Impacts of Temperature, Precipitation and Human Activity on Vegetation NDVI in Yangtze River Basin, China
-
摘要: 为了了解气温、降水量和人类活动对流域植被NDVI(normalized difference vegetation index)的影响,以长江流域为研究区,运用一元线性回归分析法和Theil-Sen Median趋势分析法研究了长江流域气温、降水量和植被NDVI变化特征,同时利用相关分析法和残差分析法探讨气温、降水量和人类活动对植被NDVI变化的影响.结果表明:1960—2015年长江流域年平均温度显著上升,而降水量的变化趋势并不显著;1982—2015年流域NDVI呈显著增加趋势;1982—2015年流域NDVI与气温的相关性较高,然而与降水量的相关性并不显著;人类活动使流域NDVI增加的区域主要分布于流域北部、东南和西南部分地区,而使NDVI下降的区域位于流域中西部区域和长三角地区.气温对长江流域植被NDVI变化的影响大于降水,气候变暖和人类活动对流域生态环境具有一定程度的影响.Abstract: To investigate the impacts of temperature,precipitation and human activity on the vegetation normalized difference vegetation index (NDVI) variation,in this study,taking Yangtze River basin (YRB) as the study area,temperature,precipitation and vegetation NDVI variation were analyzed using linear regression (LR) analysis and Theil-Sen Median trend analysis. The impacts of temperature,precipitation and human activity on vegetation NDVI variation were analyzed using the Pearson correlation analysis and residuals analysis. The results show that the annual mean temperature significantly increased over the whole basin during 1960—2015. However,the precipitation shows little change. The annual mean NDVI shows a significant increasing trend over the whole study area during 1982—2015. The correlation coefficients between NDVI and temperature are high. However,the mean NDVI has no significant correlation with annual precipitation. The regions where the NDVI increased caused by human activity were mainly located in the northern,southeastern and southwestern YRB,while the regions where the NDVI decreased caused by human activity were mainly located in the small part of mid-western YRB and YRD. This study highlights that the mean air temperature has stronger effects on vegetation NDVI than precipitation and the effects of global warming and human activity on ecological environment at the local scale.
-
Key words:
- temperature /
- precipitation /
- NDVI /
- Yangtze River basin /
- remote sensing
-
表 1 长江流域气温变化的显著性
Table 1. Significance of temperature variation in the YRB
均值(℃) Z统计量 变化趋势 年 14.3 4.98 显著上升 春 14.3 3.36 显著上升 夏 23.7 1.26 上升 秋 15.1 3.58 显著上升 冬 4.2 3.12 显著上升 表 2 长江流域降水量变化的显著性
Table 2. Significance of precipitation variation in the YRB
均值(mm) Z统计量 变化趋势 年 1 081.8 -0.98 下降 春 324.6 -0.11 下降 夏 497.8 1.90 增加 秋 230.0 -1.53 下降 冬 125.1 -1.46 下降 表 3 长江流域NDVI变化的显著性
Table 3. Significance of NDVI variation in the YRB
均值 Z统计量 变化趋势 年 0.54 3.17 显著增加 春 0.50 4.12 显著增加 夏 0.67 0.47 增加 秋 0.56 2.70 显著增加 冬 0.44 1.25 增加 表 4 1982—2015年长江流域年平均NDVI与气温、降水的相关系数
Table 4. The correlation coefficient between annual mean NDVI and temperature (precipitation) in the YRB during 1982—2015
时间 NDVI 气温 年 0.49*** 春 0.65*** 夏 0.43*** 秋 0.38** 冬 0.50*** 降水量 年 -0.23 春 -0.26 夏 -0.13 秋 -0.15 冬 -0.11 注:*、**和***分别表示0.1、0.05和0.01显著性水平. 表 5 2001—2013年长江流域主要土地利用类型的相互转换(102 km2)
Table 5. The conversion of land use during 2001—2013
土地利用类型 草地 城镇用地 灌丛 林地 农田 草地 3 137.42 5.97 271.02 352.44 307.65 城镇用地 15.18 76.37 122.14 107.72 187.74 灌丛 313.43 12.58 1 593.83 2 263.58 777.31 林地 89.91 1.18 242.21 3 638.01 103.78 农田 52.72 29.84 515.31 268.67 2 184.93 变化量 -465.84 -383.21 -2 216.22 2 555.33 509.94 -
[1] Bao, G., Qin, Z., Bao, Y., et al., 2014.NDVI-Based Long-Term Vegetation Dynamics and Its Response to Climatic Change in the Mongolian Plateau.Remote Sensing, 6(9):8337-8358. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=MDPI000000125129 [2] Chen, C., Park, T., Wang, X.H., et al., 2019.China and India Lead in Greening of the World through Land-Use Management.Nature Sustainability, 2:122-129. [3] Eastman, J.R., Sangermano, F., Machado, E.A., et al., 2013.Global Trends in Seasonality of Normalized Difference Vegetation Index (NDVI), 1982-2011.Remote Sensing, 5(10):4799-4818. https://doi.org/10.3390/rs5104799 [4] Evans, J., Geerken, R., 2004.Discrimination between Climate and Human-Induced Dryland Degradation. Journal of Arid Environments, 57(4):535-554. https://doi.org/10.1016/s0140-1963(03)00121-6 [5] Forkel, M., Carvalhais, N., Rödenbeck, C., et al., 2016.Enhanced Seasonal CO2 Exchange Caused by Amplified Plant Productivity in Northern Ecosystems.Science, 6274:696-699. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=72fd71510b88220d5029a819f82fb137 [6] Gesest, K.V.D., Vrieling, A., Dietz, T., 2010.Migration and Environment in Ghana:A Cross-District Analysis of Human Mobility and Vegetation Dynamics.Environment & Urbanization, 22(1):107-124. [7] Gillespie, T.W., Ostermann-Kelm, S., Dong, C.Y., et al., 2018.Monitoring Changes of NDVI in Protected Areas of Southern California.Ecological Indicators, 88:485-494. https://doi.org/10.1016/j.ecolind.2018.01.031 [8] Hou, W.J., Gao, J.B., Wu, S.H., et al., 2015.Interannual Variations in Growing-Season NDVI and Its Correlation with Climate Variables in the Southwestern Karst Region of China.Remote Sensing, 7(9):11105-11124. https://doi.org/10.3390/rs70911105 [9] Ichii, K., Kawabata, A., Yamaguchi, Y., 2002.Global Correlation Analysis for NDVI and Climatic Variables and NDVI Trends:1982-1990.International Journal of Remote Sensing, 23(18):3873-3878. [10] Jiang, L.L., Jiapaer, G., Bao, A.M., et al., 2017.Vegetation Dynamics and Responses to Climate Change and Human Activities in Central Asia.Science of the Total Environment, 599-600:967-980. https://doi.org/10.1016/j.scitotenv.2017.05.012 [11] Li, H.X., Liu, G.H., Fu, B.J., 2011.Response of Vegetation to Climate Change and Human Activity Based on NDVI in the Three-River Headwaters Region.Acta Ecologica Sinica, 31(19):5495-5504 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201119011 [12] Li, S.S., Yang, S.N., Liu, X.F., et al., 2015a.NDVI-Based Analysis on the Influence of Climate Change and Human Activities on Vegetation Restoration in the Shaanxi-Gansu-Ningxia Region, Central China.Remote Sensing, 7(9):11163-11182. https://doi.org/10.3390/rs70911163 [13] Li, Z., Chen, Y.N., Li, W.H., et al., 2015b.Potential Impacts of Climate Change on Vegetation Dynamics in Central Asia.Journal of Geophysical Research:Atmospheres, 120(24):2045-2057. [14] Liu, J.Y., Zhang, Z.X., Xu, X.L., et al., 2010.Spatial Patterns and Driving Forces of Land Use Change in China during the Early 21st Century.Journal of Geographical Sciences, 20(4):483-494. https://doi.org/10.1007/s11442-010-0483-4 [15] Mao, J.F., Ribes, A., Yan, B.Y., et al., 2016.Human-Induced Greening of the Northern Extratropical Land Surface.Nature Climate Change, 6(10):959-963. https://doi.org/10.1038/nclimate3056 [16] Mu, S.J., Li, J.L., Chen, Y.Z., et al., 2012.Spatial Differences of Variations of Vegetation Coverage in Inner Mongolia during 2001-2010.Acta Geographica Sinica, 67(9):1255-1268(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb201209010 [17] Olsson, L., Eklundh, L., Ardoe, J., 2005.A Recent Greening of the Sahel:Trends, Patterns and Potential Causes.Journal of Arid Environments, 63(3):556-566. https://doi.org/10.1016/j.jaridenv.2005.03.008 [18] Piao, S.L., Fang, J.Y., 2001.Dynamic Vegetation Cover Change over the Last 18 Years in China.Quaternary Sciences, 21(4):294-302 (in Chinese with English abstract). [19] Piao, S.L., Mohammat, A., Fang, J.Y., et al., 2006.NDVI-Based Increase in Growth of Temperate Grasslands and Its Responses to Climate Changes in China.Global Environmental Change, 16(4):340-348. https://doi.org/10.1016/j.gloenvcha.2006.02.002 [20] Piao, S.L., Yin, G.D., Tan, J.G., et al., 2015.Detection and Attribution of Vegetation Greening Trend in China over the Last 30 Years.Global Change Biology, 21(4):1601-1609. https://doi.org/10.1111/gcb.12795 [21] Potter, C., Klooster, S., Genovese, V., 2012.Net Primary Production of Terrestrial Ecosystems from 2000 to 2009.Climatic Change, 115(2):365-378. https://doi.org/10.1007/s10584-012-0460-2 [22] Qian, L.L., He, Z.H., Liang, H., et al., 2019.Spatial-Temporal Evolution Characteristics of Agricultural Drought Based on Precipitation Z Index in Guizhou.Journal of Guizhou Normal University (Natural Sciences), 37(1):10-14(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gzsfdxxb-zr201901003 [23] Qin, D.H., 2014.Climate Change Science and Sustainable Development.Progress in Geography, 33(7):874-883(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201407002 [24] Qu, S., Wang, L.C., Lin, A.W., et al., 2018.What Drives the Vegetation Restoration in Yangtze River Basin, China:Climate Change or Anthropogenic Factors?Ecological Indicator, 90:438-450. http://d.old.wanfangdata.com.cn/Periodical/tryhj201001005 [25] Richardson, A.D., Black, T.A., Ciais, P., et al., 2010.Influence of Spring and Autumn Phenological Transitions on Forest Ecosystem Productivity.Philosophical Transactions of the Royal Society B:Biological Sciences, 365:3227-3246. https://doi.org/10.1098/rstb.2010.0102 [26] Shao, J.A., Zhang, S.C., Li, X.B., 2015.The Role of Rural Farmland Transfer in Preventing Farmland Abandonment in the Mountainous Areas.Acta Geographica Sinica, 70(4):636-649 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dlxb201504012 [27] Song, X.P., Hansen, M.C., Stehman, S.V., et al., 2018.Global Land Change from 1982 to 2016.Nature, 560:639-643. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a2714be619d78f480f9736db0d8328b0 [28] Tian, F., Brandt, M., Liu, Y.Y., et al., 2016.Remote Sensing of Vegetation Dynamics in Drylands:Evaluating Vegetation Optical Depth (VOD) Using AVHRR NDVI and in Situ Green Biomass Data over West African Sahel.Remote Sensing of Environment, 177:265-276. https://doi.org/10.1016/j.rse.2016.02.056 [29] Tian, Q., 2016.Impacts of Climate Change and Human Activity on the Water and Sediment Flux of the Yellow, Yangtze and Pearl River Basins over the Past 60 Years(Dissertation).East China Normal University, Shanghai (in Chinese with English abstract). [30] Wang, J., Wang, K.L., Zhang, M.Y., et al., 2015.Impacts of Climate Change and Human Activities on Vegetation Cover in Hilly Southern China.Ecological Engineering, 81:451-461. https://doi.org/10.1016/j.ecoleng.2015.04.022 [31] Wang, P.H., Zhang, T., Yu, X.L., 2019.Change Characteristics and Periodic Evolution of Rainfall Erosion of Guilin in Recent 65 Years.Journal of Guizhou Normal University (Natural Sciences), 37(2):23-28(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gzsfdxxb-zr201902004 [32] Wang, Q., Zhang, M.J., Wang, S.J., et al., 2014.Changes in Temperature Extremes in the Yangtze River Basin, 1962-2011.Journal of Geographical Sciences, 24(1):59-75. https://doi.org/10.1007/s11442-014-1073-7 [33] Wen, Z.F., Wu, S.J., Chen, J.L., et al., 2017.NDVI Indicated Long-Term Interannual Changes in Vegetation Activities and Their Responses to Climatic and Anthropogenic Factors in the Three Gorges Reservoir Region, China.Science of the Total Environment, 574:947-959. https://doi.org/10.1016/j.scitotenv.2016.09.049 [34] Xiang, F.F., Wang, L.C., Yao, R., 2018.The Characteristics of Climate Change and Response of Vegetation in Three Gorges Reservoir Area.Earth Science, 43(Suppl.1):42-52(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx2018z1005 [35] Xie, B.N., Jia, X.X., Qin, Z.F., et al., 2016.Vegetation Dynamics and Climate Change on the Loess Plateau, China:1982-2011.Regional Environmental Change, 16(6):1583-1594. https://doi.org/10.1007/s10113-015-0881-3 [36] Yi, L., Ren, Z.Y., Zhang, C., 2014.Vegetation Cover, Climate and Human Activities on the Loess Plateau.Resources Science, 36(1):166-174(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zykx201401019 [37] Zhang, Q., Qi, T.Y., Li, J.F., et al., 2015.Spatiotemporal Variations of Pan Evaporation in China during 1960-2005:Changing Patterns and Causes.International Journal of Climatology, 35(6):903-912. https://doi.org/10.1002/joc.4025 [38] Zhang, Y., Zhang, C.B., Wang, Z.Q., et al., 2016.Vegetation Dynamics and Its Driving Forces from Climate Change and Human Activities in the Three-River Source Region, China from 1982 to 2012.The Science of the Total Environment, 563-564:210-220. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ea74f67bbbf9b4fb9bf986734e83701e [39] Zhang, Y.L., Song, C.H., Band, L.E., et al., 2017.Reanalysis of Global Terrestrial Vegetation Trends from MODIS Products:Browning or Greening?Remote Sensing of Environment, 191:145-155. https://doi.org/10.1016/j.rse.2016.12.018 [40] Zhao, S., Chang, F.M., Li, T.G., 2018.Seasonal and Inter-Annual Anomalies Sea Surface Temperature Offshore Northeastern Taiwan Its Implication Climate Reconstructions.Earth Science, 43(3):851-861(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201803014 [41] Zhao, W., Hu, Z.M., Guo, Q., et al., 2020.Contributions of Climatic Factors to Interannual Variability of the Vegetation Index in Northern China Grasslands.Journal of Climate, 33(1):175-183. [42] Zheng, F.F., Chen, Y.F., Wang, Y.L., et al., 2018.Influence of Seasonal Temperature Variation and pH Disparity on bGDGTs Thermometers in Soils.Earth Science, 43(Suppl.1):71-83(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx2018z1008 [43] Zhou, Y., Zhang, L., Fensholt, R., et al., 2015.Climate Contributions to Vegetation Variations in Central Asian Drylands:Pre-and Post-USSR Collapse.Remote Sensing, 7(3):2449-2470. https://doi.org/10.3390/rs70302449 [44] 李辉霞, 刘国华, 傅伯杰, 2011.基于NDVI的三江源地区植被生长对气候变化和人类活动的响应研究.生态学报, 31(19):5495-5504. http://d.old.wanfangdata.com.cn/Periodical/stxb201119011 [45] 穆少杰, 李建龙, 陈奕兆, 等, 2012.2001-2010年内蒙古植被覆盖度时空变化特征.地理学报, 67(9):1255-1268. http://d.old.wanfangdata.com.cn/Periodical/dlxb201209010 [46] 朴世龙, 方精云, 2001.最近18年中国植被覆盖的动态变化.第四纪研究, 21(4):294-302. http://d.old.wanfangdata.com.cn/Periodical/dsjyj200104002 [47] 钱莉莉, 贺中华, 梁虹, 等, 2019.基于降水Z指数的贵州省农业干旱时空演化特征.贵州师范大学学报(自然科学版), 37(1):10-14. http://d.old.wanfangdata.com.cn/Periodical/gzsfdxxb-zr201901003 [48] 秦大河, 2014.气候变化科学与人类可持续发展.地理科学进展, 33(7):874-883. http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201407002 [49] 邵景安, 张仕超, 李秀彬, 2015.山区土地流转对缓解耕地撂荒的作用.地理学报, 70(4):636-649. http://d.old.wanfangdata.com.cn/Periodical/dlxb201504012 [50] 田清, 2016.近60年来气候变化和人类活动对黄河、长江、珠江水沙通量影响的研究(博士论文).上海: 华东师范大学大学. [51] 王朋辉, 张陶, 于小磊, 2019.近65年桂林市降雨侵蚀力变化特征与周期演化.贵州师范大学学报(自然科学版), 37(2):23-28. http://d.old.wanfangdata.com.cn/Periodical/gzsfdxxb-zr201902004 [52] 向菲菲, 王伦澈, 姚瑞, 等, 2018.三峡库区气候变化特征及其植被响应.地球科学, 43(增刊1):42-52. doi: 10.3799/dqkx.2018.912 [53] 易浪, 任志远, 张翀, 2014.黄土高原植被覆盖变化与气候和人类活动的关系.资源科学, 36(1):166-174. http://d.old.wanfangdata.com.cn/Periodical/zykx201401019 [54] 赵松, 常凤鸣, 李铁刚, 等, 2018.台湾东北部海域海表温度季节与年际异常及其对历史气候重建的启示.地球科学, 43(3):851-861. doi: 10.3799/dqkx.2018.908 [55] 郑峰峰, 陈雨霏, 王永莉, 等, 2018.季节温度变化及土壤pH差异对土壤bGDGTs温度指标的影响.地球科学, 43(增刊1):71-83. doi: 10.3799/dqkx.2018.950