Reservoir Characteristics and Main Control Factors of Conglomerate Reservoir of El3 in the Northwest Steep Slope Zone of Weixinan Depression
-
摘要: 通过岩心观察、薄片鉴定、扫描电镜、X射线衍射分析等实验手段,结合物性、有机质演化、埋藏史、测录井等资料,研究涠西南凹陷西北陡坡带流三段砂砾岩储层储集性能、成岩特征及物性主控因素.结果表明:(1)流三段储层岩石类型以岩屑砂岩为主,岩性以粗粒级砂砾岩、含砾粗砂岩为主,储集空间以粒内溶孔、残余粒间孔、铸模孔等为主,物性变化大,以低孔特低渗、中孔低渗、中孔中渗、高孔高渗为特征,非均质性强.(2)持续的压实作用是物性变差的主要原因,碳酸盐胶结和自生粘土矿物充填使部分原生孔隙丧失,高泥质含量部位表现为早期强压实;粗粒级砂岩的中-强溶蚀作用有利于次生孔隙的发育,而微裂缝是深层砂砾岩储层的重要渗流通道之一.西北斜坡带流三段扇三角洲水下分流河道发育厚层的砂砾岩、含砾粗砂岩,杂基含量低,压实作用较弱,是研究区的优质储层发育带;湖底扇压实作用强,微裂缝提供了有机酸性流体活动的渗流通道,砂砾岩储层发生次生溶蚀使储集性能得以改善,为深层相对有利储层.Abstract: Based on core observation, thin section examination, scanning electron microscopy, X-ray diffraction analysis and other experimental means, the reservoir performance, diagenetic characteristics and main control factors of conglomerate reservoir quality are studied in the third member of Liushagang Formation of northwest steep slope zone in Weixinan depression, combined with physical properties, organic matter thermal evolution, burial history and logging data. The results show as follows: (1) The main rock type of study area is litharenite, and the main lithologies are glutenite, conglomeratic sandstone and other coarse grained sandstones, with varying reservoir space types such as intragranular dissolved pores, residual intergranular pores, and mold pores. The physical properties, characterized by low porosity-ultra low permeability, medium porosity-low permeability, medium porosity-permeability and high porosity-permeability, show strong heterogeneity. (2) Continuous compaction is the major reason for the deterioration of physical properties. Carbonate cementations and authigenic clay minerals filling result in the loss of some primary pores, and the sites with high argillaceous content are characterized by early strong compaction. The medium strong dissolution of coarse grained sandstone is conducive to the development of secondary pores, and micro-fracture is one of the most important flow passages in deep glutenite reservoirs. The fan-delta subaqueous distributary channel in the third member of Liushagang Formation of the northwest steep slope zone develops thick layers of glutenite and conglomeratic sandstone with low content of matrix and weak compaction. It is a high-quality reservoir development zone in the study area. The compaction of sublacustrine fan is strong, while the micro-fracture provides the flow passages for organic acidic fluid migration. The secondary dissolution of the conglomerate reservoir improves the reservoir performance and is relatively favorable reservoir for the deep sandstones.
-
图 4 涠西南西北部砂岩储层储集空间类型
a.WZ10-3W-1井,2 152.41 m(-),原生粒间孔(Pp)、次生溶孔(Sp)均发育;b. WZ10-3W-1井,2 041.89 m(-),孔隙不发育,构造作用形成的穿粒缝被沥青等充填;c. WZ11-2-2井,3 306.45 m(-),长石粒内溶孔(Sp),贴粒缝(箭头指示);d. WZ11-2-2井,3 303.91 m(-),长石、岩屑溶蚀作用强烈,形成粒内溶孔、铸模孔(Mh),发育构造微裂缝(箭头指示);e. WZ11-2-2井,3 250.27 m(-),粒内成岩缝;f. WZ10-3W-1井,2 547.61 m(-),红线左边粗粒部分发育次生溶孔、粒内缝,右边细粒部分被暗色基质充填
Fig. 4. Storage space types of sandstone reservoir in the northwestern Weixinan depression
图 5 涠西南西北部砂岩储层主要成岩作用
a.WZ11-2-2井,3 306.45 m(+),砂砾岩,强压实压溶作用,颗粒间凹凸-缝合线接触(Q代表石英,F代表长石,R代表岩屑),发育长石粒内溶蚀孔;b. WZ10-3W-1井,2 048.29 m(+),粗砂岩,方解石(Cal)不均匀充填粒间,并沿颗粒边缘交代颗粒;c. WZ10-3W-1井,2 061.24 m(-),中砂岩,紫红色铁方解石胶结作用;d. WZ10-3W-1井,2 058.39 m(+),中-细砂岩,放射状菱铁矿(Sd)交代碎屑颗粒及泥质杂基;e. WZ11-2-3井,2 646.00 m(-),粉细砂岩,晶粒状菱铁矿胶结作用;f. WZ11-2-3井,2 958.00 m(-),中砂岩,细晶白云石(Dol)胶结、交代作用;g. WZ11-2-2井,3 158.63 m(SEM),砂砾岩,书页状高岭石(K)和丝片状伊利石(I);h. WZ11-2-3井,3 225.03 m(SEM),含砾粗砂岩,蜂窝状伊蒙混层(I/S)堵塞孔隙;i. WZ11-2-3井,3 229.13 m(SEM),含砾粗砂岩,叶片状、玫瑰花状绿泥石(Chl)充填次生孔隙;j. WZ11-2-2井,3 158.44 m(-),长石强烈溶蚀,形成暗色粘土矿物;k. WZ11-2-2井,3 303.91 m(-),砂砾岩,长石、岩屑强烈溶蚀形成次生孔隙,或粘土化(红色虚线圈定区域);l. WZ11-2-2井,3 307.15 m(-),砂砾岩,长石溶蚀,生成伊利石
Fig. 5. Major diagenesis of sandstone reservoir in the northwestern Weixinan depression
表 1 研究区流三段砂岩储层碳酸盐胶结物含量统计
Table 1. Statistics on carbonate cement content of El3 sandstone in the study area
井号 深度(m) 方解石(%) 铁方解石(%) 白云石(%) 铁白云石(%) 菱铁矿(%) 总孔隙度(%) WZ10-3-1 1 943.07 34 / / / 4 / 1 946.56 / 14 0.2 / 0.2 3 1 981.00 / / / / 30 / 2 005.00 / / / / 22 / 2 035.00 41 / 0.2 / / 1 WZ10-3-2 2 023.15 / / / / 12 2 2 083.00 / / / / 26 / 2 095.00 20 / / / / / WZ10-3-3 2 052.00 38.5 / / / / 0.2 2 054.05 30 / / / / 1 2 054.90 22 / / / 28 / 2 054.95 30 / / / / / 2 108.60 / / 8 / 5 1 WZ10-3W-1 2 040.05 / / 1 / 45 1.5 2 049.29 / 16 / / 2 2 2 050.44 / / 13.5 / 13.5 0.2 2 058.39 / 0.2 / 6.5 10 3 WZ11-1-1 2 687.80 15 / / / / 0.2 2 700.00 / 12 / / 6 4.5 2 716.00 34 / / / / 0.2 表 2 研究区流三段砂岩储层粘土矿物相对含量分析
Table 2. Relative content analysis of clay minerals of El3 sandstone in the study area
沉积相 井号 深度范围(m) 蒙脱石(%) 伊蒙混层(%) 伊利石(%) 高岭石(%) 绿泥石(%) 样品个数 扇三角洲平原 WZ10-3-1 1 936~1 950 / 5.43 22.88 71.69 / 9 WZ10-3-3 2 055~2 178 / 26.43 31.97 39.27 2.33 9 WZ10-3-13 1 957~2 106 6.77 20.01 29.72 34.04 9.46 21 WZ10-3W-1 2 039~2 056 16.48 9.93 35.04 28.28 17.15 24 扇三角洲前缘 WZ11-1-1 2 982~3 348 / 34.67 54.88 5.43 5.03 15 湖底扇 WZ11-2-2 3 156~3 308 / 3.90 70.40 4.60 21.10 10 WZ11-2-3 3 225~3 234 / 4.50 75.42 17.17 2.92 12 表 3 流三段砂岩储层成岩相类型
Table 3. The types of diagenetic facies of El3 reservoir
成岩相类型 成岩相定量参数 成岩特征 岩性 面孔率(%) 压实率(%) 胶结率(%) 溶蚀率(%) 弱压实-弱胶结相 < 30 < 30 < 30 颗粒不接触或点接触,原生粒间孔为主,少量溶蚀孔隙,孔隙连通性好 含砾粗砂岩、砂砾岩 20~30 中压实-中溶蚀相 30~70 < 30 30~60 颗粒点-线接触,长石、岩屑溶蚀较强烈,部分粘土化,孔隙以粒内溶孔、剩余粒间孔为主,连通性中等 含砾粗砂岩、砂砾岩 13~20 强压实中-强溶蚀相 > 70 30~70 60~90 颗粒线接触为主,长石、岩屑强烈溶蚀形成粒内溶孔、铸模孔,孔隙发育中等,连通性较差 砂砾岩 5~15 压实-充填相 > 70 30~70 < 30 基质含量高,以泥质和粘土矿物为主.孔隙不发育或仅发育少量长石溶孔、杂基微孔 粉-细砂岩 < 5 碳酸盐致密胶结相 > 30 > 80 < 30 颗粒互不接触或点接触.方解石含量10%~30%,不发育孔隙,或仅发育少量孤立微溶孔 细-中砂岩 < 3 表 4 流三段砂岩储层成岩相测井识别参数
Table 4. Logging identification parameters of diagenetic facies of El3 sandstone reservoir
成岩相 AC(μs/ft) GR(API) RT(ohmm) CNCF(v/v) DEN(g/cm3) 弱压实弱胶结相成岩相 90~100 60~120 10~15 0.23~0.27 2.20~2.40 中压实中溶蚀相 80~95 40~90 0~15 0.18~0.30 2.15~2.40 强压实中-强溶蚀相 68~80 50~140 10~15 0.10~0.15 2.35~2.60 压实-充填相 80~90 145~210 8~12 0.15~0.30 2.40~2.60 碳酸盐致密胶结相 70~85 110~195 12~20 0.25~0.35 2.40~2.60 表 5 不同沉积相带砂岩孔隙度、渗透率分布统计
Table 5. Statistics of porosity and permeability distribution of sandstone in different sedimentary zones
沉积相带 孔隙度(%) 渗透率(10-3 μm2) 分布 平均值 分布 平均值 分流河道 3.54~28.20 13.10 0.035~1 761 68.76 水下分流河道 6.34~28.45 17.98 0.010~4 481 388.59 分流河道间 3.46~11.40 8.98 0.030~6.120 1.06 越岸沉积 6.10~14.10 10.32 0.170~4.850 1.27 席状砂 6.61~9.92 8.27 0.020~1.570 0.61 湖底扇 3.20~19.10 11.81 0.069~29.400 4.81 -
[1] Beard, D.C., Weyl, P.K., 1973. Influence of Texture on Porosity and Permeability of Unconsolidated Sand. AAPG Bulletin, 57(2):349-369. [2] Cao, Y.C., Cheng, X., Wang, Y.Z., et al., 2015. Diagenesis of Paleogene Glutenite Reservoir and Its Control on Physical Property in the North Zone of Chezhen Sag. Acta Sedmentologica Sinica, 33(6):1192-1203 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201506012 [3] Chen, G. H., Zhang, X.Z., Wu, S.Y., et al., 2009. Logging Evaluation of Low Permeability Glutenite Reservoir. Geophysical Prospecting for Petroleum, 48(4):412-416 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Conference/WFHYXW652719 [4] Dill, H. G., Khishigsuren, S., Melcher, F., et al., 2005. Facies-Related Diagenetic Alteration in Lacustrine-Deltaic Red Beds of the Paleogene Ergeliin Zoo Formation (Erdene Sum Area, S. Gobi, Mongolia). Sedimentary Geology, 181(1/2):1-24. https://doi.org/10.1016/j.sedgeo.2005.06.007 [5] Feng, Z.Z., 1993. Sedimentology. Petroleum Industry Press, Beijing (in Chinese). [6] Folk, R.L., 1968. Petrology of Sedimentary Rocks. Hempfill, Austin, 107. [7] Fu, W.J., 2000. Influence of Clay Minerals on Sandstone Reservoir Properties. Journal of Palaeogeography, 2(3):59-68 (in Chinese with English abstract). doi: 10.7605/gdlxb.2000.03.007 [8] He, D.B., Ying, F.X., Zheng, J.M., et al., 2004. Numerical Simulation of Clastic Diagenesis and Its Application. Petroleum Exploration and Development, 31(6):66-68 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf200406016 [9] Jia, H.B., Ji, H.C., Wang, L.S., et al., 2017. Reservoir Quality Variations within a Conglomeratic Fan-Delta System in the Mahu Sag, Northwestern Junggar Basin:Characteristics and Controlling Factors. Journal of Petroleum Science and Engineering, 152:165-181. https://doi.org/10.1016/j.petrol.2017.03.002 [10] Jin, J., Kang, X., Hu, W.X., et al., 2017. Diagenesis and Its Influence on Coarse Clastic Reservoirs in the Baikouquan Formation of Western Slope of the Mahu Depression, Junngar Basin. Oil & Gas Geology, 38(2):323-333, 406 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201702014 [11] Li, K., Yu, B.S., Liu, Q.J., et al., 2012. Diagenesis and Diagenetic Facies of Kepingtage Formation of the Silurian in Tazhong-Bachu Area of Tarim Basin. Journal of Oil and Gas Technology, 34(7):39-44 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=20d7c0c714783f9ad6d4b6b84515f70a&encoded=0&v=paper_preview&mkt=zh-cn [12] Liu, C., Chen, H.F., Wang, Y., et al., 2018. Formation of Nano-Micron Pores in Conglomerate Reservoirs of Xujiaweizi Fault Depression and Their Relationship with Natural Gas Filling. Earth Science, 43(5):1574-1586 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201805018 [13] Liu, J.H., Wang, R.L., You, L., et al., 2012. Study on the Diagenetic Facies and Effective Clastic Reservoirs in Liushagang Formation of Weixinan Sag. Journal of Southwest Petroleum University (Science & Technology Edition), 34(6):175-184 (in Chinese with English abstract). doi: 10.3863/j.issn.1674-5086.2012.06.026 [14] Liu, W.B., Zhang, S.Q., Li, S.Z., et al., 2018. Development Characteristics and Geological Significance of Microfractures in the Es3 Eeservoirs of Dongpu Depression. Geological Bulletin of China, 37(Z1):496-502 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD2018Z1028.htm [15] Mahmic, O., Dypvik, H., Hammer, E., 2018. Diagenetic Influence on Reservoir Quality Evolution, Examples from Triassic Conglomerates/Arenites in the Edvard Grieg Field, Norwegian North Sea. Marine and Petroleum Geology, 93:247-271. https://doi.org/10.1016/j.marpetgeo.2018.03.006 [16] Mansurbeg, H., Morad, S., Salem, A., et al., 2008. Diagenesis and Reservoir Quality Evolution of Palaeocene Deep-Water, Marine Sandstones, the Shetland-Faroes Basin, British Continental Shelf. Marine and Petroleum Geology, 25(6):514-543. https://doi.org/10.1016/j.marpetgeo.2007.07.012 [17] Pang, D.X., 2015. Sedimentary Genesis of Sand-Conglomerate Reservoir and Its Control Effect on Reservoir Properties:A Case Study of the Lower Urho Formation in Ma 2 Well Block of Mahu Depression. Lithologic Reservoirs, 27(5):149-154 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-8926.2015.05.025 [18] Shan, J.F., Ji, Y.L., Liu, C.Z., 2007. Prediction of Reservoir Permeability with Improved Artificialneural Network Principle:Taking the Southwest Weizhou Depression in Beibuwan Basin as an Example. Oil & Gas Geology, 28(1):106-109 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-9985.2007.01.015 [19] Shi, Y.J., Xiao, L., Mao, Z.Q., et al., 2011. An Identification Method for Diagenetic Facies with Well Logs and Its Geological Significance in Low-Permeability Sandstones:A Case Study on Chang 8 Reservoirs in the Jiyuan Region, Ordos Basin. Acta Petrolei Sinica, 32(5):820-828 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=898c47d6ab6ab6d207227feb3f8c900f&encoded=0&v=paper_preview&mkt=zh-cn [20] Sun, W.Z., Wang, C.L., Yang, X.B., 2007. Types and Favorable Exploration Areas of Eocene Subtle Traps in Weixinan Sag, Beibuwan Basin. Natural Gas Geoscience, 18(1):84-88 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-1926.2007.01.015 [21] Wang, W., Chang, Q.S., Zhao, Y.W., et al., 2016. Reservoir Space Types and Evolution Characteristics of the Baikouquan Formation Glutenite Reservoir on the Western Slope of the Mahu Sag. Journal of Geology, 40(2):228-233 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsdz201602007 [22] Wei, W., Zhu, X. M., Tan, M. X., et al., 2015. Diagenetic and Porosity Evolution of Conglomerate Sandstones in Bayingebi Formation of the Lower Cretaceous, Chagan Sag, China-Mongolia Frontier Area. Marine and Petroleum Geology, 66:998-1012. https://doi.org/10.1016/j.marpetgeo.2015.08.011 [23] Wu, S.J., You, L., Zhao, Z.J., et al., 2017. Reservoir Characteristics and Favorable Reservoir Distribution of Member Three of Liushagang Formation of Xieyang Slope in Weixinan Sag. Journal of Northeast Petroleum University, 41(4):24-31, 122 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQSY201704003.htm [24] Xu, Z.Y., Wu, S.H., Zhang, X.Q., et al., 2008. Diagenetic Reservoir Facies and Their Evolutionary Sequences of the Members 4 and 2 of Upper Xujiahe Formation in Xinchang Gasfield, Western Sichuan Depression. Journal of Palaeogeography, 10(5):447-458 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb200805002 [25] Xue, C., Qi, G.M., Wei, Q.J., et al., 2014. Research Progress and Application of Sedimentary Diagenesis. Ground Water, 36(2):186-189 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/030913338601000210 [26] Yu, X.H., Qu, J.H., Tan, P.C., et al., 2014. Conglomerate Lithofacies and Origin Models of Fan Deltas of Baikouquan Formation in Mahu Sag, Junggar Basin. Xinjiang Peotroleum Geology, 35(6):619-627 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjsydz201406001 [27] Yuan, X.Q., Yao, G.Q., Yang, X.H., et al., 2019. Constraints of Authigenic Clay Minerals on Deep Reservoirs in Wenchang A Sag. Earth Science, 44(3):909-918 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201903018 [28] Zan, L., Zhang, Z.H., Wang, S.H., et al., 2011. Diagenesis of Sandy Conglomerate Reservoir in Northern Steep Slope of Bonan Subsag. Natural Gas Geoscience, 22(2):299-306 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201102017 [29] Zeng, Y.F., Tian, J.C., Zhao, Z.C., et al., 1994. Genetic Types and Reservoir Characteristics of the Sandy Conglomerate Bodies in the Shahejie Formation on the Northern Zone of the Dongying Sag. Sedimentary Facies and Palaeogeography, 1:1-10 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YXGD401.000.htm [30] Zhang, S.C., Liu, Z.Y., Liu, W., et al., 2010a. Diagenesis Facies of Permian Sandy Conglomerate Reservoir in Footwall of Kebai Fault in Northwestern Margin of Junggar Basin. Lithologic Reservoirs, 22(4):43-51 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxyqc201004008 [31] Zhang, S.C., Yang, Z.C., Liu, Z.Y., et al., 2010b. Diagenesis Constrain to Physical Property of Permian Conglomerate Reservoir in Underlying Block of Kebai Fault. Natural Gas Geoscience, 21(5):755-761 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201005010 [32] Zhao, J., Hong, Q.Y., Dong, W.L., 2001. Analysis on Material Sources and Palaeogeographic Landscapes of Weixinan Sag. Petroleum Exploration and Development, 28(5):25-28 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200105006.htm [33] Zheng, J.M., Zhao, X.M., Chen, C.F., 1998. Two Different Diagenetic Successions of Clastic Rock Reservoirs. Geological Review, 44(2):207-212 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000002410 [34] Zhong, G.F., Wu, N.F., 1995. Diagenetic Lithofacies Analysis and Its Application in Sandstone Reservoirs of Biyang Depression. Journal of Jianghan Petroleum Institute, 17(1):37-40 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JHSX501.006.htm [35] Zou, C.N., Tao, S.Z., Zhou, H., et al., 2008. Genesis, Classification and Evaluation Method of Diagenetic Facies. Petroleum Exploration and Development, 35(5):526-540 (in Chinese with English abstract). doi: 10.1016/S1876-3804(09)60086-0 [36] 操应长, 程鑫, 王艳忠, 等, 2015.车镇北带古近系砂砾岩储层成岩作用特征及其对物性的影响.沉积学报, 33(6):1192-1203. http://d.old.wanfangdata.com.cn/Periodical/cjxb201506012 [37] 陈钢花, 张孝珍, 吴素英, 等, 2009.特低渗砂砾岩储层的测井评价.石油物探, 48(4):412-416. doi: 10.3969/j.issn.1000-1441.2009.04.015 [38] 冯增昭, 1993.沉积岩石学(第二版).北京:石油工业出版社. [39] 伏万军, 2000.粘土矿物成因及对砂岩储集性能的影响.古地理学报, 2(3):59-68. doi: 10.3969/j.issn.1671-1505.2000.03.007 [40] 何东博, 应凤祥, 郑浚茂, 等, 2004.碎屑岩成岩作用数值模拟及其应用.石油勘探与开发, 31(6):66-68. doi: 10.3321/j.issn:1000-0747.2004.06.016 [41] 靳军, 康逊, 胡文瑄, 等, 2017.准噶尔盆地玛湖凹陷西斜坡百口泉组砂砾岩储层成岩作用及对储集性能的影响.石油与天然气地质, 38(2):323-333, 406. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201702014 [42] 李锟, 于炳松, 刘清俊, 等, 2012.塔里木盆地塔中-巴楚地区志留系柯坪塔格组成岩作用及成岩相.石油天然气学报, 34(7):39-44. doi: 10.3969/j.issn.1000-9752.2012.07.008 [43] 刘超, 陈海峰, 王洋, 等, 2018.徐家围子断陷砂砾岩储层纳米-微米级孔隙的形成及其与天然气充注的关系.地球科学, 43(5):1574-1586. doi: 10.3799/dqkx.2017.593 [44] 刘景环, 王瑞丽, 尤丽, 等, 2012.涠西南凹陷流沙港组成岩相与有效储层研究.西南石油大学学报(自然科学版), 34(6):175-184. http://d.old.wanfangdata.com.cn/Periodical/xnsyxyxb201206027 [45] 刘卫彬, 张世奇, 李世臻, 等, 2018.东濮凹陷沙三段储层微裂缝发育特征及意义.地质通报, 37(Z1):496-502. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201802027 [46] 庞德新, 2015.砂砾岩储层成因差异及其对储集物性的控制效应——以玛湖凹陷玛2井区下乌尔禾组为例.岩性油气藏, 27(5):149-154. doi: 10.3969/j.issn.1673-8926.2015.05.025 [47] 单敬福, 纪友亮, 柳成志, 2007.改进人工神经网络原理对储层渗透率的预测——以北部湾盆地涠西南凹陷为例.石油与天然气地质, 28(1):106-109. doi: 10.3321/j.issn:0253-9985.2007.01.015 [48] 石玉江, 肖亮, 毛志强, 等, 2011.低渗透砂岩储层成岩相测井识别方法及其地质意义——以鄂尔多斯盆地姬塬地区长8段储层为例.石油学报, 32(5):820-828. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201105012 [49] 孙文钊, 王传雷, 杨希滨, 2007.北部湾盆地涠西南凹陷始新统隐蔽油气藏类型及勘探方向.天然气地球科学, 18(1):84-88. doi: 10.3969/j.issn.1672-1926.2007.01.015 [50] 王伟, 常秋生, 赵延伟, 等, 2016.玛湖凹陷西斜坡百口泉组砂砾岩储层储集空间类型及演化特征.地质学刊, 40(2):228-233. doi: 10.3969/j.issn.1674-3636.2016.02.228 [51] 吴仕玖, 尤丽, 招湛杰, 等, 2017.涠西南凹陷斜阳斜坡带流三段储层特征与有利储层分布.东北石油大学学报, 41(4):24-31, 122. doi: 10.3969/j.issn.2095-4107.2017.04.003 [52] 徐樟有, 吴胜和, 张小青, 等, 2008.川西坳陷新场气田上三叠统须家河组须四段和须二段储集层成岩-储集相及其成岩演化序列.古地理学报, 10(5):447-458. http://d.old.wanfangdata.com.cn/Periodical/gdlxb200805002 [53] 薛超, 齐桂民, 魏安军, 等, 2014.沉积成岩作用研究进展及其应用.地下水, 36(2):186-189. doi: 10.3969/j.issn.1004-1184.2014.02.075 [54] 于兴河, 瞿建华, 谭程鹏, 等, 2014.玛湖凹陷百口泉组扇三角洲砾岩岩相及成因模式.新疆石油地质, 35(6):619-627. http://d.old.wanfangdata.com.cn/Periodical/xjsydz201406001 [55] 袁晓蔷, 姚广庆, 杨香华, 等, 2019.自生粘土矿物对文昌A凹陷深部储层的制约.地球科学, 44(3):909-918. doi: 10.3799/dqkx.2018.368 [56] 昝灵, 张枝焕, 王顺华, 等, 2011.渤南洼陷北部陡坡带砂砾岩储层成岩作用研究.天然气地球科学, 22(2):299-306. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201102017 [57] 曾允孚, 田景春, 赵志超, 等, 1994.东营凹陷北带沙河街组沙砾岩体的成因类型及其储集性研究.岩相古地理, 1:1-10. http://www.cnki.com.cn/Article/CJFDTotal-YXGD401.000.htm [58] 张顺存, 刘振宇, 刘巍, 等, 2010a.准噶尔盆地西北缘克-百断裂下盘二叠系砂砾岩储层成岩相研究.岩性油气藏, 22(4):43-51. http://d.old.wanfangdata.com.cn/Periodical/yxyqc201004008 [59] 张顺存, 杨兆臣, 刘振宇, 等, 2010b.成岩作用对克百断裂下盘二叠系砂砾岩储层物性的控制作用研究.天然气地球科学, 21(5):755-761. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201005010 [60] 赵军, 洪庆玉, 董伟良, 2001.北部湾涠西南凹陷物源方向及古地理景观分析.石油勘探与开发, 28(5):25-28. doi: 10.3321/j.issn:1000-0747.2001.05.007 [61] 郑俊茂, 赵省民, 陈纯芳, 1998.碎屑岩储层的两种不同成岩序列.地质论评, 44(2):207-212. doi: 10.3321/j.issn:0371-5736.1998.02.014 [62] 钟广法, 邬宁芬, 1995.成岩岩相分析及其在泌阳凹陷核三下亚段砂岩储层中的初步应用.石油天然气学报, 17(1):37-40. http://www.cnki.com.cn/Article/CJFDTotal-JHSX501.006.htm [63] 邹才能, 陶士振, 周慧, 等, 2008.成岩相的形成、分类与定量评价方法.石油勘探与开发, 35(5):526-540. doi: 10.3321/j.issn:1000-0747.2008.05.002