图  9  筇竹寺组页岩TOC与比表面关系

      Fig.  9.  Cross plot of TOC vs. specific surface area of the Qiongzhusi shales

      图  10  筇竹寺组页岩矿物组成(a)及粘土矿物组成三角图(b)

      Fig.  10.  Ternary diagrams showing mineral components (a) and clay minerals (b) of the Qiongzhusi shales

      图  11  JY1井埋藏史(a)及岩心构造裂缝发育特征(b)

      Fig.  11.  Burial history of Well JY1 (a) and structural fractures of core sample (b)

      图  12  下寒武统筇竹寺组保存条件对比及差异富集模式

      Fig.  12.  Comparison of sealing conditions and differences of gas enrichment in the Lower Cambrian Qiongzhusi Formation

      表  1  JY1井筇竹寺组上部优质页岩和下部优质页岩孔径比例

      Table  1.   Pore populations of upper and lower organic-rich shale in the Qiongzhusi Formation, Well JY1

      优质页岩段 < 2 nm 2~10 nm 10~50 nm 50~100 nm 100~500 nm > 500 nm
      上部 26.99% 34.08% 23.73% 0.74% 3.41% 11.04%
      下部 10.16% 33.66% 39.94% 0.66% 0.98% 14.6%
      下载: 导出CSV
    • [1] Chalmers, G. R., Bustin, R. M., Power, I. M., 2012. Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy image Analyses:Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units. AAPG Bulletin, 96(6):1099-1119. https://doi.org/10.1306/10171111052
      [2] Curtis, M. E., Cardott, B. J., Sondergeld, C. H., et al., 2012. Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 103:26-31. https://doi.org/10.1016/j.coal.2012.08.004
      [3] Dong, D.Z., Gao, S.K., Huang, J.L., et al., 2014. A Discussion on the Shale Gas Exploration & Development Prospect in the Sichuan Basin. Natural Gas Industry, 34(12):1-15 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201202029
      [4] Guo, X.S., 2014. Rules of Two-Factor Enrichment for Marine Shale Gas in Southern China-Understanding from the Longmaxi Formation Shale Gas in Sichuan Basin and Its Surrounding Area. Acta Geologica Sinica, 88(7):1209-1218 (in Chinese with English abstract).
      [5] Guo, X.S., Hu, D.F., Wen, Z.D., et al., 2014. Major Factors Controlling the Accumulation and High Productivity in Marine Shale Gas in the Lower Paleozoic of Sichuan Basin and Its Periphery:A Case Study of the Wufeng-Longmaxi Formation of Jiaoshiba Area. Geology in China, 41(3):893-901 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201403016.htm
      [6] Hickey, J. J., Henk, B., 2007. Lithofacies Summary of the Mississippian Barnett Shale, Mitchell 2 T.P. Sims Well, Wise County, Texas. AAPG Bulletin, 91(4): 437-443. https://doi.org/10.1306/12040606053
      [7] Huang, J.L., Zou, C.N., Li, J.Z., et al., 2012. Shale Gas Generation and Potential of the Lower Cambrian Qiongzhusi Formation in Southern Sichuan Basin, China. Petroleum Exploration and Development, 39(1):69-75 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201201008
      [8] Ji, L.M., Qiu, J.L., Xia, Y.Q., et al., 2012a. Micro-Pore Characteristics and Methane Adsorption Properties of Common Clay Minerals by Electron Microscope Scanning. Acta Petrolei Sinica, 33(2):249-256 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201202009
      [9] Ji, L.M., Qiu, J.L., Zhang, T.W., et al., 2012b. Experiments on Methane Adsorption of Common Clay Minerals in Shale. Earth Science, 37(5):1043-1050 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2012.111
      [10] Jin, Z.J., Hu, Z.Q., Gao, B., et al., 2016. Controlling Factors on the Enrichment and High Productivity of Shale Gas in the Wufeng-Longmaxi Formations, Southeastern Sichuan Basin. Earth Science Frontiers, 23(1):1-10 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201601001
      [11] Li, J., Jin, W.J., Wang, L., et al., 2016. Quantitative Evaluation of Organic and Inorganic Pore Size Distribution by NMR:A Case from the Silurian Longmaxi Formation Gas Shale in Fuling Area, Sichuan Basin. Oil & Gas Geology, 37(1):129-134 (in Chinese with English abstract).
      [12] Liu, S.G., Deng, B., Luba J., et al., 2018. Multi-Stage Basin Development and Hydrocarbon Accumulations:A Review of the Sichuan Basin at Eastern Margin of the Tibetan Plateau. Journal of Earth Science, 29(2):307-325. doi: 10.1007/s12583-017-0904-8
      [13] Liu, Z.B., Gao, B., Hu, Z.Q., et al., 2017. Reservoir Characteristics and Pores Formation and Evolution of High Maturated Organic Rich Shale:A Case Study of Lower Cambrian Jiumenchong Formation, Southern Guizhou Area. Acta Petrolei Sinica, 38(12):1381-1389 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syxb201712005
      [14] Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12):848-861. https://doi.org/10.2110/jsr.2009.092
      [15] Luo, X.P., Wu, P., Zhao, J.H., et al., 2015. Study Advances on Organic Pores in Organic Matter-Rich Mud Shale. Journal of Chengdu University of Technology (Science & Technology Edition), 42(1):50-59 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201501007
      [16] Ma, W.X., Liu, S.G., Huang, W. M., et al., 2012. Mud Shale Reservoirs Characteristics of Qiongzhusi Formation on the Margin of Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 39(2):182-189 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201202011
      [17] Ma, Z.L., Zheng, L.J., Xu, X.H., et al., 2017. Thermal Simulation Experiment on the Formation and Evolution of Organic Pores in Organic-Rich Shale. Acta Petrolei Sinica, 38(1):23-30 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201701003
      [18] Milliken, K. L., Rudnicki, M., Awwiller, D. N., et al., 2013. Organic Matter-Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania. AAPG Bulletin, 97(2):177-200. https://doi.org/10.1306/07231212048
      [19] Nie, H.K., Jin, Z.J., Bian, R.K., et al., 2016. The "Source-Cap Hydrocarbon-Controlling" Enrichment of Shale Gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation of Sichuan Basin and Its periphery. Acta Petrolei Sinica, 37(5):557-571 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201605001
      [20] Pommer, M., Milliken, K., 2015. Pore Types and Pore-Size Distributions across Thermal Maturity, Eagle Ford Formation, Southern Texas. AAPG Bulletin, 99(9):1713-1744. https://doi.org/10.1306/03051514151
      [21] Ross, D. J. K., Bustin, R. M., 2008. Characterizing the Shale Gas Resource Potential of Devonian-Mississippian Strata in the Western Canada Sedimentary Basin:Application of an Integrated Formation Evaluation. AAPG Bulletin, 92(1):87-125. https://doi.org/10.1306/09040707048
      [22] Ross, D. J. K., Bustin, R.M., 2009. The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs. Marine and Petroleum Geology, 26(6):916-927. https://doi.org/10.1016/j.marpetgeo.2008.06.004
      [23] Wang, P. W., Chen, Z. H., Jin, Z. J., et al., 2018. Shale Oil and Gas Resources in Organic Pores of the Devonian Duvernay Shale, Western Canada Sedimentary Basin Based on Petroleum System Modeling. Journal of Natural Gas Science and Engineering, 50:33-42. https://doi.org/10.1016/j.jngse.2017.10.027
      [24] Wang, P.W., Chen, Z.H., Jin, Z.J., et al., 2019. Optimizing Parameter "Total Organic Carbon Content" for Shale Oil and Gas Resource Assessment:Taking West Canada Sedimentary Basin Devonian Duvernay Shale as an Example. Earth Science, 44(2):504-512 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2019.191
      [25] Wang, S.F., Zhang, Z.Y., Dong, D.Z., et al., 2016. Microscopic Pore Structure and Reasons Making Reservoir Property Weaker of Lower Cambrian Qiongzhusi Shale, Sichuan Basin, China. Natural Gas Geoscience, 27(9):1619-1628 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201609007
      [26] Wang, X.Z., Zhang, L.X., Lei, Y.H., et al., 2018. Characteristics of Migrated Solid Organic Matters and Organic Pores in Low Maturity Lacustrine Shale:A Case Study of the Shale in Chang 7 Oil-Bearing Formation of Yanchang Formation, Southeastern Ordos Basin. Acta Petrolei Sinica, 39(2):141-151 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syxb201802002
      [27] Wood, D. A., Hazra, B., 2017. Characterization of Organic-Rich Shales for Petroleum Exploration & Exploitation:A Review-Part 2:Geochemistry, Thermal Maturity, Isotopes and Biomarkers. Journal of Earth Science, 28(5):758-778. https://doi.org/10.1007/s12583-017-0733-9
      [28] Yan, C.Z., Huang, Y.Z., Ge, C.M., et al., 2009.Shale Gas:Enormous Potential of Unconventional Natural Gas Resources. Natural Gas Industry, 29(5):1-6 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201712001
      [29] Yu, B.S., 2013. Classification and Characterization of Gas Shale Pore System. Earth Science Frontiers, 20(4):211-220 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201304017
      [30] Zhang, H., Jiang, S.J., Pang, Q.F., et al., 2015. SEM Observation of Organic Matter in the Eopaleozoic Shale in South China. Oil & Gas Geology, 36(4):675-680 (in Chinese with English abstract).
      [31] Zhao, X.R., Shi, X.Y., Wang, X.Q., et al., 2018. Stepwise Oxygenation of Early Cambrian Ocean Drove Early Metazoan Diversification. Earth Science, 43(11):3873-3890 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.143
      [32] 董大忠, 高世葵, 黄金亮, 等, 2014.论四川盆地页岩气资源勘探开发前景.天然气工业, 34(12):1-15. doi: 10.3787/j.issn.1000-0976.2014.12.001
      [33] 郭旭升, 2014.南方海相页岩气"二元富集"规律——四川盆地及周缘龙马溪组页岩气勘探实践认识.地质学报, 88(7):1209-1218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201407001
      [34] 郭旭升, 胡东风, 文治东, 等, 2014.四川盆地及周缘下古生界海相页岩气富集高产主控因素——以焦石坝地区五峰组-龙马溪组为例.中国地质, 41(3):893-901. doi: 10.3969/j.issn.1000-3657.2014.03.016
      [35] 黄金亮, 邹才能, 李建忠, 等, 2012.川南下寒武统筇竹寺组页岩气形成条件及资源潜力.石油勘探与开发, 39(1):69-75. http://d.old.wanfangdata.com.cn/Periodical/syktykf201201008
      [36] 吉利明, 邱军利, 夏燕青, 等, 2012a.常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性.石油学报, 33(2):249-256. http://d.old.wanfangdata.com.cn/Periodical/syxb201202009
      [37] 吉利明, 邱军利, 张同伟, 等, 2012b.泥页岩主要黏土矿物组分甲烷吸附实验.地球科学, 37(5):1043-1050. http://www.earth-science.net/article/id/2308
      [38] 金之钧, 胡宗全, 高波, 等, 2016.川东南地区五峰组-龙马溪组页岩气富集与高产控制因素.地学前缘, 23(1):1-10. http://d.old.wanfangdata.com.cn/Periodical/dxqy201601001
      [39] 李军, 金武军, 王亮, 等, 2016.利用核磁共振技术确定有机孔与无机孔孔径分布——以四川盆地涪陵地区志留系龙马溪组页岩气储层为例.石油与天然气地质, 37(1):129-134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201601018
      [40] 刘忠宝, 高波, 胡宗全, 等, 2017.高演化富有机质页岩储层特征及孔隙形成演化——以黔南地区下寒武统九门冲组为例.石油学报, 38(12):1381-1389. doi: 10.7623/syxb201712005
      [41] 罗小平, 吴飘, 赵建红, 等, 2015.富有机质泥页岩有机质孔隙研究进展.成都理工大学学报(自然科学版), 42(1):50-59. doi: 10.3969/j.issn.1671-9727.2015.01.07
      [42] 马文辛, 刘树根, 黄文明, 等, 2012.四川盆地周缘筇竹寺组泥页岩储层特征.成都理工大学学报(自然科学版), 39(2):182-189. doi: 10.3969/j.issn.1671-9727.2012.02.011
      [43] 马中良, 郑伦举, 徐旭辉, 等, 2017.富有机质页岩有机孔隙形成与演化的热模拟实验.石油学报, 38(1):23-30. http://d.old.wanfangdata.com.cn/Periodical/syxb201701003
      [44] 聂海宽, 金之钧, 边瑞康, 等, 2016.四川盆地及其周缘上奥陶统五峰组-下志留统龙马溪组页岩气"源-盖控藏"富集.石油学报, 37(5):557-571. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201605001
      [45] 王鹏威, 谌卓恒, 金之钧, 等, 2019.页岩油气资源评价参数之"总有机碳含量"的优选:以西加盆地泥盆系Duvernay页岩为例.地球科学, 44(2):504-512. doi: 10.3799/dqkx.2018.191
      [46] 王淑芳, 张子亚, 董大忠, 等, 2016.四川盆地下寒武统筇竹寺组页岩孔隙特征及物性变差机制探讨.天然气地球科学, 27(9):1619-1628. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201609007
      [47] 王香增, 张丽霞, 雷裕红, 等, 2018.低熟湖相页岩内运移固体有机质和有机质孔特征——以鄂尔多斯盆地东南部延长组长7油层组页岩为例.石油学报, 39(2):141-151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201802002
      [48] 闫存章, 黄玉珍, 葛春梅, 等, 2009.页岩气是潜力巨大的非常规天然气资源.天然气工业, 29(5):1-6. doi: 10.3787/j.issn.1000-0976.2009.05.001
      [49] 于炳松, 2013.页岩气储层孔隙分类与表征.地学前缘, 20(4):211-220. http://d.old.wanfangdata.com.cn/Periodical/qgsj201715138
      [50] 张慧, 焦淑静, 庞起发, 等, 2015.中国南方早古生代页岩有机质的扫描电镜研究.石油与天然气地质, 36(4):675-680. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201504018
      [51] 赵相宽, 史晓颖, 王新强, 等, 2018.寒武纪早期海洋阶段性氧化驱动早期后生动物多样化进程.地球科学, 43(11):3873-3890. doi: 10.3799/dqkx.2018.143
    • 加载中
    图(12) / 表(1)
    计量
    • 文章访问数:  4862
    • HTML全文浏览量:  1130
    • PDF下载量:  86
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-07-19
    • 刊出日期:  2019-11-15

    目录

      /

      返回文章
      返回