Petrological Characteristics and Sealing Analysis of Mesozoic Caprock in Dongfang-Ledong Area, Yinggehai Basin
-
摘要: 莺歌海盆地东方-乐东区已获得商业气田发现,但针对气田盖层研究,尤其是泥岩盖层岩石学特征及孔喉结构特征方面研究较少.利用岩石薄片、地球化学、XRD、元素分析等资料,深入分析研究区泥岩矿物组成、地球化学、成岩演化以及孔隙结构特征.结果表明:莺歌海盆地东方-乐东区中新统黄一段和黄二段泥岩盖层分布最为稳定,泥岩盖层封盖性受陆源碎屑供给与钙质化石碎片影响较大,研究区优质盖层中陆源碎屑颗粒与钙质化石碎片含量较低,次生溶蚀孔隙与微裂缝不发育;埋藏成岩过程中的粘土矿物转化脱水与有机质热演化排烃是低速泥岩的主要成因;泥岩盖层以微孔喉和超微孔喉为主,此类喉道不利于气体的渗流,对油气向上逸散起明显阻碍,盖层整体封盖性较好.Abstract: Commercial gas fields have been discovered in Dongfang-Ledong area of Yinggehai Basin, but little research has been done on gas field caprock, especially on mudstone caprock type and pore throat structure. In this paper, the mineral composition, geochemistry, diagenetic evolution and pore structure characteristics of mudstone in the area are studied in depth by using the data of thin sections, geochemistry, XRD and element analysis.The results show that the distribution of mudstone caprocks in the first and second members of the Mesozoic Huangliu Formation in Dongfang-Ledong area of Yinggehai Basin is the most stable, and the caprocks are greatly influenced by terrigenousclastic supply and calcareous fossil fragments. The content of terrigenousclastic particles and calcareous fossil fragments in the high-quality caprocks in the study area is low, and secondary dissolution pore and micro-fracture are not developed.Dehydration of clay minerals during burial diagenesis and hydrocarbon expulsion by thermal evolution of organic matter are the main genesis of low-velocity mudstones. Mudstone caprock is dominated by microporous throat and ultraporousthroat, which is not conducive to gas seepage and obviously hinders the upward escape of oil and gas, and the overall sealing of caprock is good.
-
Key words:
- mudstone caprock /
- petrological /
- Miocene /
- Dongfang area /
- Ledong area /
- Yinggehai Basin
-
表 1 东方-乐东区中新统泥岩主要岩石类型特征
Table 1. Themain rock types of Mesozoic Mudstone in Dongfang-Ledong area
-
[1] Feng, C., Huang, Z.L., Tong, C.X., et al., 2011.Comprehensive Evaluation on the Sealing Ability of Mudstone Cap Rock in Member 2 of Yinggehai Formation of Yinggehai Basin. Journal of Earth Sciences & Environment, 33(4):373-377(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201104007 [2] Huang, Y.T., Yao, G.Q., Zhou, F.D., 2016. Provenance Analysis and Petroleum Geological Significance of Shallow-Marine Gravity Flow Sandstone for Huangliu Formation of Dongfang Area in Yinggehai Basin, the South China Sea. Earth Science, 41(9):1526-1538(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201609008 [3] Lin, S.H., Yuan, X.J., Zhi, Y., 2017. Comparative Study on Lacustrine Shale and Mudstone and Its Significance: a Case from the 7th Member of Yanchang Formation in the Ordos Basin. Oil & Gas Geology, 38(3):517-523(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201703011.htm [4] Liu, B., Shi, J.X., Fu, X.F., et al., 2018. Petrological Characteristics and Shale Oil Enrichment of Lacustrine Fine-Grained Sedimentary System: A Case Study of Organic-Rich Shale in First Member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China. Petroleum Exploration and Development, 45(5):828-838(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syktykf201805008 [5] Li, S.C., Zhang, J.S., Gong, F.H., et al., 2017. The Characteristics of Mudstones of Upper Cretaceous Qingshankou Formation and Favorable Area Optimization of Shale Oil in the North of Songliao Basin. Geological Bulletin of China, 36(4): 654-663(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201704019 [6] Miao, J.Y., Zhu, Z.Q., Liu, W., 2003. Characteristics of Pore Structures of Paleogene-Neogene Argillaceous Rocks in the Jiyang Depression. Geological Review, 49(3):330-336(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/OA000005619 [7] Ming, X.R., Li, L., Song, S.S., et al., 2017.Petrologic and Geochemical Records of Interaction Between Reducing Fluids and Mudstone Caprocks: A Case from the Mudstone in the Qingshankou Formation of Wangfu Depression in Southern Songliao Basin. Oil & Gas Geology, 38(5):952-962(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYYT201705014.htm [8] Qin, J.Z., Liu, W.X., Fan, M., et al., 2013.S hale Research Progress and Achievements in Seal Appraisal Technology. Petroleum Geology & Experiment, 35(6):689-688(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201306021.htm [9] Tian, D.M., Jiang, T., Zhang, D.J., et al., 2017. Genesis Mechanism and Characteristics of Submarine Channel: A Case Study of the First Member of Yinggehai Formation in Ledong Area of Yinggehai Basin. Earth Science, 42(2): 130-141(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201701011.htm [10] Tian, X.R., Zhuo, Q.G., Zhang, J., et al., 2017. Sealing Capacity of the Tugulu Group and Its Significance for Hydrocarbon Accumulation in the Lower Play in the Southern Junggar Basin, Northwest China. Oil & Gas Geology, 38(2):334-344(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201702015 [11] Xie, Y.H., Fan, C.W., 2010. Some New Knowledge About the Origin of Huangliu Formation Reservoirs in Dongfang Area, Yinggehai Basin. China Offshore Oil & Gas, 22(6):355-359(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-gc201006001 [12] Xie, Y.H., Li, X.S., Wang, H., 2015. High Temperature and Overpressure Natural Gas Reservoir Formation Theory and Exploration Practice in Ying-Qiong Basin. Petroleum Industry Press, Beijing (in Chinese). [13] Xu, X.D., Zhang, Y.Z., Pei, J.X., et al., 2015. Control Effect of Tectonic Evolution on Gas Accumulation Difference in the Yinggehai Basin. Natural Gas Industry, 35(2):12-20(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201502002 [14] Yang, F., Ning, Z.F., Kong, D.T., et al., 2013. Pore Structure of Shales from High Pressure Mercury Injection and Nitrogen Adsorption Method. Natural Gas Geoscience, 24(3):450-455(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201303003 [15] You, L., Zhang, Y.Z., Yang, X.B., et al., 2018a. Favorable Reservoir Evaluation and Prediction Technology in Complex Sedimentary-Diagenetic Field and its Application in Western South China Sea. China Offshore Oil & Gas.30(2): 45-53(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-gc201802006 [16] You, L., Zhong, J., Zhang, Y.Z., et al., 2018b. Petrography-Geochemistry and Source Significance of Western Canyon Channel of Northern South China Sea. Earth Science, 43(2):514-524(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201802013 [17] Zhang, M.W., Gao, L., Tan, J.C., et al., 2018. The Application of Low-Velocity Shale Identification Technology in the Yinggehai Basin Area Exploration. China Mining Magazine, 27(11):148-153(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgky201811028 [18] Zhang, Y.Z, He, S.L., Liu, B., 2017.Sealing Mechanism and Sealing Capacity of Mudstone Caprock in The Overpressured Gas Field: A Case Study of X13 Gas Field, Yinggehai Basin, South China Sea. Marine Origin Petroleum Geology, 22(3):73-79(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HXYQ201703009.htm [19] Zhou, W., Huang, H., Wang, S.Z., et al., 1999. Seal Evaluation of Caprock & Fault Belting. Sichuan Publishing House of Science & Technology, Chengdu (in Chinese). [20] Zhou, W., Liu, W.B., Cheng, G.Y., 1994. Evolution and Seal Mechanism of Shale Caps in Hailaer Basin. Journal of Chengdu University of Technology, 21(1):62-70(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400171431 [21] Zhou, X.F., Zhang, Y.S., Yan, D.T., et al., 2018. Quantitative Evaluation of Sealing Capacity of Tertiary Mudstone Caprock in Lenghu Area, Qaidam Basin. Earth Science, 43(S2):230-237(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S2018.htm [22] 冯冲, 黄志龙, 童传新, 等, 2011.莺歌海盆地莺歌海组二段泥岩盖层封闭性综合评价.地球科学与环境学报, 33(4): 373-377. doi: 10.3969/j.issn.1672-6561.2011.04.007 [23] 黄银涛, 姚光庆, 周锋德, 2016.莺歌海盆地黄流组浅海重力流砂体物源分析及油气地质意义.地球科学, 41(9), 1526-1538. http://www.earth-science.net/WebPage/Article.aspx?id=3358 [24] 林森虎, 袁选俊, 杨智, 2017.陆相页岩与泥岩特征对比及其意义--以鄂尔多斯盆地延长组7段为例.石油与天然气地质, 38(3): 517-523. http://www.cqvip.com/QK/95357X/201703/672637576.html [25] 柳波, 石佳欣, 付晓飞, 等, 2018.陆相泥页岩层系岩相特征与页岩油富集条件-以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例.石油勘探与开发, 45(5): 828-838. http://www.cqvip.com/QK/90664X/201805/7000846762.html [26] 李士超, 张金友, 公繁浩, 等, 2017.松辽盆地北部上白垩统青山口组泥岩特征及页岩油有利区优选.地质通报, 36(4): 654-663. doi: 10.3969/j.issn.1671-2552.2017.04.019 [27] 苗建宇, 祝总祺, 刘文荣, 等, 2003.济阳坳陷古近系-新近系泥岩孔隙结构特征.地质论评, 49(3): 330-336. doi: 10.3321/j.issn:0371-5736.2003.03.017 [28] 明晓冉, 刘立, 宋士顺, 等, 2017.还原性流体-泥岩盖层相互作用的岩石学和地球化学记录-以松辽盆地南部王府凹陷青山口组泥岩为例.石油与天然气地质, 38(5), 952-962. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201705016 [29] 秦建中, 刘伟新, 范明, 等, 2013.泥岩研究与盖层评价技术.石油实验地质, 35(6): 689-706. http://d.old.wanfangdata.com.cn/Periodical/sysydz201306019 [30] 田冬梅, 姜涛, 张道军, 等, 2017.海底水道特征及其成因机制:以莺歌海盆地乐东区莺歌海组一段为例.地球科学, 42(1): 130-141. http://www.earth-science.net/WebPage/Article.aspx?id=3420 [31] 田孝茹, 卓勤功, 张健, 等, 2017.准噶尔盆地南缘吐谷鲁群盖层评价及对下组合油气成藏的意义.石油与天然气地质, 38(2): 334-344. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201702015 [32] 谢玉洪, 范彩伟, 2010.莺歌海盆地东方区黄流组储层成因新认识.中国海上油气, 22(6), 355-359. doi: 10.3969/j.issn.1673-1506.2010.06.001 [33] 谢玉洪, 李绪深, 王华, 2015.莺-琼盆地高温超压天然气成藏理论与勘探实践.北京:石油工业出版社. [34] 徐新德, 张迎朝, 裴健翔, 等, 2015.构造演化对莺歌海盆地天然气成藏差异性的控制作用.天然气工业, 35(2): 12-20. doi: 10.3787/j.issn.1000-0976.2015.02.002 [35] 杨峰, 宁正福, 孔德涛, 等, 2013.高压压汞法和氮气吸附法分析页岩孔隙结构.天然气地球科学, 24(3): 450-455. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201303003 [36] 尤丽, 张迎朝, 杨希冰, 等, 2018a.复杂沉积成岩场有利储层评价预测技术及其在南海西部海域的应用.中国海上油气, 30(2): 45-53. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201802006 [37] 尤丽, 钟佳, 张迎朝, 等, 2018b.南海北部中央峡谷水道的岩相-地球化学特征及其源区性质.地球科学, 43(2): 514-524. http://www.earth-science.net/WebPage/Article.aspx?id=3741 [38] 张明伟, 高凌, 谭建财, 等, 2018.低速泥岩识别技术在莺歌海盆地区域勘探中的应用.中国矿业, 27(11): 148-153. http://d.old.wanfangdata.com.cn/Periodical/zgky201811028 [39] 张迎朝, 何胜林, 刘兵, 等, 2017.南海高压气田泥岩盖层封闭机制、封气能力及演化过程--以莺歌海盆地x13高压气田为例.海相油气地质, 22(3): 73-79. doi: 10.3969/j.issn.1672-9854.2017.03.009 [40] 周文, 黄辉, 王世泽, 等, 1999.盖层及断裂带的封堵作用评价.成都:四川科学技术出版社. [41] 周文, 刘文碧, 程光瑛, 1994.海拉尔盆地泥岩盖层演化过程及封盖机理探讨.成都理工大学学报(自科版), 21(1), 62-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400171431 [42] 周雪峰, 张永庶, 严德天, 等, 2018.柴达木盆地冷湖地区第三系泥岩盖层封盖能力定量评价.地球科学, 43(S2): 230-237. http://www.earth-science.net/WebPage/Article.aspx?id=4088