Characteristics of Ore-Forming Fluids in Himalayan Au-Sb-Pb-Zn Polymetallic Belt: Constraints from H-O Isotopes
-
摘要: 特提斯喜马拉雅成矿带产出数十个规模不等的金矿、锑金矿、锑矿和铅锌多金属矿,近期的矿产勘查在片麻岩穹窿发现了铍稀有多金属矿床.该成矿带内发育两期金锑铅锌矿化,其一为以邦布金矿和马攸木金矿为代表的造山型金矿,形成于59~45 Ma,属于青藏高原造山主碰撞阶段的产物;其二为以姐纳各普金矿、车穷卓布锑矿、扎西康铅锌矿的晚期矿化和吉松铅锌矿等为代表的热液型矿化,集中形成于21~12 Ma的后碰撞造山阶段.大量的流体包裹体研究表明喜马拉雅金锑铅锌成矿带的成矿流体主要为中低温(小于300℃)、中低盐度流体(< 10% NaCleqv).本文统计了已发表的和新获得的带内不同类型矿床共169个石英、绢云母、菱锰矿等热液矿物氢氧同位素数据,发现在δ18OH2O-δDV-SMOW相图中,这些同位素组成构成了3个端元:A端元以车穷卓布锑矿为代表,显示出极低的δ18OH2O值(低于-13‰)和低的δDV-SMOW值(< -111‰),靠近现代雨水线,完全落入西藏地热水H-O同位素范围;B端元以沙拉岗锑矿为代表,显示出具有最低的δDV-SMOW值(最低至-172‰)和较高的δ18OH2O值(高达12‰),落入建造水的H-O同位素范围内;端元C以邦布金矿和浪卡子金矿为代表,显示出具有极高的δDV-SMOW值(高达-43‰)和中等的δ18OH2O值,与造山型金矿氧同位素6‰~13‰的范围相同,包括了原始岩浆水的范围和部分变质水的范围.带内主要金属矿床成矿流体氢氧同位素均介于这3个流体端元之间,显示出绝大部分矿床的流体均非单一流体来源,而具有多源流体混合的特征.Abstract: The Tethys Himalayan metallogenic belt contains dozens of gold, gold-antimony and lead-zinc polymetallic ore deposits with variable sizes. Some Be-Rb-Sn-W polymetallic deposits in the gneiss dome have been found in recent mineral explorations. A 2-stage gold-antimony-lead-zinc mineralization in the orogenic belt has been recognized, one of which is the orogenic gold deposit represented by the Bangbu and Mayum gold deposit. These deposits were formed at 59-45 Ma, belonging to the main collision stage of the India-Asia continental collision. The others are hydrothermal-type gold-antimony-lead-zinc deposits represented by the Jienagepu gold deposit, Cheqiongzhuobu vein-type antimony deposit, Zhaxikang lead-zinc polymetallic vein-type deposit and Jisong lead-zinc deposit. The formation of the deposits is concentrated in the post-collision orogenic stage of 21-12 Ma. A large number of fluid inclusion researches indicate that the ore-forming fluids of Himalayan gold-antimony-lead-zinc metallogenic belt are mainly medium-low temperature (less than 300℃) and medium-low salinity fluid (< 10% NaCleqv). This paper presented a total of 169 H-O isotopic data of quartz, sericite and rhodochrosite that have been published and newly obtained from experiments. It is found that these isotopic compositions constitute three endmembers in the δ18OH2O-δDV-SMOW phase diagram. The endmember A (the Cheqiongzhuobu-type) has characteristics of very low δ18OH2O value (< -13‰) and low δDV-SMOW value (< -111‰, which is close to the Modern Rainwater Line(MRL), and completely falls into the H-O isotope range of Tibet geothermal water. The endmember B (the Shalagang-type) shows the lowest δDV-SMOW value (lowest to -172‰) and higher δ18OH2O (up to 12‰) value than A, that falls within range of the Formation Water. The endmember C constitutes very high δDV-SMOW value (up to -43‰) and a medium δ18OH2O value, which has two typical representative types of the Bangbu-type and the Langkazi-type. The Bangbu-type has the same oxygen isotope range(6‰-13‰) as that of orogenic gold deposit. However, the Langkazi-type shows same oxygen isotope range with the Original Magma Water(OMW). The ore-forming fluids hydrogen and oxygen isotopes of most deposits in Himalayan collisional belt fall among endmembers A, B and C, indicating that most of ore-forming fluids are not of a single fluid source, but have the characteristics of fluid mixing with multiple sources.
-
图 1 特提斯喜马拉雅金锑铅锌成矿带矿床分布
据张刚阳(2012)修改
Fig. 1. Distribution of Tethys Himalayan Au-Sb-Pb-Zn metallogenic belt
图 2 特提斯喜马拉雅典型矿床氢氧同位素组成特征
底图据Hedenquist and Lowenstern(1994);西藏地热水数据据郑淑蕙等(1982)
Fig. 2. Hydrogen-oxygen isotope diagram for deposits in Himalayan metallogenic belt
-
[1] Bierlein, F. P., Crowe, D. E., 2000. Phanerozoic Orogenic Lode Gold Deposits. Review of Economic Geology, 13:103-139. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025021918/ [2] Clayton, R. N., Rex, R. W., Syers, J. K., et al., 1972. Oxygen Isotope Abundance in Quartz from Pacific Pelagic Sediments. Journal of Geophysical Research, 77(21):3907-3915. https://doi.org/10.1029/jc077i021p03907 [3] Dong, S. L., Huang, Y., Li, G. M., et al., 2017. Geology and Mineralization Dating of Jienagepu Gold Deposit in Southern Tibet with Implication from Zhaxikang Pb-Zn-Au-Sb Metallogenic System. Resources & Industries, 19(5):56-64 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zycy201705009 [4] Duan, J. L., Tang, J. X., Lin, B., 2016. Zinc and Lead Isotope Signatures of the Zhaxikang PbZn Deposit, South Tibet:Implications for the Source of the Ore-Forming Metals. Ore Geology Reviews, 78:58-68. https://doi.org/10.1016/j.oregeorev.2016.03.019 [5] Fu, J. G., Li, G. M., Wang, G. H., et al., 2018. Establishment of the North Himalayan Double Gneiss Domes:Evidence from Field Identification of the Cuonadong Dome, South Tibet. Geology in China, 45(4):783-802 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201804011 [6] Gao, W., 2006. Study on Geological, Geochemical Gharacteristics and Genetic Gynamics of Shalagang Antimony Deposit in Southern Tibetan Detachment System (Dissertation). China University of Geosicences, Beijing, 57-60 (in Chinese with English abstract). [7] Groves, D. I., Goldfarb, R. J., Gebre-Mariam, M., et al., 1998. Orogenic Gold Deposits:A Proposed Classification in the Context of Their Crustal Distribution and Relationship to Other Gold Deposit Types. Ore Geology Reviews, 13(1-5):7-27. https://doi.org/10.1016/s0169-1368(97)00012-7 [8] Guo, C. Y., Zhang, W. Z., Ge, L. S., et al., 2011. Several Questions on Tracing Ore Forming Fluid by Using Hydrogen and Oxygen Isotope System. Journal of Mineralogy and Petrology, 31(3):41-47 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwys201103007 [9] Hedenquist, J. W., Lowenstern, J. B., 1994. The Role of Magmas in the Formation of Hydrothermal Ore Deposits. Nature, 370(6490):519-527. https://doi.org/10.1038/370519a0 [10] Hou, Z. Q., Qu, X. M., Yang, Z. S., et al., 2006. Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅲ. Mineralization in Post-Collisional Extension Setting. Mineral Deposits, 25(6):629-651 (in Chinese with English abstract). [11] Jiang, S. H., Nie, F. J., Hu, P., et al., 2009. Mayum:An Orogenic Gold Deposit in Tibet, China. Ore Geology Reviews, 36(1-3):160-173. https://doi.org/10.1016/j.oregeorev.2009.03.006 [12] Lee, J., Hacker, B., Wang, Y., 2004. Evolution of North Himalayan Gneiss Domes:Structural and Metamorphic Studies in Mabja Dome, Southern Tibet. Journal of Structural Geology, 26(12):2297-2316. https://doi.org/10.1016/j.jsg.2004.02.013 [13] LeFort, P., 1975. Himalayas-Collided Range-Present Knowledge of Continental Arc. American Journal of Sciences, A275:1-44. [14] Li, G. M., Zhang, L. K., Jiao, Y. J., et al., 2017. First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet. Mineral Deposits, 36(4):1003-1008 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201704014 [15] Li, H. J., Wang, Q. F., Yang, L., et al., 2017. Orogenic Gold Deposits Formed in Tibetan Collisional Orogen Setting:Geotectonic Setting, Geological and Geochemical Features. Acta Petrologica Sinica, 33(7):2189-2201 (in Chinese with English abstract). [16] Li, H. L., Li, G. M., Li, Y. X., et al., 2017. A Study on Ore Geological Characteristics and Fluid Inclusions of Jienagepu Gold Deposit in Zhaxikang Ore Concentration District, Southern Tibet, China. Acta Mineralogica Sinica, 37(6):684-696 (in Chinese with English abstract). [17] Li, X. F., Mao, J. W., Wang, Y. T., et al., 2003. Evidence of Noble Gas Isotopes and Halogen for the Origin of Ore-Forming Fluids. Geological Review, 49(5):513-521 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200305009 [18] Li, Z. Q., Hou, Z. Q., Nie, F. J., et al., 2005. Characteristic and Distribution of the Partial Melting Layers in the Upper Crust:Evidence from Active Hydrothermal Fluid in the South Tibet. Acta Geologica Sinica. 79(1):68-77 (in Chinese with English abstract). [19] Liang, W., Hou, Z. Q., Zheng, Y. C., et al., 2018. The Zhaxikang Vein-Type Pb-Zn-Ag-Sb Deposit in Himalayan Orogen, Tibet:Product by Overprinting and Remobilization Processes during Post-Collisional Period. Acta Geologica Sinica (English Edition), 92(2):682-705. https://doi.org/10.1111/1755-6724.13549 [20] Liang, W., Yang, Z. S., Zheng, Y. C., 2015. The Zhaxikang Pb-Zn Polymetallic Deposit:Ar-Ar Age of Sericite and Its Metallogenic Significance. Acta Geologica Sinica, 89(3):560-568 (in Chinese with English abstract). [21] Liang, W., Zhang, L. K., Xia, X. B., 2018. Geology and Preliminary Mineral Genesis of the Cuonadong W-Sn Polymetallic Deposit, Southern Tibet, China. Earth Science, 43(8):2742-2754 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.154 [22] Liang, W., Zheng, Y. C., 2019. Hydrothermal Sericite Ar-Ar Dating of Jisong Pb-Zn Deposit, Southern Tibet. Geology in China, 46(1):126-139 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201901009 [23] Lin, B., Tang, J. X., Zheng, W. B., et al., 2016. A Preliminary Study of Geological Features and Metallogenic Epoch in Keyue Zn-Polymetallic Deposit, Tibet. Mineral Deposits, 31(1):33-50 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201601003 [24] Matsuhisa, Y., Goldsmith, J. R., Clayton, R. N., 1979. Oxygen Isotopic Fractionation in the System Quartz-Albite-Anorthite-Water. Geochimica et Cosmochimica Acta, 43(7):1131-1140. https://doi.org/10.1016/0016-7037(79)90099-1 [25] Meng, X. J., Yang, Z. S., Qi, X. X., et al., 2008. Silicon-Oxygen-Hydrogen Isotopic Compositions of Zaxikang Antimony Polymetallic Deposit in Southern Tibet and Its Responses to the Ore-Controlling Structure. Acta Petrologica Sinica, 24(7):1649-1655 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200807021 [26] Nie, F. J., Hu, P., Jiang, S. H., et al., 2005. Type and Temporal-Spatial Distribution of Gold and Antimony Deposits (Prospects) in Southern Tibet, China. Acta Geologica Sinica, 79(3):373-385 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200503009 [27] Pei, Y. R., Sun, Q. Z., Zheng, Y. C., et al., 2016. Genesis of the Bangbu Orogenic Gold Deposit, Tibet:Evidence from Fluid Inclusion, Stable Isotopes, and Ar-Ar Geochronology. Acta Geologica Sinica (English Edition), 90(2):722-737. https://doi.org/10.1111/1755-6724.12700 [28] Qi, X. X., Li, T. F., Meng, X. J., et al., 2008. Cenozoic Tectonic Evolution of the Tethyan Himalayan Foreland Fault-Fold Belt in Southern Tibet, and Its Constraint on Antimony-Gold Polymetallic Minerogenesis. Acta Petrologica Sinica, 24(7):1638-1648 (in Chinese with English abstract). [29] Sun, Q. Z., Zheng, Y. C., Hou, Z. Q., et al., 2013. Genesis of Bangbu Orogenic Gold Deposit in Tibet:Constraints from Fluid Inclusions and Isotopic Composition. Mineral Deposits, 32(2):353-366 (in Chinese with English abstract). [30] Sun, X. M., Wei, H. X., Zhai, W., et al., 2016. Fluid Inclusion Geochemistry and Ar-Ar Geochronology of the Cenozoic Bangbu Orogenic Gold Deposit, Southern Tibet, China. Ore Geology Reviews, 74:196-210. https://doi.org/10.1016/j.oregeorev.2015.11.021 [31] Sun, X., Zheng, Y. Y., Pirajno, F., et al., 2018. Geology, S-Pb Isotopes, and 40Ar/39Ar Geochronology of the Zhaxikang Sb-Pb-Zn-Ag Deposit in Southern Tibet:Implications for Multiple Mineralization Events at Zhaxikang. Mineralium Deposita, 53(3):435-458. https://doi.org/10.1007/s00126-017-0752-6 [32] Suzuoki, T., Epstein, S., 1976. Hydrogen Isotope Fractionation between OH-Bearing Minerals and Water. Geochimica et Cosmochimica Acta, 40(10):1229-1240. https://doi.org/10.1016/0016-7037(76)90158-7 [33] Taylor, R. P., Fallick, A. E., Breaks, F. W., 1992. Volatile Evolution in Archean Rare-Element Granitic Pegmatites:Evidence from the Hydrogen-Isotopic Composition of Channel H2O in Beryl. Canada Mineralogy, 30(3):877-893. [34] Wang, D., Sun, X., Zheng, Y. Y., et al., 2017. Two Pulses of Mineralization and Genesis of the Zhaxikang Sb-Pb- Zn-Ag Deposit in Southern Tibet:Constraints from Fe-Zn Isotopes. Ore Geology Reviews, 84:347-363. https://doi.org/10.1016/j.oregeorev.2016.12.030 [35] Wen, C. Q., Duo, J., Fan, X. P., et al., 2006. Characteristics of Ore Fluids of the Mayum Gold Deposit, Western Tibet, China. Geological Bulletin of China, 25(1):261-266 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200601041 [36] Wu, F. Y., Liu, Z. C., Liu, X. C., et al., 2015. Himalayan Leucogranite:Petrogenesis and Implications to Orogenesis and Plateau Uplift. Acta Petrologica Sinica, 31(1):1-36 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501001 [37] Wu, J. Y., Li, G. M., Zhou, Q., et al., 2015. A Preliminary Study of the Metallogenic System in the Zhaxikang Integrated Exploration Area, Southern Tibet. Geology in China, 42(6):1674-1683 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201506002 [38] Xie, Y. L., Li, L. M., Wang, B. G., et al., 2017. Genesis of the Zhaxikang Epithermal Pb-Zn-Sb Deposit in Southern Tibet, China:Evidence for a Magmatic Link. Ore Geology Reviews, 80:891-909. https://doi.org/10.1016/j.oregeorev.2016.08.007 [39] Yang, Z. S., Hou, Z. Q., Gao, W., et al., 2006. Metallogenic Characteristics and Genetic Model of Antimony and Gold Deposits in South Tibetan Detachment System. Acta Geologica Sinica, 80(9):1377-1391 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200609013 [40] Yang, Z. S., Hou, Z. Q., Meng, X. J., et al., 2009. Post-Collisional Sb and Au Mineralization Related to the South Tibetan Detachment System, Himalayan Orogen. Ore Geology Reviews, 36(1-3):194-212. https://doi.org/10.1016/j.oregeorev.2009.03.005 [41] Yin, A., 2001. Geologic Evolution of the Himalayan-Tibetan Orogen in the Context of Phanerozoic Continental Growth of Asia. Acta Geoscientia Sinica, 22(3):193-230 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200103001 [42] Yin, Y., Liang, W., Xie, J. C., 2015. Characteristic of Fluid Inclusions in Jisong Pb-Zn Deposit in South Tibet and Its Geological Significance. Geoscience, 29(3):553-562. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201503007 [43] Zeng, L. S., Gao, L. E., Tang, S. H., et al., 2014. Eocene Magmatism in the Tethyan Himalaya, Southern Tibet. Geological Society, London, Special Publications, 412(1):287-316. https://doi.org/10.1144/sp412.8 [44] Zhai, W., Sun, X. M., Yi, J. Z., et al., 2014. Geology, Geochemistry, and Genesis of Orogenic Gold-Antimony Mineralization in the Himalayan Orogen, South Tibet, China. Ore Geology Reviews, 58:68-90. https://doi.org/10.1016/j.oregeorev.2013.11.001 [45] Zhai, Y. S., 1999. On the Metallogenic System. Earth Science Frontiers, 6(1):13-27 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201002003 [46] Zhang, G. Y., 2012. Metallogenic Model and Prospecting Potential in Southern Tibet Au-Sb Polymetallic Belt (Dissertation). China University of Geosciences, Wuhan, 121-126 (in Chinese with English abstract). [47] Zhang, J. F., 2010. The Genesis Study of Zhaxikang Lead Zinc Antimony Silver Deposit, North Himalayan (Dissertation). China University of Geosciences, Wuhan, 63-65 (in Chinese with English abstract). [48] Zhang, J. F., Zheng, Y. Y., Zhang, G. Y., et al., 2010. Genesis of Zhaxikang Pb-Zn-Sb-Ag Deposit in Northern Himalaya:Constraints from Multi-Isotope Geochemistry. Earth Science, 35(6):1000-1011 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2010.113 [49] Zhang, L. K., Zhang, Z., Li, G. M., et al., 2018. Rock Assemblage, Structural Characteristics and Genesis Mechanism of the Cuonadong Dome, Tethys Himalaya. Earth Science, 43(3):2664-2683 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.141 [50] Zhang, Z. M., Xiang, H., Ding, H. X., et al., 2017. Miocene Orbicular Diorite in East-Central Himalaya:Anatexis, Melt Mixing, and Fractional Crystallization of the Greater Himalayan Sequence. Geological Society of America Bulletin, 129(7-8):869-885. https://doi.org/10.1130/b31586.1 [51] Zheng, S. H., Zhang, Z. F., Nie, B. L., et al., 1982. Hydrogen and Oxygen Isotopic Studies of Thermal Waters in Xizang. Acta Scientiarum Naturalum Universities Pekinesis, (1):99-106 (in Chinese with English abstract). [52] Zheng, Y. F., 1993. Calculation of Oxygen Isotope Fractionation in Hydroxyl-Bearing Silicates. Earth and Planetary Science Letters, 120(3-4):247-263. https://doi.org/10.1016/0012-821x(93)90243-3 [53] Zheng, Y. Y., Liu, M. Y., Sun, X., et al., 2012. Type, Discovery Process and Significance of Zhaxikang Antimony Polymetallic Ore Deposit, Tibet. Earth Science, 37(5):1003-1014 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2012.108 [54] Zheng, Y. Y., Sun, X., Tian, L. M., et al., 2014. Mineralization, Deposit Type and Metallogenic Age of the Gold Antimony Polymetallic Belt in the Eastern Part of North Himalayan. Geotectonica et Metallogenia, 38(1):108-118 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201401011 [55] Zhou, Q., Li, G. M., Xia, X. B., et al., 2014. Metallogenic Model of the Zhaxikang polymetallic Concentration District, North Himalaya. Mineral Deposits, 33(S1):353-354 (in Chinese). [56] Zhou, T. C., Sun, X., Zheng, Y. Y., et al., 2015. Characteristics of Gold-Bearing Minerals and Modes of Occurrence of Gold in Chalapu Gold Deposit, Southern Tibet. Mineral Deposits, 34(3):521-532 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201503006 [57] Zhu, D. C., Chung, S. L., Mo, X. X., et al., 2009. The 132 Ma Comei-Bunbury Large Igneous Province:Remnants Identified in Present-Day Southeastern Tibet and Southwestern Australia. Geology, 37(7):583-586. https://doi.org/10.1130/g30001a.1 [58] Zhu, L. K., Gu, X. X., Li, G. Q., et al., 2012. Fluid Inclusions in the Zhaxikang Pb-Zn-Sb Polymetallic Deposit, South Tibet, and Its Geological Significance. Geoscience, 26(3):453-463 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201203004 [59] 董随亮, 黄勇, 李光明, 等, 2017.藏南姐纳各普金矿地质特征及成矿时代约束——对扎西康矿集区铅锌金锑成矿系统的启示.资源与产业, 19(5):56-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zycy201705009 [60] 付建刚, 李光明, 王根厚, 等, 2018.北喜马拉雅双穹窿构造的建立:来自藏南错那洞穹窿的厘定.中国地质, 45(4):783-802. [61] 高伟, 2006.藏南拆离带沙拉岗锑矿床地质地球化学特征及成因机制研究(硕士学位论文).北京: 中国地质大学, 57-60. [62] 郭春影, 张文钊, 葛良胜, 等, 2011.氢氧同位素体系成矿流体示踪若干问题.矿物岩石, 31(3):41-47. doi: 10.3969/j.issn.1001-6872.2011.03.007 [63] 侯增谦, 曲晓明, 杨竹森, 等, 2006.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质, 25(6):629-651. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001 [64] 李光明, 张林奎, 焦彦杰, 等, 2017.西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义.矿床地质. 36(4):1003-1008. http://d.old.wanfangdata.com.cn/Periodical/kcdz201704014 [65] 李华健, 王庆飞, 杨林, 等, 2017.青藏高原碰撞造山背景造山型金矿床:构造背景, 地质及地球化学特征.岩石学报, 33(7):2189-2201. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201707015 [66] 李洪梁, 李光明, 李应栩, 等, 2017.藏南扎西康矿集区姐纳各普金矿床地质与流体包裹体特征.矿物学报, 37(6):684-696. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201706002.htm [67] 李晓峰, 毛景文, 王义天, 等, 2003.惰性气体同位素和卤素示踪成矿流体来源.地质论评, 49(5):513-521. doi: 10.3321/j.issn:0371-5736.2003.05.009 [68] 李振清, 侯增谦, 聂凤军, 等, 2005.藏南上地壳低速高导层的性质与分布:来自热水流体活动的证据.地质学报, 79(1):68-77. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200501008 [69] 梁维, 杨竹森, 郑远川, 2015.藏南扎西康铅锌多金属矿绢云母Ar-Ar年龄及其成矿意义.地质学报, 89(3):560-568. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201503009 [70] 梁维, 张林奎, 夏祥标, 等, 2018.藏南地区错那洞钨锡多金属矿床地质特征及成因.地球科学, 43 (8):2742-2754. http://earth-science.net/WebPage/Article.aspx?id=3909 [71] 梁维, 郑远川, 2019.藏南吉松铅锌矿成矿时代的厘定:热液绢云母Ar-Ar年龄, 中国地质, 46(1):126-139 http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201901009 [72] 林彬, 唐菊兴, 郑文宝, 等, 2016.西藏柯月锌多金属矿床地质特征及成矿时代初步研究.矿床地质, 31(1):33-50. http://d.old.wanfangdata.com.cn/Periodical/kcdz201601003 [73] 孟祥金, 杨竹森, 戚学祥, 等, 2008.藏南扎西康锑多金属矿硅-氧-氢同位素组成及其对成矿构造控制的响应.岩石学报, 24(7):1649-1655. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200807021 [74] 聂凤军, 胡朋, 江思宏, 等, 2005.藏南地区金和锑矿床(点)类型及其时空分布特征.地质学报, 79(3):373-385. doi: 10.3321/j.issn:0001-5717.2005.03.009 [75] 戚学祥, 李天福, 孟祥金, 等, 2008.藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用.岩石学报, 24(7):1638-1648. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200807020 [76] 孙清钟, 郑远川, 侯增谦, 等, 2013.西藏邦布石英脉型金矿床的成因:流体包裹体及氢-氧同位素证据.矿床地质, 32(2):353-366. doi: 10.3969/j.issn.0258-7106.2013.02.010 [77] 温春齐, 多吉, 范小平, 等, 2006.西藏西部马攸木金矿床成矿流体的特征.地质通报, 25(1):261-266. doi: 10.3969/j.issn.1671-2552.2006.01.041 [78] 吴福元, 刘志超, 刘小驰, 等, 2015.喜马拉雅淡色花岗岩.岩石学报, 31(1):1-36. http://d.old.wanfangdata.com.cn/Periodical/dqkx200503003 [79] 吴建阳, 李光明, 周清, 等, 2015.藏南扎西康整装勘查区成矿体系初探.中国地质, 42(6):1674-1683. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201506002 [80] 杨竹森, 侯增谦, 高伟, 等, 2006.藏南拆离系锑金成矿特征与成因模式.地质学报, 80(9):1377-1391. doi: 10.3321/j.issn:0001-5717.2006.09.013 [81] 尹安, 2001.喜马拉雅-青藏高原造山带地质演化——显生宙亚洲大陆生长.地球学报, 22(3):193-230. doi: 10.3321/j.issn:1006-3021.2001.03.001 [82] 尹远, 梁维, 谢锦程, 等, 2015.藏南吉松铅锌矿流体包裹体特征及其地质意义.现代地质, 29(3):553-562. doi: 10.3969/j.issn.1000-8527.2015.03.007 [83] 翟裕生, 1999.论成矿系统.地学前缘, 6(1):13-27. doi: 10.3321/j.issn:1005-2321.1999.01.002 [84] 张刚阳, 2012.藏南金锑多金属成矿带成矿作用与找矿前景研究(博士学位论文).武汉: 中国地质大学, 121-126. [85] 张建芳, 2010.北喜马拉雅扎西康铅锌锑银矿床成因研究(硕士学位论文).武汉: 中国地质大学, 63-65. [86] 张建芳, 郑有业, 张刚阳, 等, 2010.北喜马拉雅扎西康铅锌锑银矿床成因的多元同位素制约.地球科学, 35(6):1000-1011. http://earth-science.net/WebPage/Article.aspx?id=2044 [87] 张林奎, 张志, 李光明, 等, 2018.特提斯喜马拉雅错那洞穹窿的岩石组合、构造特征与成因.地球科学, 43(3):2664-2683. http://earth-science.net/WebPage/Article.aspx?id=3904 [88] 郑淑蕙, 张知非, 倪葆龄, 等, 1982.西藏地热水的氢氧稳定同位素研究.北京大学学报, (1):99-106. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX198304001.htm [89] 郑有业, 刘敏院, 孙祥, 等, 2012.西藏扎西康锑多金属矿床类型、发现过程及意义.地球科学, 37(5):1003-1014. http://earth-science.net/WebPage/Article.aspx?id=2305 [90] 郑有业, 孙祥, 田立明, 等, 2014.北喜马拉雅东段金锑多金属成矿作用、矿床类型与成矿时代.大地构造与成矿学, 38(1):108-118. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201401011 [91] 周清, 李光明, 夏祥标, 等, 2014.藏南扎西康铅锌多金属矿集区成矿模式.矿床地质, 33(S1):353-354. http://d.old.wanfangdata.com.cn/Conference/8450519 [92] 周天成, 孙祥, 郑有业, 等, 2015.藏南查拉普金矿床载金矿物特征与金的赋存状态.矿床地质, 34(3):521-532. http://d.old.wanfangdata.com.cn/Periodical/kcdz201503006 [93] 朱黎宽, 顾雪祥, 李关清, 等, 2012.藏南扎西康铅锌锑多金属矿床流体包裹体研究及地质意义.现代地质, 26(3):453-463. doi: 10.3969/j.issn.1000-8527.2012.03.004