• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    时序InSAR技术三峡库区藕塘滑坡稳定性监测与状态更新

    史绪国 徐金虎 蒋厚军 张路 廖明生

    史绪国, 徐金虎, 蒋厚军, 张路, 廖明生, 2019. 时序InSAR技术三峡库区藕塘滑坡稳定性监测与状态更新. 地球科学, 44(12): 4284-4292. doi: 10.3799/dqkx.2019.180
    引用本文: 史绪国, 徐金虎, 蒋厚军, 张路, 廖明生, 2019. 时序InSAR技术三峡库区藕塘滑坡稳定性监测与状态更新. 地球科学, 44(12): 4284-4292. doi: 10.3799/dqkx.2019.180
    Shi Xuguo, Xu Jinhu, Jiang Houjun, Zhang Lu, Liao Mingsheng, 2019. Slope Stability State Monitoring and Updating of the Outang Landslide, Three Gorges Area with Time Series InSAR Analysis. Earth Science, 44(12): 4284-4292. doi: 10.3799/dqkx.2019.180
    Citation: Shi Xuguo, Xu Jinhu, Jiang Houjun, Zhang Lu, Liao Mingsheng, 2019. Slope Stability State Monitoring and Updating of the Outang Landslide, Three Gorges Area with Time Series InSAR Analysis. Earth Science, 44(12): 4284-4292. doi: 10.3799/dqkx.2019.180

    时序InSAR技术三峡库区藕塘滑坡稳定性监测与状态更新

    doi: 10.3799/dqkx.2019.180
    基金项目: 

    国家自然科学基金项目 41702376

    国家自然科学基金项目 41774006

    国家自然科学基金项目 41501497

    长江科学院开放研究基金资助项目 CKWV2018482/KY

    中央高校业务经费专项资助 CUG170634

    中央高校业务经费专项资助 NY214197

    详细信息
      作者简介:

      史绪国(1988-), 副教授, 研究方向为星载雷达卫星遥感地质灾害形变监测算法与应用

      通讯作者:

      蒋厚军

    • 中图分类号: P642

    Slope Stability State Monitoring and Updating of the Outang Landslide, Three Gorges Area with Time Series InSAR Analysis

    • 摘要: 坡体表面形变是表征坡体稳定性的重要信息,因此,非常有必要对滑坡多发区域进行时序常规变形监测.近年来,星载合成孔径雷达数据由于其覆盖范围大、形变监测精度高的特点,被越来越多的用于山区滑坡识别与探测.首先介绍了联合分布式目标与点目标的时序InSAR方法,并将该方法应用于分析覆盖三峡藕塘滑坡的2007年至2011年的19景ALOS PALSAR数据和2015年至2018年的47景Sentinel-1数据,提取了数据覆盖时间段内的藕塘地区的变形速率.发现相比于2007年至2011年,2015年至2018年新增三处不稳定斜坡.进一步对滑坡的时序变形分析表明,降雨和水位变化是坡体稳定性最大的两个影响因素.实验证明时序InSAR方法可以作为常规形变手段来识别与监测三峡库区等地区潜在的滑坡,为防灾减灾提供支持与依据.

       

    • 图  1  藕塘滑坡位置

      底图为2018年6月10日获取的Sentinel-2光学数据

      Fig.  1.  Location of the Outang landslide

      图  2  (a) ALOS PALSAR数据干涉图组合;(b) Sentinel-1数据集干涉对组合

      圆圈表示影像数据,直线表示干涉图组合

      Fig.  2.  Interferograms used for time series InSAR analysis ALOS PALSAR (a) and Sentinel-1 (b)

      图  3  利用ALOS PALSAR数据集(a)和Sentinel-1数据集(b)获取的平均速率

      虚线表示两个数据集共同探测到的滑坡范围,实线表示Sentinel-1数据探测到的滑坡.其中实线方框中为图 5所示位置

      Fig.  3.  Mean displacement velocity map obtained from ALOS PALSAR datasets (a) and Sentinel-1 dataset (b)

      图  5  新发现滑坡示例

      a.2010年3月19日Google Earth光学影像;b.2018年4月3日Google Earth光学影像;c.Sentinel-1获取平均形变速率;d.P3点时序形变与降雨和水位

      Fig.  5.  An example of newly detected landslide

      图  4  ALOS PALSAR数据集和Sentinel-1数据集获取的(a)、(c) P1和(b)、(d) P2点形变序列与相应的水位和降雨

      Fig.  4.  Time series displacements of (a), (c) P1 and (b), (d) P2 from ALOS PALSAR dataset and Sentinel-1 dataset and corre sponding rainfall and water level

      图  6  (a) P4和(b) P5点时序形变与降雨和水位

      Fig.  6.  Time series displacement of P4 (a) and P5 (b) and corresponding rainfall and water level

    • [1] Berardino, P., Fornaro, G., Lanari, R., et al., 2002.A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms.IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2375-2383. https://doi.org/10.1109/tgrs.2002.803792
      [2] Chen, Q., Cheng, H.Q., Yang, Y.H., et al., 2014.Quantification of Mass Wasting Volume Associated with the Giant Landslide Daguangbao Induced by the 2008 Wenchuan Earthquake from Persistent Scatterer InSAR.Remote Sensing of Environment, 152: 125-135. https://doi.org/10.1016/j.rse.2014.06.002
      [3] Dai, Z.W., Yin, Y.P., Wei, Y.J., et al., 2016.Deformation and Failure Mechanism of Outang Landslide in Three Gorges Reservoir Area.Journal of Engineering Geology, 24(1): 44-55 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201601007
      [4] Deledalle, C.A., Denis, L., Tupin, F., 2011.NL-InSAR: Nonlocal Interferogram Estimation.IEEE Transactions on Geoscience and Remote Sensing, 49(4): 1441-1452. https://doi.org/10.1109/tgrs.2010.2076376
      [5] Ding, J.X., Yang, Z.F., Shang, Y.J., et al., 2006.New Method of Predicting Rainfall-Induced Lanslides.Science in China (Series D), 36(6): 579-586 (in Chinese).
      [6] Dong, J., Zhang, L., Li, M.H., et al., 2018a.Measuring Precursory Movements of the Recent Xinmo Landslide in Mao County, China with Sentinel-1 and ALOS-2 PALSAR-2 Datasets.Landslides, 15(1): 135-144. https://doi.org/10.1007/s10346-017-0914-8
      [7] Dong, J., Zhang, L., Tang, M.G., et al., 2018b.Mapping Landslide Surface Displacements with Time Series SAR Interferometry by Combining Persistent and Distributed Scatterers: A Case Study of Jiaju Landslide in Danba, China.Remote Sensing of Environment, 205: 180-198. https://doi.org/10.1016/j.rse.2017.11.022
      [8] Ferretti, A., Fumagalli, A., Novali, F., et al., 2011.A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR.IEEE Transactions on Geoscience and Remote Sensing, 49(9): 3460-3470. https://doi.org/10.1109/tgrs.2011.2124465
      [9] Ferretti, A., Prati, C., Rocca, F., 2000.Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry.IEEE Transactions on Geoscience and Remote Sensing, 38(5): 2202-2212. https://doi.org/10.1109/36.868878
      [10] Ferretti, A., Prati, C., Rocca, F., 2001.Permanent Scatterers in SAR Interferometry.IEEE Transactions on Geoscience and Remote Sensing, 39(1): 8-20. https://doi.org/10.1109/36.898661
      [11] Hooper, A., Segall, P., Zebker, H., 2007.Persistent Scatterer Interferometric Synthetic Aperture Radar for Crustal Deformation Analysis, with Application to Volcán Alcedo, Galápagos.Journal of Geophysical Research, 112(B7 B07407. https://doi.org/10.1029/2006jb004763
      [12] Hooper, A., Zebker, H.A., 2007.Phase Unwrapping in Three Dimensions with Application to InSAR Time Series.Journal of the Optical Society of America A, 24(9): 2737-2747. https://doi.org/10.1364/josaa.24.002737
      [13] Huang, F.M., Yin, K.L., Yang, B.B., et al., 2018.Step-Like Displacement Prediction of Landslide Based on Time Series Decomposition and Multivariate Chaotic Model.Earth Science, 43(3): 887-898 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201803017
      [14] Huang, R.Q., 2009.Some Catastrophic Landslides since the Twentieth Century in the Southwest of China.Landslides, 6(1): 69-81. https://doi.org/10.1007/s10346-009-0142-y
      [15] Jiang, M., Ding, X.L., Hanssen, R.F., et al., 2015.Fast Statistically Homogeneous Pixel Selection for Covariance Matrix Estimation for Multitemporal InSAR.IEEE Transactions on Geoscience and Remote Sensing, 53(3): 1213-1224. https://doi.org/10.1109/tgrs.2014.2336237
      [16] Jiang, M., Ding, X.L., He, X.F., et al., 2016.FaSHPS-InSAR Technique for Distributed Scatterers: A Case Study over the Lost Hills Oil Field, California.Chinese Journal of Geophysics, 59(10):3592-3603 (in Chinese with English abstract).
      [17] Liao, M.S., Jiang, H.J., Wang, Y., et al., 2013.Improved Topographic Mapping through High-Resolution SAR Interferometry with Atmospheric Effect Removal.ISPRS Journal of Photogrammetry and Remote Sensing, 80: 72-79. https://doi.org/10.1016/j.isprsjprs.2013.03.008
      [18] Liu, P., Li, Z.H., Hoey, T., et al., 2013.Using Advanced InSAR Time Series Techniques to Monitor Landslide Movements in Badong of the Three Gorges Region, China.International Journal of Applied Earth Observation and Geoinformation, 21: 253-264. https://doi.org/10.1016/j.jag.2011.10.010
      [19] Qu, T.T., Lu, P., Liu, C., et al., 2016.Hybrid-SAR Technique: Joint Analysis Using Phase-Based and Amplitude-Based Methods for the Xishancun Giant Landslide Monitoring.Remote Sensing, 8(10): 874. https://doi.org/10.3390/rs8100874
      [20] Shi, X.G., Zhang, L., Balz, T., et al., 2015.Landslide Deformation Monitoring Using Point-Like Target Offset Tracking with Multi-Mode High-Resolution TerraSAR-X Data.ISPRS Journal of Photogrammetry and Remote Sensing, 105: 128-140. https://doi.org/10.1016/j.isprsjprs.2015.03.017
      [21] Shi, X.G., Liao, M.S., Li, M.H., et al., 2016.Wide-Area Landslide Deformation Mapping with Multi-Path ALOS PALSAR Data Stacks: A Case Study of Three Gorges Area, China.Remote Sensing, 8(2): 136. https://doi.org/10.3390/rs8020136
      [22] Shi, X.G., Zhang, L., Zhou, C., et al., 2018.Retrieval of Time Series Three-Dimensional Landslide Surface Displacements from Multi-Angular SAR Observations.Landslides, 15(5): 1015-1027. https://doi.org/10.1007/s10346-018-0975-3
      [23] Sun, Q., Zhang, L., Ding, X.L., et al., 2015.Slope Deformation Prior to Zhouqu, China Landslide from InSAR Time Series Analysis.Remote Sensing of Environment, 156: 45-57. https://doi.org/10.1016/j.rse.2014.09.029
      [24] Tang, P.P., Chen, F.L., Guo, H.D., et al., 2015.Large-Area Landslides Monitoring Using Advanced Multi-Temporal InSAR Technique over the Giant Panda Habitat, Sichuan, China.Remote Sensing, 7(7): 8925-8949. https://doi.org/10.3390/rs70708925
      [25] Wang, F., Yin, K.L., Gui, L., et al., 2018.Risk Analysis on Individual Reservoir Bank Landslide and Its Generated Wave.Earth Science, 43(3): 899-909 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201803018
      [26] Wang, F.W., Zhang, Y.M., Huo, Z.T., et al., 2008a.Mechanism for the Rapid Motion of the Qianjiangping Landslide during Reactivation by the First Impoundment of the Three Gorges Dam Reservoir, China.Landslides, 5(4): 379-386. https://doi.org/10.1007/s10346-008-0130-7
      [27] Wang, F.W., Zhang, Y.M., Huo, Z.T., et al., 2008b.Movement of the Shuping Landslide in the First Four Years after the Initial Impoundment of the Three Gorges Dam Reservoir, China.Landslides, 5(3): 321-329. https://doi.org/10.1007/s10346-008-0128-1
      [28] Wasowski, J., Bovenga, F., 2014.Investigating Landslides and Unstable Slopes with Satellite Multi Temporal Interferometry: Current Issues and Future Perspectives.Engineering Geology, 174: 103-138. https://doi.org/10.1016/j.enggeo.2014.03.003
      [29] Xia, Y., Kaufmann, H., Guo, X.F., et al., 2002.Differential SAR Interferometry Using Corner Reflectors.IEEE International Geoscience and Remote Sensing Symposium, 24-28 June 2002, Toronto, Ontario, Canada, 1243-1246.https://doi.org/10.1109/IGARSS.2002.1025902
      [30] Ye, X., Kaufmann, H., Guo, X.F., 2004.Landslide Monitoring in the Three Gorges Area Using D-InSAR and Corner Reflectors.Photogrammetric Engineering and Remote Sensing, 70(10): 1167-1172. https://doi.org/10.14358/pers.70.10.1167
      [31] Zhao, C.Y., Zhang, Q., He, Y., et al., 2016.Small-Scale Loess Landslide Monitoring with Small Baseline Subsets Interferometric Synthetic Aperture Radar Technique: Case Study of Xingyuan Landslide, Shaanxi, China.Journal of Applied Remote Sensing, 10(2): 026030. https://doi.org/10.1117/1.jrs.10.026030
      [32] Zhu, W., Zhang, Q., Ding, X.L., et al., 2014.Landslide Monitoring by Combining of CR-InSAR and GPS Techniques.Advances in Space Research, 53(3): 430-439. https://doi.org/10.1016/j.asr.2013.12.003
      [33] 代贞伟, 殷跃平, 魏云杰, 等, 2016.三峡库区藕塘滑坡变形失稳机制研究.工程地质学报, 24(1):44-55. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201601007
      [34] 丁继新, 杨志法, 尚彦军, 等, 2006.降雨型滑坡时空预报新方法.中国科学(D辑), 36(6):579-586. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200606009
      [35] 黄发明, 殷坤龙, 杨背背, 等, 2018.基于时间序列分解和多变量混沌模型的滑坡阶跃式位移预测.地球科学, 43(3):887-898. doi: 10.3799/dqkx.2018.909
      [36] 蒋弥, 丁晓利, 何秀凤, 等, 2016.基于快速分布式目标探测的时序雷达干涉测量方法:以Lost Hills油藏区为例.地球物理学报, 59(10):3592-3603. doi: 10.6038/cjg20161007
      [37] 王芳, 殷坤龙, 桂蕾, 等, 2018.单体库岸滑坡及其次生涌浪灾害风险分析.地球科学, 43(3):899-909. doi: 10.3799/dqkx.2018.910
    • 加载中
    图(6)
    计量
    • 文章访问数:  4179
    • HTML全文浏览量:  1279
    • PDF下载量:  47
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-05-16
    • 刊出日期:  2019-12-15

    目录

      /

      返回文章
      返回