Analysis of Environmental Background Values of Chloride and Sulfate in Shallow Groundwater in Karst Area of Guizhou
-
摘要: 以贵州抗旱打井找水项目2007-2015年采集的3 699件浅层地下水化学样品分析数据为依据,在分析区域地质背景和水文地质条件的基础上,对研究区地下水化学数据进行聚类分析及水文地质单元划分,运用箱型图和迭代标准差法剔除异常值,并判断各水文地质区水化学数据的分布类型,最后取剔除异常值后数据的95百分位数作为环境背景值上限阀值.研究结果表明:贵州岩溶区浅层地下水属中偏碱性,水中阳离子以Ca2+、Mg2+为主,阴离子以HCO3-和SO42-为主,地下水类型主要为HCO3-Ca·Mg和HCO3-Ca型,区内地下水中离子的主要来源为岩石矿物的风化水解;地下水SO42-和Cl-分布类型以正态分布为主,对数正态分布次之,偏态分布最少,三叠系中统关岭组膏岩层及二叠系含煤地层中地下水的SO42-环境背景值阀值为68.71~164.32 mg/L,其他区域背景值阀值为19.42~39.05 mg/L;Cl-背景值阀值为3.45~6.65 mg/L,区域变化较小.Abstract: This study focuses on the environmental background values in shallow groundwater in karst area of Guizhou. Firstly, the study area is divided into different groundwater environmental units according to the analysis data of 3 699 shallow groundwater chemical samples collected for the Guizhou Drought-Resistant Well-Drilling and Water Prospecting Project from 2007 to 2015, and the analysis of the geological background and hydrogeological conditions. Then, the box plot and the iteration standard deviation method are used to eliminate the abnormal values, and determine the distribution type of water chemical data in each hydrogeological area. Finally the 95th percentile of the data is taken as the upper threshhold of the environmental background values after deleting the outliers. The results show that the shallow groundwater in Guizhou karst area is neutral alkaline water, the cations are mainly Ca2+, Mg2+, the anions are mainly HCO3- and SO42- and the groundwater types are mainly HCO3-Ca·Mg type and HCO3-Ca type. The main sources of ions in groundwater are weathering and hydrolysis of rocks and minerals. The distribution types of SO42- and Cl- ions in groundwater are mainly normal distribution, followed by lognormal distribution and least skewed distribution. The environmental background threshold values of the SO42- ion of the Middle Triassic Guanling Formation and the Permian coal-bearing strata are 68.71-164.32 mg/L, while those of other areas are 19.42-39.05 mg/L. The threshold background values of Cl- ion range from 3.45 to 6.65 mg/L, and the regional variations are small.
-
Key words:
- Guizhou /
- karst /
- chloride /
- sulfate /
- background value /
- hydrogeology
-
表 1 研究区水文地质分区特征
Table 1. Hydrogeological division in the study area
编号 名称 水文地质特征 Ⅰ1 黔西山地斜坡峰丛洼地型 褶皱发育强烈,碳夹碎相间分布,石灰岩分布地带地表与地下岩溶发育,并形成地表与地下相通的双重排水系统,受地表深切河谷控制,岩层含水极不均匀,斜坡地带地下水位埋藏普遍较深,地下水多在深切河谷中集中排泄 Ⅰ2 黔北垄岗槽谷型 背斜核部多形成谷地,地下水位较浅,岩层含水性和透水性较均匀,富水性较好,向斜核部常形成“高位”岩溶地下水系统,在碳酸盐岩与碎屑岩接触的部位,常有岩溶大泉、地下河出口分布 Ⅰ3 黔南山地斜坡峰丛洼地型 地表与地下岩溶极为发育,地表形成簇状峰丛和深洼,地下发育形成众多的地下河管道,地表明流与地下伏流频繁交替 Ⅱ1 黔北峰丛盆谷型 背斜核部地表多形成岩溶山间盆地或谷地,地下水埋藏浅,富水性良好且含水性和透水性较均匀 Ⅱ2 黔东溶丘谷地型 白云岩大面积分布,岩层倾角平缓,断裂发育呈网状是本类型岩溶水文地质区突出的地质特征 Ⅱ3-1、Ⅱ3-2 黔中丘原、峰林盆地型 地下水埋藏浅、岩层富水性较强,含水性和透水性较均匀,但石灰岩分布区岩溶相对较发育,岩层含水性和透水性不均匀,常有地下河发育 Ⅱ4 黔南峰丛谷地型 东、西部水文地质条件差异较大,主要为峰丛洼地、峰林谷地地貌,区内地表工程性缺水面积较大 Ⅲ1 乌江干流下游峰丛洼地型 受地质构造和地形影响,地下水赋存条件变化较大,相对而言,在河谷斜坡峰丛山地型岩溶水文地质中,其地下水的赋存条件和开发利用条件相对较好 Ⅲ2 北盘江河谷峰丛洼地型 可供有效开发利用的地表水和地下水严重缺乏,工程性缺水是区内主要的地质环境问题 Ⅳ 断陷盆地型 盆地中第四系覆盖层较厚,下伏石灰岩地层中岩溶极为发育,地下水浅埋,岩层含水性和透水性相对均匀,岩层富水性强 表 2 研究区地下水主要组分特征
Table 2. Main components of groundwater in the study area
水环境分区 样本数(件) 有效样本数(件) SO42- Cl- Ca2+ (mg/L) Mg2+ (mg/L) Na+ (mg/L) K+ (mg/L) TDS (mg/L) pH 检出率(%) 浓度(mg/L) 检出率(%) 浓度(mg/L) Ⅰ1 358 345 98.04 0.93~249.72 100.00 0.02~30.60 0.1~549.7 0.4~191.1 0.2~95.1 0.1~99.2 10.8~2 156.6 6.3~8.8 Ⅰ2 305 298 100.00 1.00~248.00 100.00 1.41~30.52 3.4~369.5 0.5~75.0 0.0~230.0 0.0~10.10 12.2~1 140.1 6.7~8.6 Ⅰ3 123 122 100.00 2.00~148.00 100.00 0.78~26.46 3.3~144.1 0.6~50.6 0.0~80.39 0.0~7.0 23.6~552.8 6.6~8.3 Ⅱ1 542 529 100.00 1.33~204.00 99.82 0.13~33.04 4.3~394.5 1.5~140.5 0.0~84.8 0.0~13.9 35.1~1 194.8 6.6~8.4 Ⅱ2 796 794 100.00 1.00~146.27 100.00 0.25~28.38 2.6~200.9 0.8~69.9 0.0~93.4 0.0~21.3 19.5~554.9 6.5~8.4 Ⅱ3-1 548 510 100.00 0.07~266.90 100.00 0.27~29.86 4.8~523.1 1.0~170.9 0.1~123.4 0.0~17.0 23.5~1 866.5 6.5~8.3 Ⅱ3-2 367 357 100.00 0.01~182.57 99.73 0.14~22.34 4.9~603.5 2.0~141.2 0.1~95.6 0.0~20.8 20.6~2 126.5 6.7~8.9 Ⅱ4 117 114 100.00 2.00~148.72 100.00 0.85~27.63 2.1~156.5 0.4~53.5 0.2~87.3 0.1~7.0 105.1~499.2 6.7~8.2 Ⅲ1 227 225 100.00 2.00~119.30 100.00 0.96~15.29 6.7~211.7 1.0~97.0 0.2~67.9 0.0~27.2 24.7~383.2 6.6~8.5 Ⅲ2 216 210 100.00 0.02~186.30 100.00 0.03~25.20 7.7~549.7 0.6~96.1 0.0~133.2 0.0~10.9 86.7~1 266.9 7.0~8.5 Ⅳ 100 94 100.00 2.00~152.29 99.00 0.25~17.40 0.8~560.8 0.1~67.7 0.2~149.2 0.2~4.4 10.9~604.0 6.8~8.1 表 3 研究区地下水SO42-、Cl-组分背景值计算结果
Table 3. Calculation results of background values of groundwater SO42- and Cl- components in the study area
水文地质分区 类型 方法 SO42- Cl- 分布类型 集中值M 标准差S 变异系数Cv 95百分位数(mg/L) 背景值阈值(mg/L) 分布类型 集中值M 标准差S 变异系数Cv 95百分位数(mg/L) 背景值阈值(mg/L) Ⅰ1 A 箱型图I2σ N 28.76 16.89 0.59 34.03 32.57 N 2.90 1.58 0.54 4.33 4.04 N 26.40 12.18 0.46 31.11 N 3.38 1.43 0.42 3.75 B N 19.41 11.37 0.59 25.90 23.80 N 3.70 2.10 0.57 4.22 4.11 N 18.00 10.27 0.57 21.70 LN 3.38 1.60 0.47 4.01 C P 90.00 33.62 0.37 124.51 127.25 N 3.76 2.53 0.67 5.11 4.93 N 92.66 40.26 0.43 129.98 N 3.96 1.92 0.48 4.74 Ⅰ2 A P 20.00 11.19 0.56 26.54 27.71 N 5.19 2.36 0.45 5.60 5.31 LN 24.00 12.34 0.51 28.88 LN 4.59 1.77 0.39 5.01 B N 22.00 10.29 0.47 27.51 27.32 N 5.39 2.18 0.40 5.31 5.16 LN 20.00 10.70 0.54 27.12 LN 4.69 1.84 0.39 5.00 C LN 70.00 10.21 0.17 90.10 94.17 N 3.75 1.82 0.49 5.19 5.00 NL 74.00 14.75 0.20 98.23 N 3.79 1.70 0.45 4.82 Ⅰ3 A N 28.50 27.09 0.95 35.75 34.46 N 1.89 1.46 0.77 4.18 3.70 N 22.86 12.26 0.54 33.17 N 2.82 1.35 0.48 3.22 B N 33.00 7.53 0.23 31.29 30.09 N 3.56 2.69 0.76 4.29 4.15 N 28.00 11.35 0.41 28.88 N 3.26 1.65 0.51 4.00 C N 93.83 46.04 0.49 124.73 124.37 LN 3.83 2.77 0.72 5.54 5.54 N 93.00 47.40 0.51 124.00 LN 3.93 2.67 0.68 5.54 Ⅱ1 A N 34.00 22.48 0.66 42.43 39.05 N 5.16 3.06 0.59 5.07 5.00 LN 24.23 14.51 0.60 35.67 LN 4.16 2.32 0.56 4.93 B N 23.20 15.83 0.68 26.16 25.96 N 3.36 2.67 0.79 3.46 3.45 LN 22.00 12.70 0.58 25.75 LN 3.31 1.52 0.46 3.43 C N 122.77 53.77 0.44 142.12 143.84 N 1.71 1.92 1.12 4.43 4.30 N 131.48 36.31 0.28 145.55 LN 2.84 2.05 0.72 4.16 Ⅱ2 A N 26.40 13.61 0.52 26.35 23.67 N 5.56 2.82 0.51 5.12 5.12 N 18.79 19.51 1.04 20.99 LN 3.88 2.42 0.62 5.12 B N 16.02 5.78 0.36 20.04 19.42 N 4.05 2.28 0.56 4.93 4.70 LN 14.32 9.47 0.66 18.79 LN 4.24 2.00 0.47 4.46 C LN 96.60 27.27 0.22 103.25 106.95 N 5.99 2.57 0.43 6.10 5.68 N 106.50 21.78 0.33 110.65 N 5.85 2.38 0.41 5.25 Ⅱ3 A LN 35.00 17.81 0.51 34.26 31.42 LN 4.69 2.67 0.57 5.07 4.61 LN 24.00 19.05 0.79 28.58 LN 3.77 1.89 0.50 4.14 B N 15.00 17.96 1.20 27.18 28.64 LN 4.25 2.12 0.50 4.38 4.23 LN 16.96 15.90 0.94 30.09 LN 3.58 2.04 0.57 4.07 C N 115.57 65.79 0.57 142.20 131.87 LN 3.30 2.26 0.68 4.39 4.19 lN 101.00 80.69 0.80 121.54 LN 3.30 2.02 0.61 3.98 Ⅱ4 A N 16.26 9.29 0.57 20.10 20.05 N 4.47 2.48 0.55 5.93 5.57 N 16.32 14.41 0.88 20.00 N 5.51 2.59 0.47 5.21 B N 20.00 10.33 0.52 27.44 28.99 N 4.28 3.05 0.71 6.18 5.60 N 30.00 19.38 0.65 30.54 N 4.00 2.01 0.50 5.02 C N 98.72 16.48 0.18 108.26 108.13 N 6.67 2.93 0.44 6.93 6.65 N 92.00 13.25 0.18 108.00 N 5.85 2.61 0.45 6.36 Ⅲ1 A N 19.78 5.36 0.27 22.31 21.82 LN 4.79 1.24 0.26 4.86 4.41 N 17.00 11.23 0.66 21.33 N 3.37 1.34 0.40 3.95 B N 11.04 7.12 0.64 22.07 23.86 LN 2.58 1.03 0.40 5.32 5.28 LN 13.20 10.69 0.81 25.65 LN 2.75 2.12 0.77 5.23 C P 64.65 6.58 0.10 70.65 68.71 LN 5.40 1.50 0.28 6.52 6.44 P 62.40 10.00 0.16 66.76 LN 4.62 0.86 0.19 6.36 Ⅲ2 A N 26.40 16.16 0.61 32.03 30.55 N 2.95 2.82 0.96 5.15 4.93 N 20.58 16.14 0.78 29.07 N 3.78 2.05 0.54 4.71 B N 21.71 18.52 0.85 35.22 35.12 N 1.98 1.81 0.91 5.13 5.00 LN 20.00 17.69 0.88 35.02 LN 2.22 1.35 0.61 4.87 C N 148.18 53.83 0.36 175.12 164.32 N 4.24 2.41 0.57 6.51 6.51 N 128.51 77.09 0.60 153.52 N 5.49 2.41 0.44 6.51 Ⅳ A N 23.03 22.86 0.99 28.72 29.84 N 2.92 2.47 0.85 4.41 4.20 N 24.97 19.32 0.77 30.96 LN 2.72 1.76 0.65 3.98 B N 16.00 9.27 0.58 24.89 24.45 N 3.63 2.35 0.65 4.63 4.37 N 15.95 11.30 0.71 24.00 N 2.82 1.33 0.47 4.11 C N 120.00 55.07 0.46 131.91 127.18 N 2.98 2.27 0.76 4.39 4.24 N 103.53 60.10 0.58 122.45 LN 2.85 1.64 0.58 4.08 注:分布类型中N表示正态分布;LN表示对数正态分布;P表示偏态分布. -
[1] Biddau, R., Cidu, R., Lorrai, M., et al., 2017. Assessing Background Values of Chloride, Sulfate and Fluoride in Groundwater: A Geochemical-Statistical Approach at a Regional Scale. Journal of Geochemical Exploration, 181: 243-255. https://doi.org/10.1016/j.gexplo.2017.08.002 [2] Boateng, T. K., Opoku, F., Acquaah, S. O., et al., 2016. Groundwater Quality Assessment Using Statistical Approach and Water Quality Index in Ejisu-Juaben Municipality, Ghana. Environmental Earth Sciences, 75(6): 1-14. https://doi.org/10.1007/s12665-015-5105-0 doi: 10.1007/s12665-015-5105-0 [3] Cheng, Z. S., Zhang, Y. B., Su, C., et al., 2017. Chemical and Isotopic Response to Intensive Groundwater Abstraction and Its Implications on Aquifer Sustainability in Shijiazhuang, China. Journal of Earth Science, 28(3): 523-534. doi: 10.1007/s12583-017-0729-5 [4] Dai, C.G., Wang, X.H., Chen, J.S., et al., 2017. Regional Geology of China, Guizhou Province. Geological Publishing House, Beijing (in Chinese). [5] Daug Rhney, C. J., Reeves, R. R., 2005. Definition of Hydrochemical Facies in the New Zealand National Groundwater Monitoring Programme. Journal of Hydrology, 44(2):105-130. http://cn.bing.com/academic/profile?id=2bcc099e4178f5dc30cfb2067a7bece6&encoded=0&v=paper_preview&mkt=zh-cn [6] Edmunds, W. M., Shand, P., 2008. Natural Groundwater Quality. Blackwell Publishing Ltd., Oxford. https://doi.org/10.1002/9781444300345 [7] Fan, L.F., Chen, Z.H., 2004. Determination of Environment Background Value of Groundwater. West-China Exploration Engineering, 16(7): 90-92 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=a590104b9beaba3110e4a25638fbb6cb&encoded=0&v=paper_preview&mkt=zh-cn [8] Fang, Y., Wu, H., Huo, C.C., et al., 2016. Environment Background Levels of Phreatic Water in Shizuishan. Environmental Chemistry, 35(7): 1361-1371 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/hjhx201607005 [9] Guggenmos, M. R., Daughney, C. J., Jackson, B. M., et al., 2011. Regional-Scale Identification of Groundwater- Surface Water Interaction Using Hydrochemistry and Multivariate Statistical Methods, Wairarapa Valley, New Zealand. Hydrology and Earth System Sciences, 15(11): 3383-3398. https://doi.org/10.5194/hess-15-3383-2011 [10] Guo, G.X., Xin, B.D., Liu, W.C., et al., 2010. Review on the Study of the Environment Background Values of Groundwater in China. Hydrogeology & Engineering Geology, 37(2): 95-98 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz201002021 [11] Huo, C. C., Qian, H., Wu, H., 2016.Environmental Background Values of Shallow Groundwater in the Guanzhong Basin. South-to-North Water Transfers and Water Science & Technology, 14(4):99-106, 134 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nsbdyslkj201604016 [12] Li, Y.Y., Huang, D.P., Zhu, X.H., 2007. Spatial Structure Analysis of Land Use of Guizhou Province. Guizhou Geology, 24(1): 47-54 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=15c5cc46c223e5ce9e289133bfc557ec&encoded=0&v=paper_preview&mkt=zh-cn [13] Liao, L., He, J.T., Peng, C., et al., 2018.Methodolodies in Calculating Apparent Background Values of Minor Components in Groundwater: A Case Study of the Liujiang Basin. Earth Science Frontiers, 25(1):267-275 (in Chinese with English abstract). [14] Liao, L., He, J.T., Zeng, Y., et al., 2016. A Study of Nitrate Background Level of Shollow Groundwater in the Liujiang Basin. Geology in China, 43(2): 671-682 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201602026 [15] Liu, W.B., Feng, C.E., Gao, C.R., 2014. Background Value of Groundwater Environment in Hetao Plain. Earth Science, 21(4): 147-157 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201404016 [16] Lü, J.M., An, Y.L., Wu, Q.X., et al., 2015. Hydrochemical Characteristics and Sources of Qingshuijiang River Badin at Wet Season in Guizhou Province. Environmental Science, 36(5):1565-1572 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJKZ201505009.htm [17] Qi, W.Q., Zhou, J.L., 1994. Environmental Background Values of the Groundwater of Shihezi City. Arid Environmental Monitoring, 8(1): 14-16 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400096185 [18] Ren, K., Pan, X.D., Lan, G.J., et al., 2016.Sulfate Concentrations and Source Identification in Different Water Bodies of the Chadianqiao Underground River Basin in Central Guizhou. Acta Geologica Sinica, 90(8):1922-1932 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=9328a95788655ad13edf8f80f7c1538c&encoded=0&v=paper_preview&mkt=zh-cn [19] Wang, J.H., 1980. Geochemical Background Values of Certain Rocks, Soils, Plants and Vegetables in the Continental United States. Science and Technology Press, Beijing (in Chinese). [20] Wang, J.Y., Wang, J.L., Jin, M.G., 2017. Hydrochemical Characteristics and Formation Causes of Karst Water in Jinan Spring Catchment. Earth Science, 42(5):821-831 (in Chinese with English abstract). https://doi.org/dqkx/2017.070 https://doi.org/dqkx/2017.070 [21] Wang, M.Z., Chen, P., Wang, Z. M., et al., 2018. Study on Karst Groundwater System and Groundwater Occurrence Law in Guizhou Province. Geological Publishing House, Beijing (in Chinese). [22] Wang, Y.P., Wang, L., Xu, C.X., et al., 2010.Hydro-Geochemistry and Genesis of Major Ions in the Yangtze River, China. Geological Bulletin of China, 29(2/3):446-456 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201002032 [23] Wang, Z.M., 2017. Characteristics of the Distribution of Carbonate Rocks and Their Control on Karst Groundwater in Guizhou. Geology and Exploration, 53(2): 342-349 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201702014 [24] Yu, H.T., Ma, T., Deng, Y. M., et al., 2017. Hydrochemical Characteristics of Shallow Groundwater in Eastern Jianghan Plain. Earth Science, 42(5): 685-692 (in Chinese with English abstract). https://doi.org/dqkx/2017.056 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705004 [25] Zhang, J.D., 2015. Environmental Science and Environmental Quality of College Students. Tsinghua University Press, Beijing (in Chinese). [26] Zhou, Q., Deng, K.Y., Tao, P., et al., 2014. Guizhou Mineral Deposits. China University of Geosciences Press, Wuhan (in Chinese). [27] 戴传固, 王雪华, 陈建书, 等, 2017.中国区域地质志——贵州志.北京:地质出版社. [28] 樊丽芳, 陈植华, 2004.地下水环境背景值的确定.西部探矿工程, 16(7):90-92. doi: 10.3969/j.issn.1004-5716.2004.07.044 [29] 方媛, 吴昊, 霍晨琛, 等, 2016.石嘴山市浅层地下水的环境背景值.环境化学, 35(7):1361-1371. http://d.old.wanfangdata.com.cn/Periodical/hjhx201607005 [30] 郭高轩, 辛宝东, 刘文臣, 等, 2010.我国地下水环境背景值研究综述.水文地质工程地质, 37(2):95-98. doi: 10.3969/j.issn.1000-3665.2010.02.021 [31] 霍晨琛, 钱会, 吴昊, 2016.关中盆地潜水环境背景值研究.南水北调与水利科技, 14(4):99-106, 134. http://d.old.wanfangdata.com.cn/Periodical/nsbdyslkj201604016 [32] 李亚云, 黄大鹏, 朱晓华, 2007.贵州省土地利用空间结构分析.贵州地质, 24(1):47-54. doi: 10.3969/j.issn.1000-5943.2007.01.010 [33] 廖磊, 何江涛, 彭聪, 等, 2018.地下水次要组分视背景值研究:以柳江盆地为例.地学前缘, 25(1):267-275. http://d.old.wanfangdata.com.cn/Periodical/dxqy201801021 [34] 廖磊, 何江涛, 曾颖, 等, 2016.柳江盆地浅层地下水硝酸盐背景值研究.中国地质, 43(2):671-682. doi: 10.3969/j.issn.1000-3657.2016.02.026 [35] 刘文波, 冯翠娥, 高存荣, 2014.河套平原地下水环境背景值.地学前缘, 21(4):147-157. http://d.old.wanfangdata.com.cn/Periodical/dxqy201404016 [36] 吕婕梅, 安艳玲, 吴起鑫, 等, 2015.贵州清水江流域丰水期水化学特征及离子来源分析.环境科学, 36(5): 1565-1572. http://d.old.wanfangdata.com.cn/Periodical/hjkx201505009 [37] 齐万秋, 周金龙, 1994.石河子市地下水环境背景值.干旱环境监测, 8(1):14-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400096185 [38] 任坤, 潘晓东, 兰干江, 等, 2016.黔中茶店桥地下河流域不同水体硫酸盐浓度特征及来源识别.地质学报, 90(8):1922-1932. doi: 10.3969/j.issn.0001-5717.2016.08.020 [39] 王景华, 1980.美国大陆某些岩石、土壤、植物及蔬菜的地球化学背景值.北京:科学技术出版社. [40] 王珺瑜, 王家乐, 靳孟贵, 2017.济南泉域岩溶水水化学特征及其成因.地球科学, 42(5):821-831. doi: 10.3799/dqkx.2017.070 [41] 王明章, 陈萍, 王中美, 等, 2018.贵州省岩溶地下水系统及地下水赋存规律研究.北京:地质出版社. [42] 王亚平, 王岚, 许春雪, 等, 2010.长江水系水文地球化学特征及主要离子的化学成因.地质通报, 29(2/3):446-456. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201002032 [43] 王中美, 2017.贵州省碳酸盐岩的分布特征及其对岩溶地下水的控制.地质与勘探, 53(2):342-349. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201702014.htm [44] 於昊天, 马腾, 邓娅敏, 等, 2017.江汉平原东部地区浅层地下水水化学特征.地球科学, 42(5):685-692. doi: 10.3799/dqkx.2017.056 [45] 张敬东, 2015.环境科学与大学生环境素质.北京:清华大学出版社. [46] 周琦, 邓克勇, 陶平, 等, 2014.贵州矿藏.武汉:中国地质大学出版社.