Maturity Evaluation of Marine Shale in the Lower Paleozoic in South China
-
摘要: 为明确适用于南方下古生界海相页岩成熟度评价的沥青反射率与镜质体反射率等效换算关系,利用初始成熟度接近的洪水庄组海相页岩及龙潭组煤样在350~525℃温度范围开展了系列共置热压模拟实验,通过测定各温度下页岩中的沥青与煤中的镜质体反射率的演化规律,建立了两者之间的等效换算关系,并利用模拟样品和实际剖面样品开展了方法验证.结果表明两者满足以下关系:VRo(等效镜质体反射率)=0.879 8Rb(沥青反射率)+0.114 5(适用范围:VRo 0.61%~3.04%),本次建立的沥青反射率回归公式可以为准确评价缺乏镜质体的高演化海相页岩地层的成熟度判定提供重要参考.Abstract: In order to clarify the equivalent conversion relationship between bitumen reflectance and vitrinite reflectance for evaluating the maturity of marine shale in the Lower Paleozoic in South China, a series of hydrocarbon generation simulation experiments were carried out in the temperature range of 350-525℃ using a shale from Hongshuizhuang Formation and a coal sample from Longtan Formation with similar maturity. An equivalent conversion relationship was established by measuring the reflectivity of bitumen from shale and vitrinite from coal at each temperature point, and also the accuracy of the method using the simulated sample and outcrop sample is validated. The result shows that they follow this relationship:VRo (equivalent vitrinite reflectance)=0.879 8Rb (bitumen reflectance) + 0.114 5 (VRo 0.61%-3.04%). The regression formula of bitumen reflectance can provide an important reference for accurately evaluating the maturity of marine shale strata without vitrinite in the South China.
-
Key words:
- marine shale /
- maturity /
- bitumen reflectance /
- simulation experiment /
- petroleum geology
-
表 1 模拟样品原始有机地球化学参数
Table 1. Original organic geochemical parameters of experimental samples
样品编号 反射率(%) 可溶烃S1(mg/g) 热解烃S2(mg/g) Tmax(℃) TOC(%) 干酪根类型 KSL-M 0.61(Ro) 5.03 103.14 447 31.75 Ⅲ DPS 0.58(Rb) 1.39 16.21 446 6.49 Ⅱ 注:Ro代表镜质体反射率;Rb代表沥青反射率. 表 2 模拟实验样品反射率测试结果
Table 2. Reflectance results of the samples from simulated experiment
样品 样品编号 模拟温度
(℃)反射率
(%)测试对象 大坡上 DPS-原 - 0.58 沥青 DPS-350 350 1.09 沥青 DPS-400 400 1.61 沥青 DPS-450 450 2.46 沥青 DPS-475 475 2.70 沥青 DPS-525 525 3.18 沥青 矿山梁 KSL-原 - 0.61 镜质体 KSL-350 350 1.18 镜质体 KSL-400 400 1.50 镜质体 KSL-450 450 2.09 镜质体 KSL-500 500 2.51 镜质体 KSL-525 525 3.04 镜质体 注:DPS编号代表大坡上页岩;KSL编号代表矿山梁煤样. 表 3 文献报道的沥青反射率等效换算公式
Table 3. Equivalent conversion equations of bitumen reflectance in references
文献 样品来源 公式 数据范围 Schoenherr et al.(2007) 结合Landis and Castaño(1995)与Jacob(1989)的数据,但因为Landis数据较多,所以主要呈现Landis数据的规律 VRo=(Rb+0.244 3)/1.049 5 VRo<5.0% Riediger(1993) 西加盆地实际样品沥青反射率与成熟度梯度外推镜质体反射率 VRo=0.277Rb+0.57 VRo<0.96% Landis and Castaño(1995) 数据来源于加拿大和美国不同地区的实际样品 VRo=(Rb+0.41)/1.09 VRo<5.0% Jacob(1989) 数据来源于德国和其他国家的实际样品 VRo=0.618Rb+0.4 VRo<2.0% 丰国秀和陈盛吉(1988) 四川盆地实际样品和油页岩热模拟样品 VRo=0.679Rb+0.319 5 VRo<3.5% Bertrand and Malo(2012) 数据来源于加拿大实际地质样品 VRo=0.811 3Rb1.243 8 VRo=1.250Rb0.904 Schmidt et al.(2019) 数据来源于对众多学者数据的统计 VRo=0.938Rb+0.314 5 VRo<5.4% 注:VRo表示等效镜状体反射率. 表 4 不同公式拟合计算的反射率数据统计
Table 4. Equivalent reflectance data calculated by different formulas
实测煤样镜质体反射率(%) 沥青等效镜质体反射率(%) Schoenherr et al.(2007) Riediger(1993) 本次 丰国秀和陈盛吉(1988) Landis and Castaño(1995) Jacob(1989) Bertrand and Malo(2012) Schmidt et al.(2019) 0.61 0.79 0.73 0.62 0.71 0.91 0.76 0.41 0.86 1.18 1.27 0.87 1.07 1.06 1.38 1.07 0.90 1.34 1.50 1.77 1.02 1.53 1.41 1.85 1.39 1.47 1.82 2.09 2.58 1.25 2.28 1.99 2.63 1.92 2.49 2.62 3.04 3.26 1.45 2.91 2.48 3.29 2.37 3.42 3.30 表 5 不同公式拟合计算的四川盆地样品反射率数据统计
Table 5. Equivalent reflectance data of Sichuan basin calculated by different formulas
实测镜质体反射率(%) 等效镜质体反射率(%) Schoenherr et al.(2007) Riediger(1993) 本次 丰国秀和陈盛吉(1988) Landis and Castaño(1995) Jacob(1989) Bertrand and Malo(2012) Schmidt et al.(2019) 0.82 0.97 0.78 0.80 0.85 1.09 0.88 0.59 1.04 0.67 0.82 0.74 0.66 0.74 0.94 0.78 0.45 0.90 0.58 0.77 0.73 0.61 0.71 0.90 0.75 0.40 0.85 2.31 2.95 1.36 2.62 2.25 2.99 2.16 2.98 2.99 2.26 2.93 1.35 2.60 2.24 2.97 2.15 2.96 2.97 2.96 3.49 1.52 3.12 2.64 3.51 2.51 3.74 3.52 3.02 3.40 1.49 3.04 2.57 3.42 2.45 3.61 3.43 2.77 3.21 1.44 2.87 2.44 3.25 2.33 3.35 3.25 2.25 2.89 1.34 2.57 2.22 2.94 2.13 2.91 2.93 1.54 1.87 1.05 1.62 1.48 1.95 1.46 1.59 1.92 2.29 2.73 1.30 2.42 2.10 2.78 2.02 2.69 2.77 1.65 2.08 1.11 1.82 1.63 2.15 1.60 1.85 2.13 1.96 2.34 1.18 2.06 1.82 2.40 1.77 2.18 2.39 2.17 2.55 1.24 2.26 1.97 2.61 1.90 2.45 2.60 1.88 2.13 1.12 1.87 1.67 2.20 1.63 1.91 2.18 -
[1] Bernard, R., Malo, M., 2012.Dispersed Organic Matter Reflectance and Thermal Maturation in Four Hydrocarbon Exploration Wells in the Hudson Bay Basin: Regional Implications. Geological Survey of Canada Open File, 7066:1-52. https://doi.org/10.4095/289709 [2] Cao, C.Q., Shang, Q.H., Fang, Y.T., 2000. Study on the Indication of Graptolite Reflectivity on the Maturity of Source Rocks of Ordovician and Silurian. Acta Palaeontologica Sinica, 39(1):151-156 (in Chinese with English abstract). [3] Carvajal-Ortiz, H., Gentzis, T., 2015.Critical Considerations When Assessing Hydrocarbon Plays Using Rock-Eval Pyrolysis and Organic Petrology Data: Data Quality Revisited. International Journal of Coal Geology, 152:113-122. https://doi.org/10.1016/j.coal.2015.06.001 [4] Chen, S.B., Zuo, Z.X., Zhu, Y.M., et al., 2015. Applicability of the Testing Method for the Maturity of Organic Matter in Shale Gas Reservoirs. Natural Gas Geoscience, 26(3):564-574 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201503019 [5] Feng, G.X., Chen, S.J., 1988.Relationship between the Reflectance of Bitumen and Vitrinite in Rock. Natural Gas Industry, 8(3):20-25 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e619919b0598273b06a12c821d9bd0b1 [6] Hackley, P.C., Cardott, B.J., 2016.Application of Organic Petrography in North American Shale Petroleum Systems: A Review. International Journal of Coal Geology, 163:8-51. https://doi.org/10.1016/j.coal.2016.06.010 [7] Haeri-Ardakani, O., Sanei, H., Lavoie, D., et al., 2015. Geochemical and Petrographic Characterization of the Upper Ordovician Utica Shale, Southern Quebec, Canada. International Journal of Coal Geology, 138: 83-94. https://doi.org/10.1016/j.coal.2014.12.006 [8] Jacob, H., 1989. Classification, Structure, Genesis and Practical Importance of Natural Solid Oil Bitumen ("Migrabitumen").International Journal of Coal Geology, 11:65-79. doi: 10.1016/0166-5162(89)90113-4 [9] Landis, C.R., Castaño, J.R., 1995.Maturation and Bulk Chemical Properties of a Suite of Solid Hydrocarbons. Organic Geochemistry, 22(1):137-149. doi: 10.1016/0146-6380(95)90013-6 [10] Liang, C., Jiang, Z. X., Cao, Y. C., et al., 2017. Sedimentary Characteristics and Paleoenvironment of Shale in the Wufeng-Longmaxi Formation, North Guizhou Province, and Its Shale Gas Potential. Journal of Earth Science, 28(6): 1020-1031. https://doi.org/10.1007/s12583-016-0932-x [11] Lu, S.F., Zhang, M., 2008.Oil and Gas Geochemistry. Petroleum Industry Press, Beijing, 195 (in Chinese). [12] Luo, Q.Y., Hao, J.Y., Li, K.W., et al., 2017.The Optical Characteristics of the Graptolites in the Wufeng-Longmaxi Formations and Its Application for the Thermal Maturity Evaluation. Natural Gas Geoscience, 28(12):1855-1863 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201712008 [13] Luo, Q.Y., Hao, J.Y., Skovsted, C.B., et al., 2018.Optical Characteristics of Graptolite-Bearing Sediments and Its Implication for Thermal Maturity Assessment. International Journal of Coal Geology, 195: 386-401. http://doi.org/10.1016/j.coal.2018.06.019 [14] Lünsdorf, N.K., 2016. Raman Spectroscopy of Dispersed Vitrinite: Methodical Aspects and Correlation with Reflectance. International Journal of Coal Geology, 153:75-86. https://doi.org/10.1016/j.coal.2015.11.010 [15] Riediger, C.L., 1993.Solid Bitumen Reflectance and Rock-Eval Tmax as Maturation Indices: An Example from the "Nordegg Member", Western Canada Sedimentary Basin. International Journal of Coal Geology, 22(3/4):295-315. [16] Schmidt, J.S., Menezes, T.R., Souza, I.V.A.F., et al., 2019.Comments on Empirical Conversion of Solid Bitumen Reflectance for Thermal Maturity Evaluation. International Journal of Coal Geology, 201:44-50. https://doi.org/10.1016/j.coal.2018.11.012 [17] Schoenherr, J., Littke, R., Urai, J.L., et al., 2007.Polyphase Thermal Evolution in the Infra-Cambrian Ara Group(South Oman Salt Basin) as Deduced by Maturity of Solid Reservoir Bitumen. Organic Geochemistry, 38(8):1293-1318. doi: 10.1016/j.orggeochem.2007.03.010 [18] Wang, J., 2018. Study on the Organic Matter Maturity of Wufeng-Longmaxi Formation Shale in Fuling Area. Sino-Global Energy, 23(6):33-38 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zwny201806005 [19] Wang, M.L., Xiao, X.M., Wei, Q., et al., 2015.Thermal Maturation of Solid Bitumen in Shale as Revealed by Ramam Spectroscopy. Natural Gas Geoscience, 26(9):1712-1718 (in Chinese with English abstract). [20] Wang, Y., Qiu, N.S., Yang, Y.F., et al., 2018.Thermal Maturity of Wufeng-Longmaxi Shale in Sichuan Basin. Earth Science, 44(3):953-971 (in Chinese with English abstract). http://doi.org/10.3799/dqkx.2018.125 [21] Wilkins, R.W.T., Wang, M., Gan, H., et al., 2015.A RaMM Study of Thermal Maturity of Dispersed Organic Matter in Marine Source Rocks. International Journal of Coal Geology, 150-151:252-264. https://doi.org/10.1016/j.coal.2015.09.007 [22] Wood, D. A., Hazra, B., 2017. Characterization of Organic-Rich Shales for Petroleum Exploration & Exploitation: A Review-Part 2: Geochemistry, Thermal Maturity, Isotopes and Biomarkers. Journal of Earth Science, 28(5): 758-778. https://doi.org/10.1007/s12583-017-0733-9 [23] Yang, Y.F., 2016.Application of Bitumen and Graptolite Reflectance in the Silurian Longmaxi Shale, Southeastern Sichuan Basin. Petroleum Geology & Experiment, 38(4):466-472 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201604008 [24] Zhai, G.Y., Wang, Y.F., Bao, S.J., et al., 2017.Major Factors Controlling the Accumulation and High Productivity of Marine Shale Gas and Prospect Forecast in Southern China. Earth Science, 42(7):1057-1068 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201707003 [25] Zuo, Z.X., Chen, S.B., Shi, Q., et al., 2016.Application of Laser Raman Spectroscopy to the Evaluation of the High and Overhigh-Maturity of Shale and Coal. Rock and Mineral Analysis, 35(2):193-198 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201602011 [26] 曹长群, 尚庆华, 方一亭, 2000.探讨笔石反射率对奥陶系、志留系烃源岩成熟度的指示作用.古生物学报, 39(1):151-156. doi: 10.3969/j.issn.0001-6616.2000.01.013 [27] 陈尚斌, 左兆喜, 朱炎铭, 等, 2015.页岩气储层有机质成熟度测试方法适用性研究.天然气地球科学, 26(3):564-574. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201503019 [28] 丰国秀, 陈盛吉, 1988.岩石中沥青反射率与镜质体反射率之间的关系.天然气工业, 8(3):20-25. http://d.old.wanfangdata.com.cn/Conference/55271 [29] 卢双舫, 张敏, 2008.油气地球化学.北京:石油工业出版社, 195. [30] 罗情勇, 郝婧玥, 李可文, 等, 2017.重庆地区五峰组-龙马溪组页岩笔石光学特征及其在成熟度评价中的应用.天然气地球科学, 28(12):1855-1863. http://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201712009.htm [31] 王进, 2018.涪陵地区五峰-龙马溪组页岩有机质成熟度研究.中外能源, 23(6):33-38. http://d.old.wanfangdata.com.cn/Periodical/zwny201806005 [32] 王茂林, 肖贤明, 魏强, 等, 2015.页岩中固体沥青拉曼光谱参数作为成熟度指标的意义.天然气地球科学, 26(9): 1712-1718. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201509011 [33] 王晔, 邱楠生, 仰云峰, 等, 2018.四川盆地五峰-龙马溪组页岩成熟度研究.地球科学, 44(3):953-971. doi: 10.3799/dqkx.2018.125 [34] 仰云峰, 2016.川东南志留系龙马溪组页岩沥青反射率和笔石反射率的应用.石油实验地质, 38(4):466-472. http://d.old.wanfangdata.com.cn/Periodical/sysydz201604008 [35] 翟刚毅, 王玉芳, 包书景, 等, 2017.我国南方海相页岩气富集高产主控因素及前景预测.地球科学, 42(7):1057-1068. doi: 10.3799/dqkx.2017.085 [36] 左兆喜, 陈尚斌, 史乾, 等, 2016.激光拉曼法在高-过成熟页岩及煤成熟度评价中的应用.岩矿测试, 35(2):193-198. http://d.old.wanfangdata.com.cn/Periodical/ykcs201602011