Gas-Bearing Capacity and Controlling Factors of Niutitang Formation Shale in Well XZD-1, Western Margin of Xuefeng Uplift
-
摘要: 雪峰隆起周缘是四川盆地外围页岩气勘探的重要区域,下寒武统牛蹄塘组为该区主要的页岩气层位,为深入研究页岩含气性特征,以隆起西缘湘张地1井钻井资料为基础,借助现场含气测试数据,对页岩纵向含气性进行精细描述,并以此探讨牛蹄塘组页岩气分布规律与控制因素.湘张地1井牛蹄塘组页岩气整体呈上低下高、局部富集的分布规律,受有机质含量、矿物组分、孔隙与裂缝、物性、滑脱构造等因素共同控制.下部页岩有机质和脆性矿物含量高、裂缝与孔隙较发育,气体吸附的比表面积主要由有机质孔隙提供,脆性矿物有利于孔缝的形成与保存,裂缝与孔隙的发育有效改善了储层物性,为游离气提供大量储集空间,配合存在的滑脱构造带,使下部总含气量较高,且以游离气为主,占比58%~82%,尤其底部滑脱带内吸附气含量极低,孔缝发育程度对总含气量的影响大于有机质含量,同时,孔缝分布的不均也导致气体在局部较为富集;上部页岩孔缝欠发育,有机质与脆性矿物含量均低于下部,整体含气性较差,吸附气占比略大,主要受有机质含量控制,可作为下部含气段直接有效的盖层.此外,下部页岩岩石力学脆性强、成岩作用晚、热演化程度高、抗压强度与主应力差低,具备较强的可压裂性,有利于后期改造.Abstract: The Lower Cambrian Niutitang Formation in Xuefeng uplift and its peripheral areas is one of major shale gas reservoirs. To explore the gas-bearing capacity of Niutitang Formation shale in this area, the vertical variations of gas-bearing capacity, distribution and controlling factors of shale gas in western margin of Xuefeng uplift were studied in detail, based on the drilling data of Well XZD-1 and the testing gas content data. The gas content of desorption in Well XZD-1 increases gradually with the increase of depth with locally high gas abundance. The gas-bearing property of Niutitang Formation shale was controlled by various factors such as organic carbon content, mineral composition, development characteristics of pore and fracture, physical property and the decollement structure. The lower shale of Niutitang Formation has high content of organic carbon and brittle minerals, well-developed natural fractures and pores. Organic matter provides the main adsorption specific surface area, the brittle minerals contribute to the formation and preservation of pores and fractures. The fracture and pore with the decollement structure have effectively improved reservoir physical property, provided a large amount of reservoir space for free gas and ensured a high gas content in the lower Niutitang Formation. And free gas is the main component, accounting for 58%-82%. In addition, the content of adsorbed gas in the bottom decollement belt is very low. The influence of pore and fracture development is greater than that of organic carbon content. And the distribution of pores and fractures result in the locally enriched gas. The pore and fracture of upper shale in Niutitang Formation are under developed, and the contents of organic matter and brittle minerals are lower. The shale gas content in the upper shale of Niutitang Formation is poor and the proportion of adsorbed gas in the total gas content is slightly larger, which is mainly controlled by organic carbon content. In addition, the lower shale of Niutitang Formation has strong fracturability, which is conducive to later fracturing transformation, because it is brittle in rock mechanics, with late diagenesis, high thermal maturity and low difference between compressive strength and principal stress.
-
Key words:
- gas-bearing capacity /
- controlling factor /
- Niutitang Formation /
- shale gas /
- Well XZD-1 /
- Xuefeng uplift /
- petroleum geology
-
表 1 湘张地1井牛蹄塘组分段特征
Table 1. Stratigraphic segmentation of Niutitang Formation in Well XZD-1
分段 顶底深度
(m)岩性 TOC
(%)气测全烃
(%)解析气含量
(m3·t-1)损失气含量
(m3·t-1)6段 1 792.8~1 807 灰黑色碳质页岩,局部含粉砂 1.19 0.33~1.45/0.86 解析气偏低 偏低 5段 1 807~1 890 黑色碳质页岩 1.46~3.15/2.20 0.56~7.02/1.73 0.01~0.08/0.04 0.01~0.08/0.03 4段 1 890~1 905 黑色碳质页岩,局部为含钙质碳质页岩 2.26 0.84~2.63/1.29 0.03~0.11/0.07 0.03~0.11/0.07 3段 1 905~1 964.1 黑色碳质页岩夹少量泥质灰岩薄层 4.35~10.50/6.08 0.56~4.03/1.26 0.12~1.59/0.68 0.18~0.95/0.54 2段 1 964.1~1 982.4 黑色碳质页岩夹薄层泥质灰岩,含硅磷钙质结核 6.16~10.3/8.60 0.80~2.14/1.24 0.35~0.55/0.45 0.43~0.70/0.57 1段 1 982.4~1 998 黑色碳质页岩、硅质页岩、云质页岩夹少量泥质灰岩 4.35~4.84/4.53 1.37~3.75/1.97 解析气偏低 无法测算 表 2 牛蹄塘组不同段页岩等温吸附数据
Table 2. Isothermal adsorption experimental data of shale at different depths of Niutitang Formation
样品深度
(m)分段 Langmuir体积
(cm3·g-1)Langmuir压力
(MPa)BET比表面积
(m2·g-1)黏土矿物含量
(%)TOC
(%)1 895.2 4 1.53 2.04 12.627 28.4 2.26 1 937.1 3 3.38 2.31 17.632 21.2 5.24 1 965.5 2 3.51 1.29 18.552 10.4 9.08 1 981.2 2 3.77 1.37 13.853 10.5 6.16 表 3 牛蹄塘组页岩第3段含气量、孔隙度与裂缝关系
Table 3. Relationship between gas content, porosity and fracture development of Niutitang Formation shale in the Section 3
样品深度
(m)孔隙度
(%)总含气量
(m3·t-1)解析气量
(m3·t-1)裂缝统计 1 905.5 2.28 0.941 0.491 裂缝不发育带 1 929.7 2.10 0.800 0.370 裂缝不发育带 1 933.9 - 1.092 0.542 裂缝发育带 1 937.1 4.48 2.294 1.594 裂缝发育带 1 940.6 - 0.304 0.124 裂缝不发育带 1 943.1 2.19 1.002 0.522 裂缝发育带 1 948.0 - 1.159 0.569 裂缝发育带 1 950.2 3.78 2.141 1.191 裂缝发育带 注:“-”表示无测试数据. 表 4 岩石单轴压缩实验力学参数
Table 4. Mechanical parameters of rock uniaxial compression test
样品深度
(m)所属层位 抗压强度
(MPa)杨氏模量
(GPa)泊松比 1 440.9 中寒武统 251.7 31.9 0.20 1 720.9 杷榔组 205.3 37.2 0.19 1 813.1 牛蹄塘组6段 108.4 28.0 0.20 1 937.1 牛蹄塘组3段 169.7 23.0 0.14 1 950.2 牛蹄塘组3段 115.2 24.2 0.20 1 981.2 牛蹄塘组2段 178.8 24.0 0.17 -
[1] Curtis, M. E., Sondergeld, C. H., Ambrose, R. J., et al., 2012. Microstructural Investigation of Gas Shales in Two and Three Dimensions Using Nanometer-Scale Resolution Imaging. AAPG Bulletin, 96(4): 665-677. https://doi.org/10.1306/08151110188 [2] Deng, D.F., Mei, L.F., Shen, C.B., et al., 2014.Major Factors of Accumulation and Destruction Mechanisms of Marine Strata Related Hydrocarbon in the Northern Margin of the Jiangnan-Xuefeng Uplift. Journal of Jilin University (Earth Science Edition), 44(5):1466-1477 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201405008 [3] Diao, H.Y., 2013.Rock Mechanical Properties and Brittleness Evaluation of Shale Reservoir. Acta Petrologica Sinica, 29(9):3300-3306 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201309027 [4] Guo, T. L., Zhang, H. R., 2014. Formation and Enrichment Mode of Jiaoshiba Shale Gas Field, Sichuan Basin. Petroleum Exploration and Development, 41(1): 28-36 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201401003 [5] He, J.H., Ding, W.L., Wang, Z., et al., 2015. Main Controlling Factors of Fracture Network Formation of Volume Fracturing in Shale Reservoirs and Its Evaluation Method. Geological Science and Technology Information, 34(4): 108-118 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201504016 [6] Huang, Y.R., Xiao, Z.H., Jiao, P., et al., 2018.Comparison of Factors for Shale Gas Accumulation in Niutitang Formation Wells in Northwestern Hunan and Its Implications. Journal of Central South University (Science and Technology), 49(9):2240-2248 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb201809017 [7] Jin, Z.J., Hu, Z.Q., Gao, B., et al., 2016.Controlling Factors on the Enrichment and High Productivity of Shale Gas in the Wufeng-Longmaxi Formations, Southeastern Sichuan Basin. Earth Science Frontiers, 23(1):1-10 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201601001 [8] Li, H., Liu, A., Luo, S.Y., et al., 2018. Pore Structure Characteristics and Development Control Factors of Cambrian Shale in the Yichang Area, Western Hubei. Petroleum Geology and Recovery Efficiency, 25(6):1-8 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/yqdzycsl201806003 [9] Li, J.B., Lu, S.F., Chen, G.H., et al., 2015. Friability Evaluation for the Mud Shale Reservoirs Based on the Mineralogy and Rock Mechanics. Petroleum Geology and Oilfield Development in Daqing, 34(6):159-164 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqsydzykf201506029 [10] Li, Y.X., He, J.H., Yin, S., et al., 2016. The Multi- Anisotropy of Shale Oil and Gas Reservoirs in Vertical and Its Influence on Oil-Gas Development. Earth Science Frontiers, 23(2): 118-125 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201602012 [11] Liang, F., Bai, W. H., Zou, C. N., et al., 2016. Shale Gas Enrichment Pattern and Exploration Significance of Well Wuxi-2 in Northeast Chongqing, NE Sichuan Basin. Petroleum Exploration and Development, 43(3): 350-358 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201603004 [12] Lin, T., Zhang, J.C., Bao, S.J., et al., 2015.The Optimum Selecting of Shale Gas Well Location and Gas Content of Lower Cambrian, Northwest Hunan: A Case Study of Well Changye. Natural Gas Geoscience, 26(2):312-319 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201502012 [13] Liu, A., Li, X.B., Wang, C.S., et al., 2013.Analysis of Geochemical Feature and Sediment Environment for Hydrocarbon Source Rocks of Cambrian in West Hunan-Hubei Area. Acta Sedimentologica Sinica, 31(6): 1122-1132 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201306020 [14] Luo, S.Y., Liu, A., Li, H., et al., 2019. Gas-Bearing Characteristics and Controls of the Cambrian Shuijingtuo Formation in Yichang Area, Middle Yangtze Region. Petroleum Geology & Experiment, 41(1): 56-67 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/sysydz201901009 [15] Mei, L.F., Deng, D.F., Shen, C.B., et al., 2012.Tectonic Dynamics and Marine Hydrocarbon Accumulation of Jiangnan-Xuefeng Uplift. Geological Science and Technology Information, 31(5):85-93 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201205013.htm [16] Meng, F.Y., Chen, K., Bao, S.J., et al., 2018.Gas-Bearing Property and Main Controlling Factors of Lower Cambrian Shale in Complex Tectonic Area of Northwestern Hunan Province:A Case of Well Ciye 1. Lithologic Reservoirs, 30(5):29-39 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/yxyqc201805004 [17] Nie, H.K., Bao, S.J., Gao, B., et al., 2012. A Study of Shale Gas Preservation Conditions for the Lower Paleozoic in Sichuan Basin and Its Periphery. Earth Science Frontiers, 19(3): 280-294 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201203030 [18] Reed, R.M., Loucks, R.G., Jarvie, D.M., et al., 2007. Nanopores in the Mississippian Barnett Shale: Distribution Morphology, and Possible Genesis. Geological Society of America Abstracts with Programs, 39(6): 358. [19] Slatt, R. M., O'Brien, N. R., 2011. Pore Types in the Barnett and Woodford Gas Shales: Contribution to Understanding Gas Storage and Migration Pathways in Fine-Grained Rocks. AAPG Bulletin, 95(12): 2017-2030. https://doi.org/10.1306/03301110145 [20] Sondergeld, C.H., Newsham, K.E., Comisky, J.T., et al., 2010.Petrophysical Considerations in Evaluating and Producing Shale Gas Resources. SPE Unconventional Gas Conference, Pittsburg. [21] Tang, Y., Xing, Y., Li, L.Z., et al., 2012. Influence Factors and Evaluation Methods of the Gas Shale Fracability. Earth Science Frontiers, 19(5): 356-363 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201205035 [22] Wang, C.S., Zeng, X.W., Li, X.B., et al., 2013. The Classification and Correlation of the Cambrian Strata in Western Xuefeng Mountain Area. Geology in China, 40(2): 439-448 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201302008 [23] Wang, F. Y., Guan, J., Feng, W. P., et al., 2013. Evolution of Overmature Marine Shale Porosity and Implication to the Free Gas Volume. Petroleum Exploration and Development, 40(6): 764-768 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201306019 [24] Wang, J.B., Feng, M.G., Yan, W., et al., 2016.Influence Factors and Evaluation Methods for Shale Reservoir Fracability in Jiaoshiba Area. Fault-Block Oil & Gas Field, 23(2):216-220, 225 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkyqt201602019 [25] Wang, Z.X., Zhang, J., Guan, H.M., et al., 2012.A Discussion on the Structural Deformation and Oil/Gas Traps on the Western Side of the Xuefeng Mountain. Geological Bulletin of China, 31(11):1812-1825 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201211006 [26] Wu, J., Liang, F., Lin, W., et al., 2017.Reservoirs Characteristics and Gas-Bearing Capacity of Wufeng-Longmaxi Formation Shale in Well WX-2, Northeast Chongqing Area. Acta Petrolei Sinica, 38(5):512-524 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201705004 [27] Wu, J. J., Zhang, S. H., Cao, H., et al., 2018. Fracability Evaluation of Shale Gas Reservoir—A Case Study in the Lower Cambrian Niutitang Formation, Northwestern Hunan, China. Journal of Petroleum Science and Engineering, 49(5): 1160-1168 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0920410516314218 [28] Xia, Z.Y., Ma, H.Y., Fang, K., et al., 2019.Rock Mechanical Properties and Fracability of Continental Shale in Zhanhua Sag, Bohai Bay Basin. Petroleum Geology & Experiment, 41(2):134-141 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/sysydz201901019 [29] Yan, D.P., Jin, Z.L., Zhang, W.C., et al., 2008.Rock Mechanical Characteristics of the Multi-Layer Detachment Fault System and Their Controls on the Structural Deformation Style of the Sichuan-Chongqing-Hunan-Hubei Thin-Skinned Belt, South China. Geological Bulletin of China, 27(10):1687-1697 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200810011 [30] Yang, Y.F., Wang, C.C., Yao, J., et al., 2016.A New Method for Microscopic Pore Structure Analysis in Shale Matrix. Earth Science, 41(6):1067-1073 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.088 [31] Yang, Z.H., Han, Z.Y., Li, Z.M., et al., 2013. Characteristics and Patterns of Shale Gas Accumulation in Typical North American Cratonic Basins and Their Enlightenments. Oil & Gas Geology, 34(4): 463-470 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201304006 [32] Yuan, J.L., Deng, J.Y., Zhang, D.Y., et al., 2013.Fracability Evaluation of Shale-Gas Reservoirs. Acta Petrolei Sinica, 34(3): 523-527 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dkyqt201801016 [33] Zhai, G.Y., Wang, Y.F., Bao, S.J., et al., 2017.Major Factors Controlling the Accumulation and High Productivity of Marine Shale Gas and Prospect Forecast in Southern China. Earth Science, 42(7):1057-1068 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.085 [34] Zhang, L.T., Guo, J.H., Jiao, P., et al., 2014.Accumulatio Conditions and Resource Potential of Shale Gas in Lower Cambrian Niutitang Formation, Northwestern Hunan. Journal of Central South University (Science and Technology), 45(4): 1163-1173 (in Chinese with English abstract). [35] Zhang, X.M., Shi, W.Z., Shu, Z.G., et al., 2017.Calculation Model of Shale Gas Content and Its Application in Fuling Area. Earth Science, 42(7):1157-1168 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.094 [36] Zhao, P., Li, X.Q., Sun, J., et al., 2014.Study on Mineral Composition and Brittleness Characteristics of Shale Gas Reservoirs from the Lower Paleozoic in the Southern Sichuan Basin. Geoscience, 28(2):396-403 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201402018 [37] Zhao, W.Z., Li, J.Z., Yang, T., et al., 2016. Geological Difference and Its Significance of Marine Shale Gases in South China. Petroleum Exploration and Development, 43(4): 499-510 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201604001 [38] 邓大飞, 梅廉夫, 沈传波, 等, 2014.江南-雪峰隆起北缘海相油气富集主控因素和破坏机制.吉林大学学报(地球科学版), 44(5):1466-1477. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201405008 [39] 刁海燕, 2013.泥页岩储层岩石力学特性及脆性评价.岩石学报, 29(9):3300-3306. http://d.old.wanfangdata.com.cn/Periodical/jskjxx201722016 [40] 郭彤楼, 张汉荣, 2014.四川盆地焦石坝页岩气田形成与富集高产模式.石油勘探与开发, 41(1):28-36. http://d.old.wanfangdata.com.cn/Periodical/syktykf201401003 [41] 何建华, 丁文龙, 王哲, 等, 2015.页岩储层体积压裂缝网形成的主控因素及评价方法.地质科技情报, 34(4): 108-118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201504016 [42] 黄俨然, 肖正辉, 焦鹏, 等, 2018.湘西北牛蹄塘组探井页岩气富集要素的对比和启示.中南大学学报(自然科学版), 49(9):2240-2248. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201809017 [43] 金之钧, 胡宗全, 高波, 等, 2016.川东南地区五峰组‒龙马溪组页岩气富集与高产控制因素.地学前缘, 23(1):1-10. http://d.old.wanfangdata.com.cn/Periodical/dxqy201601001 [44] 李海, 刘安, 罗胜元, 等, 2018.鄂西宜昌地区寒武系页岩孔隙结构特征及发育主控因素.油气地质与采收率, 25(6):1-8. http://d.old.wanfangdata.com.cn/Periodical/yqdzycsl201806003 [45] 李进步, 卢双舫, 陈国辉, 等, 2015.基于矿物学和岩石力学的泥页岩储层可压裂性评价.大庆石油地质与开发, 34(6):159-164. doi: 10.3969/J.ISSN.1000-3754.2015.06.029 [46] 李玉喜, 何建华, 尹帅, 等, 2016.页岩油气储层纵向多重非均质性及其对开发的影响.地学前缘, 23(2): 118-125. http://d.old.wanfangdata.com.cn/Periodical/dxqy201602012 [47] 梁峰, 拜文华, 邹才能, 等, 2016.渝东北地区巫溪2井页岩气富集模式及勘探意义.石油勘探与开发, 43(3):350-358. doi: 10.11698/PED.2016.03.04 [48] 林拓, 张金川, 包书景, 等, 2015.湘西北下寒武统牛蹄塘组页岩气井位优选及含气性特征——以常页1井为例.天然气地球科学, 26(2):312-319. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201502012 [49] 刘安, 李旭兵, 王传尚, 等, 2013.湘鄂西寒武系烃源岩地球化学特征与沉积环境分析.沉积学报, 31(6): 1122-1132. http://d.old.wanfangdata.com.cn/Periodical/cjxb201306020 [50] 罗胜元, 刘安, 李海, 等, 2019.中扬子宜昌地区寒武系水井沱组页岩含气性及影响因素.石油实验地质, 41(1): 56-67. http://d.old.wanfangdata.com.cn/Periodical/sysydz201901009 [51] 梅廉夫, 邓大飞, 沈传波, 等, 2012.江南-雪峰隆起构造动力学与海相油气成藏演化.地质科技情报, 31(5):85-93. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201205013.htm [52] 孟凡洋, 陈科, 包书景, 等, 2018.湘西北复杂构造区下寒武统页岩含气性及主控因素分析——以慈页1井为例.岩性油气藏, 30(5):29-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxyqc201805004 [53] 聂海宽, 包书景, 高波, 等, 2012.四川盆地及其周缘下古生界页岩气保存条件研究.地学前缘, 19(3):280-294. http://d.old.wanfangdata.com.cn/Periodical/dxqy201203030 [54] 唐颖, 邢云, 李乐忠, 等, 2012.页岩储层可压裂性影响因素及评价方法.地学前缘, 19(5):356-363. http://d.old.wanfangdata.com.cn/Periodical/dxqy201205035 [55] 王传尚, 曾雄伟, 李旭兵, 等, 2013.雪峰山西侧地区寒武系地层划分与对比.中国地质, 40(2):439-448. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201302008 [56] 王飞宇, 关晶, 冯伟平, 等, 2013.过成熟海相页岩孔隙度演化特征和游离气量.石油勘探与开发, 40(6):764-768. http://d.old.wanfangdata.com.cn/Periodical/syktykf201306019 [57] 王建波, 冯明刚, 严伟, 等, 2016.焦石坝地区页岩储层可压裂性影响因素及计算方法.断块油气田, 23(2): 216-220, 225. http://d.old.wanfangdata.com.cn/Periodical/dkyqt201602019 [58] 王宗秀, 张进, 关会梅, 等, 2012.雪峰山西侧地区构造形变与油气圈闭.地质通报, 31(11):1812-1825. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201211006 [59] 武瑾, 梁峰, 吝文, 等, 2017.渝东北地区巫溪2井五峰组-龙马溪组页岩气储层及含气性特征.石油学报, 38(5):512-524. http://d.old.wanfangdata.com.cn/Periodical/syxb201705004 [60] 吴晶晶, 张绍和, 曹函, 等, 2018.湘西北下寒武统牛蹄塘组页岩气储层可压裂性评价.中南大学学报(自然科学版), 49(5):1160-1168. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201805018 [61] 夏遵义, 马海洋, 房堃, 等, 2019.渤海湾盆地沾化凹陷陆相页岩储层岩石力学特征及可压裂性研究.石油实验地质, 41(2):134-141. http://d.old.wanfangdata.com.cn/Periodical/sysydz201901019 [62] 颜丹平, 金哲龙, 张维宸, 等, 2008.川渝湘鄂薄皮构造带多层拆离滑脱系的岩石力学性质及其对构造变形样式的控制.地质通报, 27(10):1687-1697. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200810011 [63] 杨永飞, 王晨晨, 姚军, 等, 2016.页岩基质微观孔隙结构分析新方法.地球科学, 41(6):1067-1073. doi: 10.3799/dqkx.2016.088 [64] 杨振恒, 韩志艳, 李志明, 等, 2013.北美典型克拉通盆地页岩气成藏特征、模式及启示.石油与天然气地质, 34(4):463-470. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201304006 [65] 袁俊亮, 邓金根, 张定宇, 等, 2013.页岩气储层可压裂性评价技术.石油学报, 34(3):523-527. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201303015 [66] 翟刚毅, 王玉芳, 包书景, 等, 2017.我国南方海相页岩气富集高产主控因素及前景预测.地球科学, 42(7): 1057-1068. doi: 10.3799/dqkx.2017.085 [67] 张琳婷, 郭建华, 焦鹏, 等, 2014.湘西北下寒武统牛蹄塘组页岩气藏形成条件与资源潜力.中南大学学报(自然科学版), 45(4):1163-1173. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb201404022 [68] 张晓明, 石万忠, 舒志国, 等, 2017.涪陵地区页岩含气量计算模型及应用.地球科学, 42(7):1157-1168. doi: 10.3799/dqkx.2017.094 [69] 赵佩, 李贤庆, 孙杰, 等, 2014.川南地区下古生界页岩气储层矿物组成与脆性特征研究.现代地质, 28(2):396-403. http://d.old.wanfangdata.com.cn/Periodical/xddz201402018 [70] 赵文智, 李建忠, 杨涛, 等, 2016.中国南方海相页岩气成藏差异性比较与意义.石油勘探与开发, 43(4): 499-510. http://d.old.wanfangdata.com.cn/Periodical/syktykf201604001