Geological Units Classification with Texture-Spectral Synergy of Multi-Sourced Remote Sensing Images
-
摘要: 岩石单元的结构、构造、差异风化和出露状况在遥感图像上综合表现为图形纹理特征即“图”标志,其矿物成分和组合则表现为光谱特征即“谱”标志.传统遥感岩石单元分类以利用其光谱特征为主,图形纹理特征为辅,因此分类精度有限.以新疆维吾尔自治区与甘肃省交界的北山西段为研究区,开展岩石单元图形指数和光谱指数协同分类方法研究.基于Worldview-2全色图像构建的图形指数,能够量化岩石单元的层理、构造、展布形态和微地貌等特征,包括0°和45°定向滤波图像及灰度共生矩阵计算出的同质性和异质性特征图像、熵特征图像;光谱指数基于Worldview-2多光谱图像和ASTER(Advanced Spaceborne Thermal Emission and Reflection Radiometer)短波红外波段图像利用比值、和-差方法构建.多源遥感图像构建的光谱指数其光谱波段涵盖可见光-近红外及短波红外,包括RI(Ratio index)ASTER、SI(Spectral index)ASTER、SIWorldview-2.采用面向对象方法对建立的图谱指数进行多尺度分割,依据不同岩石单元出露规模建立适宜的分割尺度,利用光谱指数自动提取相应岩石信息,实现岩石单元自动分类.结果表明,实验区基于图谱协同方法共划分出17类岩石单元,总体精度达到83.62%,而单独利用Worldview-2和ASTER图像,仅划分出13类和14类岩石单元.提出的图谱协同岩石分类方法可为我国西部高海拔深切割无人区地质调查及找矿工作提供新思路和遥感技术支撑.Abstract: The structural pattern, differential weathering, and outcrop situation of different geological units can be described by the texture information of remote sensing imagery as graphical features. The geological units compositions of differential minerals are shown as spectral cues.With regard to geological units classification, the classification accuracy of most studies is limited since they have mainly utilized the spectral cues from multis-pectral or hyperspectral images to characterize their spectral features, and high resolution imagery to depict the texture information as a supplement. In this study, the texture-spectral indices are established with the multi-sourced remote sensing images of Worldview-2 and ASTER(Advanced Spaceborne Thermal Emission and Reflection Radiometer)and tested for geological units classification in the western section of Beishan Mountain, which are located at the junction of Gansu Province and Xinjiang Uygur Autonomous Region. Based on the panchromatic band of Worldview-2 imagery, the following graphical features that quantify the bedding structure, distribution morphology and micro-topography features of different rock units were extracted: 0° and 45°directional filtering, the textures of homogeneity, dissimilarity and entropy generated from gray level co-occurrence matrix. Based on multi-spectral bands of Worldview-2 imagery and the short-wave infrared bands of ASTER imagery, the spectral indices were established by the band-ratio and addition-difference methods, including RI (Ratio index)ASTER, SI(Spectral index) ASTER, and SIWorldview-2. First, based on the object-oriented approach and the texture-spectral indices, texture-spectral features were used to conduct multi-resolution segmentation to produce numerous geological units with different scales. Second, the geological units were classified at different scales using spectral indices. The results show that: (1) 17 types of geological units were classified with an overall accuracy of 83.62%, based on the proposed method; (2) and only 13 or 14 types of geological units were classified, by using the Worldview-2 or ASTER images, respectively. The outlined approach could provide the theoretical and remote sensing technical support for geological survey and prospecting work in the high altitude with deep-cut unpopulated areas of western China.
-
图 3 主要岩石单元光谱曲线图及去包络线光谱图
a. ASTER光谱; b. Worldview⁃2光谱; c. ASTER光谱去包络线; d. Worldview⁃2光谱去包络线. 1.花岗岩; 2.闪长玢岩; 3.二长花岗岩; 4.正长花岗岩; 5.花岗闪长岩; 6.绿泥片岩阳起片岩; 7.黑云二长花岗岩; 8.安山玄武岩夹玄武岩; 9.凝灰岩夹凝灰质砂岩; 10.玄武质凝灰岩; 11.砂质板岩; 12.玄武岩; 13.玄武岩夹凝灰质砂岩; 14.大理岩; 15.板岩; 16.千枚状板岩; 17.英安岩夹凝灰岩
Fig. 3. Geological units spectra before and after continuum removal
表 1 遥感数据源信息
Table 1. The remote sensing data
数据源 成像时间 空间分辨率(m) 光谱分辨率(nm) 光谱范围(nm) 波段数 ASTER 2002-10-22 可见光-近红外/15,短波/30 可见光-近红外约70,短波约50 556~2 400 9 Worldview-2 2015-03-11 全色/0.5,多光谱/1.8 可见光约80,近红外约100 400~1 040 8 表 2 于不同数据源岩石单元分类精度
Table 2. Accuracy of geological units classification based on different data
岩石单元 图谱协同 Worldview-2数据 ASTER数据 生产者精度(%) 用户精度(%) 生产者精度(%) 用户精度(%) 生产者精度(%) 用户精度(%) 花岗岩 77.86 96.46 - - 53.8 64.7 闪长玢岩 74.22 60.70 80.55 52.72 42.47 43.66 二长花岗岩 92.13 93.47 90.29 86.96 96.71 97.55 正常花岗岩 95.38 78.98 85.39 69.34 75.00 60.74 花岗闪长岩 86.72 77.89 33.77 44.95 77.69 82.28 绿泥片岩阳起片岩 85.11 68.03 29.10 44.62 66.28 67.34 黑云二长花岗岩 80.36 95.11 67.67 55.61 78.09 96.03 安山玄武岩夹玄武岩 65.92 97.62 67.96 56.37 - - 凝灰岩夹凝灰质砂岩 97.19 68.40 23.64 36.39 77.08 69.08 玄武质凝灰岩 96.33 73.68 26.04 47.30 77.08 90.63 砂质板岩 96.77 71.01 - - - - 玄武岩 98.70 72.02 - - - - 玄武岩夹凝灰质砂岩 63.60 83.19 - - 72.44 77.93 大理岩 85.62 90.30 83.42 76.42 98.88 97.11 板岩 66.11 80.41 38.42 25.81 51.09 62.75 千枚状板岩 83.64 92.52 20.79 35.16 85.04 45.24 英安岩夹凝灰岩 77.64 85.27 36.66 46.31 61.22 60.24 Kappa系数 0.819 0 0.534 8 0.748 0 总体精度(%) 83.62 56.70 77.09 -
[1] Arnous, M. O., Sultan, Y. M., 2014. Geospatial Technology and Structural Analysis for Geological Mapping and Tectonic Evolution of Feiran-Solaf Metamorphic Complex, South Sinai, Egypt. Arabian Journal of Geosciences, 7(8):3023-3049. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aa787953d9520a1b0a7acd6d519c88fc [2] Chen, J., Liao, K., 2007.Classification of the Comprehensive Informatic Tupu for the Region's Eco-Environment:A Case Study on Fujian Province. Geo-Information Science, 9(2):85-90 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=6610bd18843f62364c0ebf9b3f80b7d5&encoded=0&v=paper_preview&mkt=zh-cn [3] Chen, S.B., Yu, Y.F., Yang, J.Z., et al., 2016. Lithologic Information Extraction from ASTER Remote Sensing Data Based on Spectral Ratio Method.Journal of Jilin University (Earth Science Edition), 46(3):938-944 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201603030 [4] Chen, S.P., Yue, T.X., Li, H.G., 2000. Studies on Geo-Informatic Tupu and Its Application.Geographical Research, 19(4):337-343 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlyj200004001 [5] Dhingra, D., Head, J. W., Pieters, C. M., 2017.Geological Mapping of Impact Melt Deposits at Lunar Complex Craters Jackson and Tycho:Morphologic and Topographic Diversity and Relation to the Cratering Process. Icarus, 283:268-281. http://cn.bing.com/academic/profile?id=11897aa4617399acd141e70543c7b48a&encoded=0&v=paper_preview&mkt=zh-cn [6] Eberle, D., Hutchins, D., Das, S., et al., 2015. Automated Pattern Recognition to Support Geological Mapping and Exploration Target Generation-A Case Study from Southern Namibia. Journal of African Earth Sciences, 106:60-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=187560e86a68ee8e42dec3b3a57a8bb7 [7] El-Magd, I., Mohy, H., Basta, F., 2015. Application of Remote Sensing for Gold Exploration in the Fawakhir Area, Central Eastern Desert of Egypt. Arabian Journal of Geosciences, 8(6):3523-3536. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ba05b1c6c0cc6d152f0ef66629d5ba7e [8] Farooq, S., Govil, H., 2014. Mapping Regolith and Gossan for Mineral Exploration in the Eastern Kumaon Himalaya, India Using Hyperion Data and Object Oriented Image Classification. Advances in Space Research, 53(12):1676-1685. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=add222694277659512da4e3f20b75e85 [9] Grebby, S., Cunningham, D., Naden, J., et al., 2010. Lithological Mapping of the Troodosophiolite, Cyprus, Using Airborne Li DAR Topographic Data. Remote Sensing of Environment, 114(4):713-724. https://www.sciencedirect.com/science/article/pii/S0034425709003319 [10] Gong, J.Z., Liu, Y.S., Xia, B.C., et al., 2005. Response of Fusion Images to Wavelet Decomposition Levels of Integration of Wavelet Transform and HIS with Multiple Sources Remotely Sensed Data.Journal of Image and Graphics, 15 (8):1269-1277 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZGTB201008020.htm [11] Gong, Y., Shu, N., 2007. Texture Segmentation of Multispectral Remote Sensing Image Based on Markov Random Field.Geomatics and Information Science of Wuhan University, 32(3):212-215 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkjxxkxxb-e201001003 [12] Grebby, S., Field, E., Tansey, K., 2016. Evaluating the Use of an Object-Based Approach to Lithological Mapping in Vegetated Terrain.Remote Sensing, 8(843):1-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=remotesensing-08-00843 [13] Guo, Y. Q., Qi, Q. W., Jiang, L. L., et al., 2015. Research on the Theoretic Method and Application of the Urban Form Information Tupu. Journal of Geo-Information Science, 13(6):781-787 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201106011 [14] He, G. J., Li, K. L., Hu, D. Y., et al., 1999. Information Fusion of Multi Sensor Satellite Remote Sensing Data Theory, Methodology and Experiment.Journal of Image and Graphics, 4(9):744-750 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGTB199909008.htm [15] Hung, L. Q., Batelaan, O., Smedt, F. D., 2005.Lineament Extraction and Analysis, Comparison of Lands at ETM and ASTER Imagery. Case Study:Suoimuoi Tropical Karst Catchment, Vietnam. Proceedings of SPIE, 15:59830T-12. https://www.researchgate.net/publication/237252633_Lineament_extraction_and_analysis_comparison_of_LANDSAT_ETM_and_ASTER_imagery_Case_study_Suoimuoi_tropical_karst_catchment_Vietnam [16] Hunt, G. R., 1977. Spectral Signatures of Particulate Minerals in the Visible and Near Infrared. Geophysics, 42(3):501-513. http://cn.bing.com/academic/profile?id=60d7834a8929b4bfd30632b95e22e9bf&encoded=0&v=paper_preview&mkt=zh-cn [17] Jakob, S., Bühler, B., Gloaguen, R., et al., 2015. Remote Sensing Based Improvement of the Geological Map of the Neoproterozoic Ras Gharib Segment in the Eastern Desert (NE-Egypt) Using Texture Features. Journal of African Earth Sciences, 111:138-147. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fb262937dbfd56a9c9aef893f2973e38 [18] Jiang, S. S., Li, P. J., 2011.Lithologic Unit Mapping Using ASTER Data and Topograthic Variables:A Case of Mulei Area of Xinjiagn. Journal of Geo-Information Science, 13(6):825-832 (in Chinese with English abstract). [19] Langford, R. L., 2015. Temporal Merging of Remote Sensing Data to Enhance Spectral Regolith, Lithological and Alteration Patterns for Regional Mineral Exploration.Ore Geology Reviews, 68:14-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b80972fe6f668a190deee19fea505086 [20] Li, P. J., 2004. Lithological Discrimination Using ASTER Imge and Geostatistical Texture.Journal of Mineral Petrol, 3(24):116-120 (in Chinese with English abstract). doi: 10.1007%2FBF02912700 [21] Liu, Y.L., Xu, Q., Zheng, Z. Z., et al., 2014. Study of Characteristic Chart of Multi-Spectral Remote Sensing Image for Typical Earthquake Secondary Geological Disaster. Remote Sensing Technology and Application, 29(6):18-24 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0169555X11006155 [22] Ma, D. F., Li, P. J., 2008. The Use of Multiscale Texture in Image Classification for Lithologic Mapping. Aca Petrologic Sinica, 24(6):1425-1430 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200806026 [23] Meng, S. L., Pang, Y., Zhang, Z. J., et al., 2017.Estimation of Above Ground Biomass in Atemperate Forest Using Texture Information from WorldView-2.Journal of Remote Sensing, 21(5):812-824 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-YGXB201705015.htm [24] Peng, J., Xiang, H. Y., Zhang, Y. Z., et al., 2013. Influence of Soil Iron Oxide on VNIR Diffuse Reflectance Spectroscopy. Spectroscopy and Spectral Analysis, 33(2):502-506 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201302048 [25] Platt, R. V., Rapoza, L., 2008. An Evaluation of an Object-Oriented Paradigm for Land Use/Land Cover Classification.The Professional Geographer, 60(1):87-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00330120701724152 [26] Rajendran, S., Nasir, S., 2015.Mapping of Moho and Moho Transition Zone (MTZ) in Samailophiolites of Sultanate of Oman Using Remote Sensing Technique. Tectonophysics, 657:63-80. http://www.sciencedirect.com/science/article/pii/S0040195115003546 [27] Rowan, L. C., Goetz, A. F., Ashley, R. P., 1977. Discrimination of Hydrothermally Altered and Unaltered Rocks in Visible and Near Infrared Multispectral Images. Geophysics, 42(3):522-535. http://cn.bing.com/academic/profile?id=86e4af31216813e46297bfdb0bcd9393&encoded=0&v=paper_preview&mkt=zh-cn [28] Wang, R. S., Xiong, S. Q., Nie, H. F., et al., 2011.Remote Sensing Technology and Its Application in Geological Exploration.Acta Geologica Sinica, 85(11):1699-1742 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_a306b0564393f5bccaf8dcf876afb8ca [29] Wu, Q., Li, X. Y., 2015. Remote Sensing Dynamic Monitoring of Mining Geo-Environment Based on Computational Geometry and Information TUPU. Journal of China Coal Society, 40(1):160-166 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/mtxb201501024 [30] Xia, L. G., Luo, C. J., Wang, W. H., et al., 2014. Land Cover Automatic Classification Based on RS-InformaticTupu. Journal of Remote Sensing, 18(4):796-803 (in Chinese with English abstract). http://www.cqvip.com/QK/92457A/201404/661847599.html [31] Yang, J. J., Jiang, Q. G., Chen, Y. L., et al., 2012. Lithology Division for Large-Scale Region Segmentation Based on LS-SVM and High Resolution Remote Sensing Images. Journal of China University of Petroleum, 36(1):60-67 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sydxxb201201010 [32] Yang, Y. J., Tian, Q. J., Zhan, Y. L., et al., 2018. Effects of Spatial Resolution and Texture Features on Multi-Spectral Remote Sensing Classification. Journal of Geo-Information Science, 20(1):99-107 (in Chinese with Engish abstract). http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201801011 [33] Yesou, H., Besnus.Y., Rolet, J., 1993. Extraction of Spectral Information from Landsat TM Data and Merger with SPOT Panchromatic Imagery-A Contribution to the Study of Geological Structures. Journal of Photogrammetry & Remote Sensing, 48(5):23-36. http://cn.bing.com/academic/profile?id=393aa7eff2f9e3570495eeed5b75743c&encoded=0&v=paper_preview&mkt=zh-cn [34] Yu, X. C., Xiong, L.P., Zhang, L. B., et al., 2015. Application of Remote Sensing Technology in Geological Prospecting. Journal of Geology, 39(2):263-276 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/sjysjs202002043 [35] Yu, Y. F., Yang, J. Z., Chen, S. B., et al., 2015. Lithologic Classification from Remote Sensing Images Based on Spectral Index. Earth Science, 40(8):1514-1419 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201508021 [36] Zhang, C. F., Yu, J., Hao, L. N., et al., 2017. Lithology Extraction from Synergies Muti-Scale Texture and Muti-Spectra Images. Geological Science and Technology Information, 36(4):236-243 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201704031 [37] Zhang, R. S., Cao, H., Zeng, M., et al., 2016.Scientific Belt Lithologic Mapping Based on ASTER Spectral Analysis:A Case Study from the Tashkorgan Area (Xinjiang, China). Acta Petrologica Sinica, 32(12):3835-3846 (in Chinese with English abstract). https://www.researchgate.net/publication/311928701_Scientific_belt_lithologic_mapping_based_on_ASTER_spectral_analysis_A_case_study_from_the_tashkorgan_area_Xinjiang_China [38] Zheng, G. Z., Le, X. D., Wang, H. P., et al., 2017. Inversion of Water Depth from WorldView-02 Satellite Imagery Based on BP and RBF Neural Network. Earth Science, 42(12):2345-2353 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201712017 [39] Zheng, S., Fu, B. H., 2013.Lithological Mapping of Granitiods in the Western Junggar from ASTER SWIR-TIR Multi-Spectral Data:Case Study in Karamay Pluton, Xinjiang. Acta Petrologica Sinica, 29(8):2936 -2948 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201308029.htm [40] 陈菁, 廖克, 2007.区域生态环境综合信息图谱的分类与案例分析——以福建省为例.地球信息科学, 9(2):85-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxxkx200702018 [41] 陈圣波, 于亚凤, 杨金中, 等, 2016.基于实测光谱指数法的ASTER遥感数据岩性信息提取.吉林大学学报(地球科学版), 46(3):938-944. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201603030 [42] 陈述彭, 岳天祥, 励惠国, 2000.地学信息图谱研究及其应用.地理研究, 19(4):337-343. http://d.old.wanfangdata.com.cn/Periodical/dlyj200004001 [43] 龚建周, 刘彦随, 夏北成, 等, 2010. IHS和小波变换结合多源遥感影像融合质量对小波分解层数的响应.中国图像图形学报, 15(8):1269-1277. http://d.old.wanfangdata.com.cn/Periodical/zgtxtxxb-a201008020 [44] 龚衍, 舒宁, 2007.基于马尔柯夫随机场的多波段遥感影像纹理分割研究.武汉大学学报(信息科学版), 32(3):212-215. http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb200703007 [45] 郭瑛琦, 齐清文, 姜莉莉, 等, 2015.城市形态信息图谱的理论框架与案例分析.地球信息科学学报, 13(6):781-787. http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201106011 [46] 何国金, 李克鲁, 胡德永, 等, 1999.多卫星遥感数据的信息融合:理论、方法与实践.中国图象图形学报, 4(9):744-750. [47] 姜莎莎, 李培军, 2011.基于ASTER图像和地形因子的岩性单元分类——以新疆木垒地区为例.地球信息科学学报, 13(6):825-832. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxxkx201106017 [48] 李培军, 2004.用ASETR图像和地统计学纹理进行岩性分类.矿物岩石, 3 (24):116-120. http://d.old.wanfangdata.com.cn/Periodical/kwys200403014 [49] 刘亚岚, 许清, 郑泽忠, 等, 2014.典型地震次生地质灾害多光谱遥感影像特征图谱研究.遥感技术与应用, 29(6):18-24. http://d.old.wanfangdata.com.cn/Periodical/ygjsyyy201501003 [50] 马德锋, 李培军, 2008.加入多尺度图像纹理的岩性分类.岩石学报, 24(6):1425-1430. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200806026 [51] 蒙诗栎, 庞勇, 张钟军, 等, 2017. WorldView-2纹理的森林地上生物量反演.遥感学报, 21(5):812-824. http://d.old.wanfangdata.com.cn/Periodical/ygxb201705015 [52] 彭杰, 向红英, 周清, 等, 2013.土壤氧化铁的高光谱响应研究.光谱学与光谱分析, 33(2):502-506. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201302048 [53] 王润生, 熊盛青, 聂洪峰, 等, 2011.遥感地质勘查技术与应用研究.地质学报, 85(11):1699-1742. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201111002 [54] 武强, 李学渊, 2015.基于计算几何和信息图谱的矿山地质环境遥感动态监测.煤炭学报, 40(1):160-166. http://d.old.wanfangdata.com.cn/Periodical/mtxb201501024 [55] 夏列钢, 骆剑承, 王卫红, 等, 2014.遥感信息图谱支持的土地覆盖自动分类.遥感学报, 18(4):796-803. http://d.old.wanfangdata.com.cn/Periodical/ygxb201404006 [56] 杨佳佳, 姜琦刚, 陈永良, 等, 2012.基于最小二乘支持向量机和高分辨率遥感影像的大尺度区域岩性划分.中国石油大学学报(自然科学版), 36(1):60-67. http://d.old.wanfangdata.com.cn/Periodical/sydxxb201201010 [57] 杨闫君, 田庆久, 占玉林, 等, 2018.空间分辨率与纹理特征对多光谱遥感分类的影响.地球信息科学学报, 20(1):99-107. http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201801011 [58] 余先川, 熊利平, 张立保, 等, 2015.遥感技术在地质找矿中的应用.地质学刊, 39(2):263-276. http://d.old.wanfangdata.com.cn/Periodical/dzzklc201203015 [59] 于亚凤, 杨金中, 陈圣波, 等, 2015.基于光谱指数的遥感影像岩性分类.地球科学, 40(8):1514-1419. doi: 10.3799/dqkx.2015.127 [60] 张翠芬, 余健, 郝利娜, 等, 2017.多尺度纹理及多光谱影像协同的遥感岩性识别方法.地质科技情报, 36(4):236-243. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201704031 [61] 张瑞丝, 曹汇, 曾敏, 等, 2016.基于ASTER光谱特征的科技廊带岩性填图:以新疆塔什库尔干地区为例.岩石学报, 32(12):3835-3846. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201612018.htm [62] 郑贵洲, 乐校东, 王红平, 等, 2017.基于WorldView-02高分影像的BP和RBF神经网络遥感水深反演.地球科学, 42(12):2345-2353. doi: 10.3799/dqkx.2017.552 [63] 郑硕, 付碧宏, 2013.基于ASTER SWIR-TIR多光谱数据的西准噶尔花岗岩类岩性信息提取与识别——以克拉玛依岩体为例.岩石学报, 29(8):2936-2948. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201308029