• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    吉东大栗子铁矿区石英二长斑岩U-Pb年龄、地球化学及Hf同位素组成

    叶丽娜 孙丰月 王力 刘金龙 张宇婷

    叶丽娜, 孙丰月, 王力, 刘金龙, 张宇婷, 2020. 吉东大栗子铁矿区石英二长斑岩U-Pb年龄、地球化学及Hf同位素组成. 地球科学, 45(5): 1544-1555. doi: 10.3799/dqkx.2019.173
    引用本文: 叶丽娜, 孙丰月, 王力, 刘金龙, 张宇婷, 2020. 吉东大栗子铁矿区石英二长斑岩U-Pb年龄、地球化学及Hf同位素组成. 地球科学, 45(5): 1544-1555. doi: 10.3799/dqkx.2019.173
    Ye Lina, Sun Fengyue, Wang Li, Liu Jinlong, Zhang Yuting, 2020. Zircon U-Pb Geochronology, Geochemistry and Hf Isotopic Composition of the Quartz Monzonite Porphyry Intrusion from East Jilin Province. Earth Science, 45(5): 1544-1555. doi: 10.3799/dqkx.2019.173
    Citation: Ye Lina, Sun Fengyue, Wang Li, Liu Jinlong, Zhang Yuting, 2020. Zircon U-Pb Geochronology, Geochemistry and Hf Isotopic Composition of the Quartz Monzonite Porphyry Intrusion from East Jilin Province. Earth Science, 45(5): 1544-1555. doi: 10.3799/dqkx.2019.173

    吉东大栗子铁矿区石英二长斑岩U-Pb年龄、地球化学及Hf同位素组成

    doi: 10.3799/dqkx.2019.173
    基金项目: 

    科技部深地专项 2017YFC0601304

    国家重点研发项目 2017YFC0601304

    详细信息
      作者简介:

      叶丽娜(1992-), 女, 博士研究生, 主要从事矿床学研究

      通讯作者:

      孙丰月

    • 中图分类号: P581

    Zircon U-Pb Geochronology, Geochemistry and Hf Isotopic Composition of the Quartz Monzonite Porphyry Intrusion from East Jilin Province

    • 摘要: 吉林东部地区侏罗纪花岗岩的分布较为有限,缺乏区域构造演化环境的判别证据.对侵入到老岭群当中的隐伏岩体石英二长斑岩进行了U-Pb年代学、地球化学和Hf同位素研究.获得石英二长斑岩样品锆石LA-ICP-MS U-Pb定年结果165±1Ma,属中侏罗世;岩石SiO2=61.01%~61.99%,全碱含量(K2O+Na2O)为5.78%~7.98%,属钙碱性系列岩石,贫MgO、CaO、Fe2O3T,A/CNK=1.02~1.39,轻稀土元素富集明显,Eu/Eu*=0.92~1.01,异常不明显,显示I型花岗岩特征;岩石εHft)值为-15.46~-17.04,二阶段模式年龄TDM2=2 189~2 290 Ma,富集大离子亲石元素,亏损高场强元素,Mg#=26.90~33.04,贫Yb(0.43×10-6~0.48×10-6)和Y(6.63×10-6~7.12×10-6),锆石Ti温度均值为744℃,属低温花岗岩.岩浆源区为古元古代下地壳的部分熔融.华北克拉通北缘东段中侏罗世火成岩形成于俯冲背景之下,而非蒙古-鄂霍茨克洋闭合的远程效应,至晚侏罗世-早白垩世早期,中国东北陆缘可能进入走滑的构造属性.

       

    • 图  1  吉林省东部石英二长斑岩岩体地质简图(a)与石英二长斑岩的深度和钻井控制示意(b)

      a.改自Meng et al.(2017)和Wu et al.(2011);1.中生界;2.新元古界震旦系;3.古元古界老岭群;4.太古代变质岩系;5.显生宙花岗岩;6.断层;7.采样位置;8.市镇

      Fig.  1.  Simplified geological map showing the quartz monzonite porphyry mass in eastern Jilin Province (a) and showing the quartz monzonite porphyry depth and drilling control (b)

      图  2  石英二长斑岩手标本和显微照片(+)

      Pl.斜长石; Qz.石英

      Fig.  2.  Hands pecimens photogra phan dmicro photo graph of the quartz monzonite porphyry (+)

      图  3  样品WSH-ZK1303-N1代表性锆石阴极发光(CL)图像

      白色实线和虚线分别表示LA-ICP-MS U-Pb和Lu-Hf分析的位置.所有CL图像的靶直径分别是32 μm和44 μm

      Fig.  3.  Representative cathodoluminescence (CL) images of zircons from sample WSH-ZK1303-N1

      图  4  样品WSH-ZK1303-N1的锆石LA-ICP-MS U-Pb谐和图(a)与加权平均年龄(b)

      Fig.  4.  Zircon LA-ICP-MS U-Pb concordia diagrams (a) and weighted-mean age (b) for the sample WSH-ZK1303-N1

      图  5  Na2O + K2O-SiO2图解

      Middlemost(1994)

      Fig.  5.  Plots of Na2O + K2O vs. SiO2

      图  6  样品WSH-ZK1303-N1的A.R.-SiO2图解(a)和A/CNK-A/NK图解(b)

      a.A.R.代表(Al2O3 + CaO + ALK)/(Al2O3 + CaO - ALK)摩尔比; b.A/NK代表Al2O3/(Na2O + K2O)摩尔比;A/CNK代表Al2O3/ (CaO + Na2O + K2O)摩尔比

      Fig.  6.  Plots of A.R.-SiO2 (a) and A/CNK-A/NK (b) for the sample WSH-ZK1303-N1

      图  7  样品WSH-ZK1303-N1的球粒陨石标准化稀土元素配分曲线图(a)和原始地幔标准化微量元素蛛网图(b)

      球粒陨石值和原始地幔标准化值据Sun and McDonough (1989)

      Fig.  7.  Chondrite-normalized REE patterns (a) and primitive mantle (PM)-normalized trace element spider diagrams (b) for the sample WSH-ZK1303-N1

      图  8  样品WSH-ZK1303-N1的104×Ga/Al-Zr图解(a)、104×Ga/Al-Nb图解(b)、104×Ga/Al-Ce图解(c)、104×Ga/Al-Y图解(d)、Ce-SiO2图解(e)和Zr-SiO2图解(f)

      Fig.  8.  104×Ga/Al-Zr (a), 104×Ga/Al-Nb (b), 104×Ga/Al-Ce (c), 104×Ga/Al-Y (d), Ce-SiO2 (e) and Zr-SiO2(f)diagrams of the the sample WSH⁃ZK1303⁃N1

      图  9  样品WSH-ZK1303-N1锆石Hf同位素特征

      兴蒙造山带和燕山褶皱带区域据Yang et al.(2006)

      Fig.  9.  Zircon Hf isotopic features for the the sample WSH-ZK1303-N1

      表  1  石英二长斑岩锆石LACICPCMS UCPb同位素分析结果

      Table  1.   Zircon LA-ICP-MS U-Pb isotope analysis results of the quartz monzonite porphyry

      样品 Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U Ti地质温度计
      比值 比值 比值 t(Ma) Ti(10-6 最高温度(℃) 最低温度(℃)
      WSH-N1-01 0.49 0.04 818 0.00 172 0.17 502 0.00 601 0.02 633 0.00 027 168 2 3 641 640
      WSH-N1-02 0.27 0.05 013 0.00 184 0.17 650 0.00 658 0.02 546 0.00 024 162 1 2 618 617
      WSH-N1-03 0.45 0.04 771 0.00 162 0.17 012 0.00 565 0.02 578 0.00 024 164 2 3 632 631
      WSH-N1-04 0.34 0.04 836 0.00 203 0.17 237 0.00 702 0.02 590 0.00 023 165 1 2 630 629
      WSH-N1-05 0.38 0.05 240 0.00 452 0.18 218 0.01 564 0.02 540 0.00 031 162 2 9 737 738
      WSH-N1-06 0.31 0.04 938 0.00 191 0.17 640 0.00 645 0.02 597 0.00 029 165 2 3 651 650
      WSH-N1-07 0.30 0.05 396 0.00 226 0.19 433 0.00 662 0.02 619 0.00 028 167 2 2 616 615
      WSH-N1-08 0.37 0.05 080 0.00 188 0.18 393 0.00 638 0.02 639 0.00 028 168 2 2 627 626
      WSH-N1-09 0.27 0.04 975 0.00 208 0.18 287 0.00 623 0.02 662 0.00 027 169 2 3 645 645
      WSH-N1-10 0.27 0.05 285 0.00 332 0.19 085 0.00 657 0.02 641 0.00 032 168 2 2 630 629
      WSH-N1-11 0.34 0.05 093 0.00 214 0.18 001 0.00 741 0.02 565 0.00 023 163 1 2 625 624
      WSH-N1-12 0.31 0.05 399 0.00 222 0.19 462 0.00 734 0.02 637 0.00 029 168 2 2 623 622
      WSH-N1-13 0.28 0.05 205 0.00 228 0.19 023 0.00 793 0.02 667 0.00 030 170 2 3 641 640
      WSH-N1-14 0.37 0.04 818 0.00 206 0.16 914 0.00 690 0.02 566 0.00 031 163 2 3 641 640
      WSH-N1-15 0.30 0.04 809 0.00 149 0.17 413 0.00 522 0.02 628 0.00 029 167 2 5 678 677
      WSH-N1-16 0.34 0.04 839 0.00 191 0.17 685 0.00 708 0.02 639 0.00 027 168 2 2 614 613
      WSH-N1-17 0.54 0.05 345 0.00 193 0.19 135 0.00 672 0.02 598 0.00 027 165 2 3 633 632
      WSH-N1-18 0.43 0.04 682 0.00 163 0.16 914 0.00 591 0.02 615 0.00 025 166 2 2 614 613
      WSH-N1-19 0.27 0.04 879 0.00 229 0.17 554 0.00 775 0.02 631 0.00 031 167 2 2 604 602
      WSH-N1-20 0.33 0.04 867 0.00 187 0.17 324 0.00 628 0.02 588 0.00 024 165 2 2 628 627
      WSH-N1-21 0.40 0.04 663 0.00 171 0.16 843 0.00 608 0.02 610 0.00 024 166 2 2 632 631
      WSH-N1-22 0.39 0.05 216 0.00 248 0.19 058 0.00 699 0.02 650 0.00 028 169 2 3 632 631
      WSH-N1-23 0.30 0.04 859 0.00 154 0.17 758 0.00 576 0.02 638 0.00 026 168 2 2 626 625
      WSH-N1-24 0.43 0.04 999 0.00 165 0.17 624 0.00 566 0.02 560 0.00 026 163 2 2 631 630
      WSH-N1-25 0.43 0.04 966 0.00 178 0.17 558 0.00 615 0.02 562 0.00 023 163 1 4 658 657
      WSH-N1-26 0.44 0.04 947 0.00 174 0.17 803 0.00 617 0.02 606 0.00 027 166 2 3 653 652
      WSH-N1-27 0.40 0.05 470 0.00 343 0.19 588 0.01 030 0.02 661 0.00 037 169 2 2 614 613
      WSH-N1-28 0.38 0.04 958 0.00 176 0.17 626 0.00 602 0.02 576 0.00 027 164 2 3 636 635
      WSH-N1-29 0.36 0.05 223 0.00 211 0.18 321 0.00 716 0.02 544 0.00 027 162 2 3 640 640
      WSH-N1-31 0.53 0.05 058 0.00 168 0.17 826 0.00 575 0.02 555 0.00 024 163 1 3 652 651
      WSH-N1-32 0.40 0.04 924 0.00 196 0.18 035 0.00 694 0.02 644 0.00 027 168 2 3 640 639
      WSH-N1-33 0.59 0.05 313 0.00 239 0.18 655 0.00 827 0.02 550 0.00 026 162 2 3 644 643
      注:锆石Ti地质温度计算公式为T(℃)= (5 080±30)/[(6.01±0.03)-lg(Ti)]-273, 据Waston et al.(2006).
      下载: 导出CSV

      表  2  石英二长斑岩主量元素(%)、微量元素(10-6)和稀土元素(10-6)含量及相关参数

      Table  2.   Major elements(%), trace elements(10-6)and rare earth elements(10-6)contents of the quartz monzonite porphyry

      样品 WSH-Y1 WSH-Y2 WSH-Y3 WSH-Y4 WSH-Y5
      SiO2 61.01 61.57 61.81 61.99 61.45
      TiO2 0.51 0.52 0.50 0.52 0.52
      Al2O3 15.12 15.27 15.29 15.60 15.22
      Fe2O3T 4.80 5.43 4.97 5.94 4.74
      FeO 1.80 1.55 1.76 1.71 1.77
      MnO 0.08 0.06 0.07 0.05 0.07
      MgO 1.20 1.32 1.24 1.10 1.12
      Na2O 0.84 1.21 1.71 0.43 0.85
      K2O 6.44 6.77 5.43 5.35 6.32
      CaO 3.55 2.59 3.16 2.57 3.29
      P2O5 0.19 0.18 0.18 0.18 0.18
      LOI 5.86 4.39 5.31 5.65 5.87
      Total 99.58 99.31 99.66 99.38 99.63
      K2O/Na2O 7.71 5.61 3.18 12.44 7.41
      里特曼指数 2.94 3.43 2.71 1.76 2.79
      Mg# 33.04 32.48 33.03 26.90 31.85
      ALK 7.27 7.98 7.14 5.78 7.17
      A.R. A/NK 2.28 2.08 2.62 1.91 2.26 2.14 1.93 2.70 2.26 2.12
      A/CNK 1.40 1.44 1.48 1.87 1.45
      La 21.1 18.9 23.9 19.4 17.1
      Ce 43.2 39.6 48.5 41.2 36.7
      Pr 4.79 4.47 5.14 4.72 4.26
      Nd 17.9 16.9 19.6 18.0 16.6
      Sm 3.05 2.97 3.21 2.99 3.03
      Eu 0.90 0.89 0.93 0.83 0.91
      Gd 2.36 2.31 2.51 2.32 2.36
      Tb 0.30 0.30 0.32 0.30 0.31
      Dy 1.44 1.49 1.48 1.39 1.48
      Ho 0.20 0.22 0.21 0.21 0.21
      Er 0.74 0.78 0.77 0.77 0.77
      Tm 0.08 0.08 0.08 0.08 0.08
      Yb 0.44 0.48 0.46 0.46 0.45
      Lu 0.07 0.08 0.08 0.07 0.07
      Y 6.64 7.12 7.00 6.78 6.90
      ΣREE 96.6 89.5 107 92.7 84.3
      LREE 90.9 83.7 101 87.1 78.6
      HREE 5.63 5.74 5.91 5.61 5.73
      LREE/HREE 16.2 14.6 17.1 15.5 13.7
      δEu 0.99 1.00 0.97 0.92 1.01
      δCe 1.01 1.02 1.02 1.02 1.02
      (La/Yb)N 34.7 28.4 37.5 30.2 27.4
      Ti 3 192 3 172 3 049 3 256 3 192
      Rb 169 179 144 167 165
      Sr 222 235 282 111 223
      Zr 114 114 116 106 112
      Nb 7.29 6.99 7.38 7.32 7.36
      Ba 689 708 738 308 714
      Hf 2.96 2.97 3.25 2.74 3.01
      Ta 0.41 0.39 0.44 0.43 0.43
      Th 3.77 3.56 4.00 3.74 3.58
      U 1.67 1.72 1.71 2.09 1.68
      注:K2O/Na2O为质量分数比值;里特曼指数Rittman=(K2O+Na2O)2/(SiO2-43)(%);ALK= (K2O+Na2O);Mg#=100×(MgO/40.31)/(MgO/40.31+Fe2O3T×2/159.7).
      下载: 导出CSV

      表  3  石英二长斑岩LuCHf同位素组成

      Table  3.   Zircon LuCHf isotopic compositions of the quartz monzonite porphyry

      点号 t (Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf εHf(0) εHf(t) TDM1 TDM2 fLu/Hf
      WSH-N1-01 165 0.039 194 0.001 237 0.282 231 0.000 015 -19.1 -15.58 0.529 138 1 448 2 200 -0.96
      WSH-N1-03 165 0.028 752 0.000 872 0.282 224 0.000 012 -19.4 -15.87 0.432 914 1 444 2 214 -0.97
      WSH-N1-04 165 0.041 946 0.001 238 0.282 228 0.000 015 -19.2 -15.76 0.519 139 1 453 2 208 -0.96
      WSH-N1-05 165 0.022 546 0.000 609 0.282 227 0.000 015 -19.3 -15.80 0.544 035 1 431 2 206 -0.98
      WSH-N1-11 165 0.028 526 0.000 844 0.282 235 0.000 014 -19.0 -15.50 0.486 663 1 428 2 189 -0.97
      WSH-N1-13 165 0.035 004 0.001 006 0.282 217 0.000 015 -19.6 -16.01 0.534 696 1 459 2 230 -0.97
      WSH-N1-14 165 0.030 826 0.000 873 0.282 220 0.000 014 -19.5 -16.05 0.504 174 1 451 2 224 -0.97
      WSH-N1-18 165 0.032 258 0.000 928 0.282 235 0.000 013 -19.0 -15.44 0.471 072 1 431 2 190 -0.97
      WSH-N1-19 165 0.035 639 0.001 029 0.282 203 0.000 015 -20.1 -16.55 0.518 688 1 480 2 261 -0.97
      WSH-N1-20 165 0.025 400 0.000 779 0.282 190 0.000 014 -20.6 -17.06 0.479 151 1 489 2 290 -0.98
      WSH-N1-21 165 0.032 263 0.000 958 0.282 215 0.000 014 -19.7 -16.18 0.490 933 1 461 2 236 -0.97
      WSH-N1-32 165 0.034 161 0.001 029 0.282 195 0.000 016 -20.4 -16.53 0.574 085 1 491 2 279 -0.97
      下载: 导出CSV
    • [1] Amelin, Y., Halliday, A.N., Lee, D.C., 2000.Early-Middle Archaean Crustal Evolution Deduced from Lu-Hf and U-Pb Isotopic Studies of Single Zircon Grains.Geochimica et Cosmochimica Acta, 64(24):4205-4225. https://doi.org/10.1016/S0016-7037(00)00493-2
      [2] Cao, H.H., Xu, W.L., Pei, F.P., 2012.Permian Tectonic Evolution of the Eastern Section of the Northern Margin of the North China Plate:Constraints from Zircon U-Pb Geochronology and Geochemistry of the Volcanic Rocks.Acta Petrologica Sinica, 28(9):2733-2750 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=30a4e24fe75db0d12f6af19455b74318&encoded=0&v=paper_preview&mkt=zh-cn
      [3] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3):237-269. https://doi.org/10.1016/S0024-4937(02)00082-8
      [4] Hee, S.Q., Sung, T.K., Ree, J.H., 2005.Mesozoic Episodic Magmatism in South Korea and Its Tectonic Implication.Tectonics, 24:TC5002. https://doi.org/10.1029/2004tc001720
      [5] Hu, Z.C., Liu, Y.H., Gao, S., et al., 2012.Improved In-Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27:1391-1399. https://doi.org/10.1039/c2ja30078h
      [6] Li, B.L., Sun, F.Y., Yao, F.L., 2002.Large Scale Sinistral Strike-Slip Movement of Dunhua-Mishan Fracture Zone and Its Control on Gold Metallogeny in the Mesozoic.Geotectonica et Metallogenia, 26(4):390-395 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx200204008
      [7] Li, S.Z., Liu, X., Suo, Y.H., et al., 2009.Triassic Folding and Thrusting in the Eastern Block of the North China and the Dabie-Sulu Orogen and Its Geodynamics.Acta Petrologica Sinica, 25(9):2031-2049 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200909001
      [8] Li, S.Z., Suo, Y.H., Li, X.Y., et al., 2018.Mesozoic Plate Subduction in West Pacific and Tectono-Magmatic Response in the East Asian Ocean-Continent Connection Zone.China Science Bulletin, 63:1550-1593 (in Chinese with English abstract). doi: 10.1360/N972017-01113
      [9] Li, Y., Ding, L.L., Xu, W.L., et al., 2015.Geochronology and Geochemistry of Muscovite Granite in Sunwu Area, NE China:Implications for the Timing of Closure of the Mongol-Okhotsk Ocean.Acta Petrologica Sinica, 31(1):56-66 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501004
      [10] Li, Z.X., Li, X.H., 2007.Formation of the 1300-Km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China:A Flat-Slab Subduction model.Geology, 35(2):179-182. https://doi.org/10.1130/G23193A.1
      [11] Liu, C.F., 2010.Paleozoic-Early Mesozoic Magmatic belts and Tectonic Significance in Siziwangqi Area, Inner Mongolia(Dissertation).China University of Geosciences, Beijing (in Chinese with English abstract).
      [12] Maruyama, S., 1997.Pacific-Type Orogeny Revisited:Miyashiro-Type Orogeny Proposed.Island Arc, 6(1):91-120. https://doi.org/10.1111/j.1440-1738.1997.tb00042.x
      [13] Middlemost, E.A.K., 1994. Naming Materials in the Magma/Igneons Rock System.Earth-Science Reviews, 37(3):215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      [14] Qin, Y., Liang, Y.H., Hu, Z.C., et al., 2013.Geochemical Characteristics and Tectonic Significance of Jurassic Granites in Huanggoushan Area, South of Jilin, China.Journal of Chengdu University of Technology:Science&Technology Edition, 40(1):97-105 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201301013
      [15] Saunders, A.D., Norry, M.J., Tarney, J., 1988.Origin of MORB and Chemically-Depleted Mantle Reservoirs:Trace Element Constraints.Journal of Petrology, (1):415-445. https://doi.org/10.1093/petrology/Special_Volume.1.415
      [16] Sengör, A.M.C., Natal'In, B.A., Burtman, V.S., 1993.Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia.Nature, 364:299-307. https://doi.org/10.1038/364299a0
      [17] Smithies, R.H., Champion, D.C., 2000.The Archaean High-Mg Diorite Suite:Links to Tonalite-Trondhjemite- Granodiorite Magmatism and Implications for Early Archaean Crustal Growth.Journal of Petrology, 41(12):1653-1671. https://doi.org/10.1093/petrology/41.12.1653
      [18] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
      [19] Sun, D.Y., Wu, F.Y., Gao, S., et al., 2005.Confirmation of Two Episodes of A-Type Granite Emplacement During Late Triassic and Early Jurassic in the Central Jilin Province, and Their Constraints on the Structural Pattern of Eastern Jilin-Heilongjiang Area, China.Earth Science Frontiers, 12(2):263-275 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200502028
      [20] Sun, R.J., Sun, D.Y., Gou, J., et al., 2016.Geochemical Characteristics and Petrogenesis of Adamellite Granite.Global Geology, 35(2):309-323. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjdz201602003
      [21] Tang, J., Xu, W.L., Wang, F., et al., 2014.Geochronology and Geochemistry of Early-Middle Triassic Magmatism in the Erguna Massif, NE China:Constraints on the Tectonic Evolution of the Mongol-Okhotsk Ocean.Lithos, 184-187:1-16. https://doi.org/10.1016/j.lithos.2013.10.024
      [22] Tang, J., Xu, W.L., Wang, F., et al., 2018.Subduction History of the Paleo-Pacific Slab Beneath Eurasian Continent:Mesozoic-Paleogene Magmatic Records in Northeast Asia.Science in China (Series D:Earth Sciences), 61:527-559 (in Chinese with English abstract). doi: 10.1007/s11430-017-9174-1
      [23] Taylor, S.R., McLennan, S.M., 1995.The Geochemical Evolution of the Continental Crust.Reviews of Geophysics, 33(2):241-265. https://doi.org/10.1029/95rg00262
      [24] Vervoort, J.D., Patchett, P.J., 1996.Behavior of Hafnium and Neodymium Isotopes in the Crust:Constraints from Precambrian Crustally Derived Granites.Geochimica et Cosmochimica Acta, 60(19):3717-3733. https://doi.org/10.1016/0016-7037(96)00201-3
      [25] Wang, S.J., Xu, Z.Y., Dong, X.J., et al., 2018.Geochemical Characteristicsand Zircon U-Pb Age of the Granodiorite-Norite Gabbro in the Northern Margin of the North China Block and Their Formation Mechanism.Earth Science, 43(9):3267-3284 (in Chinese with English abstract).
      [26] Watson, E.B., Wark, D.A., Thomas, J.B., 2006.Crystallization Thermometers for Zircon and Rutile.Contributions to Mineralogy and Petrology, 151(4):413-433. https://doi.org/10.1007/s00410-006-0068-5
      [27] Weaver, B.L., 1991.The Origin of Ocean Island Basalt End Member Compositions:Trace Element and Isotopic Constrains.Earth and Planetary Science Letters, 104(2-4):381-397. https://doi.org/10.1016/0012-821x(91)90217-6
      [28] Wilde, S.A., Zhou, J.B., 2015.The Late Paleozoic to Mesozoic Evolution of the Eastern Margin of the Central Asian Orogenic Belt in China.Journal of Asian Earth Science, 113:909-921. https://doi.org/10.1016/j.jseaes.2015.05.005
      [29] Wu, F.Y., Han, R.H., Yang, J.H., et al., 2007.Initial Constraints on the Timing of Granitic Magmatism in North Korea Using U-Pb Zircon Geochronology.Chemical Geology, 238(3-4):232-248. https://doi.org/10.1016/j.chemgeo.2006.11.012
      [30] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007a.Discussions on the Petrogenesis of Granites.Acta Petrologica Sinica, 23(6):1217-1238 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200706001
      [31] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007b.Lu-Hf Isotopic Systematics and Their Applications in Petrology.Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001
      [32] Wu, F.Y., Sun, D.Y., Ge, W.C., et al., 2011.Geochronology of the Phanerozoic Granitoids in Northeastern China.Journal of Asian Earth Science, 41:1-30. https://doi.org/10.1016/j.jseaes.2010.11.014
      [33] Wu, F.Y., Xu, Y.G., Zhu, R.X., et al., 2014.Thinning and Destruction of the Cratonic Lithosphere:A Global Perspective.Science in China (Series D:Earth Sciences), 44(11):2358-2372 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=74ecac1d62b5007332e6cdead1f007c0&encoded=0&v=paper_preview&mkt=zh-cn
      [34] Wu, F.Y., Yang, J.H., Wilde, S.A., et al., 2005.Geochronology, Petrogenesis and Tectonic Implications of Jurassic Granites in the Liaodong Peninsula, NE China.Chemical Geology, 221(1):127-156. https://doi.org/10.1016/j.chemgeo.2005.04.010
      [35] Xu, W.L., Wang, F., Pei, F.P., et al., 2013.Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China:Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations.Acta Petrologica Sinica, 29(2):339-353 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=4c454960e00f6c05b5e332f036763285&encoded=0&v=paper_preview&mkt=zh-cn
      [36] Yan, X., Chen, B., Wang, Z.Q., et al., 2019.the Petrogenesis of the Two-Stage A-Type Granites from the Niujuan Silver Deposit in the Northern Margin of North China Craton and Their Tectonic Implications.Acta Petrologica Sinica, 35(2):558-588 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.02.18
      [37] Yang, J.H., Wu, F.Y., Shao, J.A., et al., 2006.Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China.Earth and Planetary Science Letters, 246(3-4):336-352. https://doi.org/10.1016/j.epsl.2006.04.029
      [38] Zhao, G.C., Cawood, P.A., 2012.Precambrian Geology of China.Precambrian Research, 222-223:13-54. https://doi.org/10.1016/j.precamres.2012.09.017
      [39] Zhang, J.F., Li, Z.T., Jin, C.Z., 2004.Adakites in Northeastern China and Their Mineralized Implications.Acta Petrologica Sinica, 20(2):361-368 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200402016
      [40] Zhang, Y.B., Wu, F.Y., Yang, J.H., et al., 2016.Petrogenesis and Geological Implications of Phanerozoic Granitoids at Northern Korean Peninsula.Acta Petrologica Sinica, 32(10):3098-3122 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201610013
      [41] Zhu, R.X., Chen, L., Wu, F.Y., et al., 2011.Timing, Scale and Mechanism of the Destruction of the North China Craton.Science in China (Series D:Earth Sciences), 41(5):583-592 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=d54e987a73393aaa0811391458b061ce&encoded=0&v=paper_preview&mkt=zh-cn
      [42] Zong, K.Q., Klemd, R., Yuan, Y., et al., 2017.The Assembly of Rodinia:The Correlation of Early Neoproterozoic (900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB).Precambrian Research, 290:32-48. https://doi.org/10.1016/j.precamres.2016.12.010
      [43] 曹花花, 许文良, 裴福萍, 等, 2012.华北板块北缘东段二叠纪的构造属性:来自火山岩锆石U-Pb年代学与地球化学的制约.岩石学报, 28(9):2733-2750. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201705009.htm
      [44] 李碧乐, 孙丰月, 姚凤良, 2002.中生代敦化-密山断裂大规模左旋平移及其对金矿床形成的控制作用.大地构造与成矿学, 26(4):390-395. doi: 10.3969/j.issn.1001-1552.2002.04.008
      [45] 李三忠, 刘鑫, 索艳慧, 等, 2009.华北克拉通东部地块和大别-苏鲁造山带印支期褶皱-逆冲构造与动力学背景.岩石学报, 25(9):2031-2049. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200909001
      [46] 李三忠, 索艳慧, 李玺瑶, 等, 2018.西太平洋中生代板块俯冲过程与东亚洋陆过渡带构造-岩浆响应.科学通报, 63:1550-1593. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201816006
      [47] 李宇, 丁磊磊, 许文良, 等, 2015.孙吴地区中侏罗世白云母花岗岩的年代学与地球化学:对蒙古-鄂霍茨克洋闭合时间的限定.岩石学报, 31(1):56-66. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501004
      [48] 柳长峰, 2010.内蒙古四子王旗地区古生代-早中生代岩浆岩带及其构造意义(博士学位论文).北京: 中国地质大学. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1784924
      [49] 秦亚, 梁一鸿, 胡兆初, 等, 2013.吉林南部荒沟山地区侏罗纪花岗岩地球化学特征及构造意义.成都理工大学学报(自然科学版), 40(1):97-105. doi: 10.3969/j.issn.1671-9727.2013.01.013
      [50] 孙德有, 吴福元, 高山, 等, 2005.吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约.地学前缘, 12(2):263-275. doi: 10.3321/j.issn:1005-2321.2005.02.028
      [51] 唐杰, 许文良, 王枫, 等, 2018.古太平洋板块在欧亚大陆下的俯冲历史:东北亚陆缘中生代-古近纪岩浆记录.中国科学(D辑:地球科学), 48(5):549-583. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201805004.htm
      [52] 王师捷, 徐仲元, 董晓杰, 等, 2018.华北板块北缘中段花岗闪长岩-苏长辉长岩的锆石U-Pb年代学、地球化学特征及其形成机制.地球科学, 43(9):3267-3284. doi: 10.3799/dqkx.2017.585
      [53] 吴福元, 李献华, 杨进辉, 等, 2007a.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200706001
      [54] 吴福元, 李献华, 郑永飞, 等, 2007b.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001
      [55] 吴福元, 徐义刚, 朱日祥, 等, 2014.克拉通岩石圈减薄与破坏.中国科学(D辑:地球科学), 44(11):2358-2372. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200806001
      [56] 许文良, 王枫, 裴福萍, 等, 2013.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约.岩石学报, 29(2):339-353. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201302001
      [57] 严翔, 陈斌, 王志强, 等, 2019.华北克拉通北缘牛圈银矿区两期A型花岗岩的成因及其构造意义.岩石学报, 35(2):558-588. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201902018
      [58] 张炯飞, 李之彤, 金成洙, 2004.中国东北部地区埃达克岩及其成矿意义.岩石学报, 20(2):361-368. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200402016
      [59] 张艳斌, 吴福元, 杨正赫, 等, 2016.朝鲜半岛北部显生宙花岗岩成因研究及地质意义.岩石学报, 32(10): 3098-3122. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201610013
      [60] 朱日祥, 陈凌, 吴福元, 等, 2011.华北克拉通破坏的时间、范围与机制.中国科学(D辑:地球科学), 41(5):583-592. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201105001.htm
    • 加载中
    图(9) / 表(3)
    计量
    • 文章访问数:  951
    • HTML全文浏览量:  361
    • PDF下载量:  52
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-07-24
    • 刊出日期:  2020-05-15

    目录

      /

      返回文章
      返回