Provenance Migration in the Beikang Basin of the Southern South China Sea during the Oligocene to the Mid-Miocene
-
摘要: 晚渐新世-中中新世,南海南部经历了重要的构造变革,北康盆地物源发生了重大变化,引起分散体系的变化,从而影响油气资源分布,因此物源研究具有重要意义.利用地震反射资料,开展地震属性分析,通过RMS(均方根振幅)地层切片,分析分散体系,并探讨物源变化及其控制因素.在晚渐新世-中中新世,北康盆地的沉积物源主要来自南侧,分散体系自南向北;不整合面之后海水突然加深,形成以早中新世不整合面(EMU)为界的2个沉积旋回;在每个旋回内,沉积物补给逐渐增多;在中中新世,沉积物源逐渐向北西方向迁移.通过区域分析,认为北康盆地的物源主要来自南部的曾母前陆盆地,物源的变化是曾母前陆盆地逐渐淤浅成陆和向北推进所致.Abstract: It is significant to research the provenance of Beikang basin in the southern South China Sea, because oil and gas resources were influenced by the changes of dispersion systems resulted from tectonic-induced migration of provenance. In this paper, seismic reflection data were used in seismic attribute analysis, where stratigraphic slices of RMS (root mean square amplitude) were used to analyze dispersion systems, in order to inquire into provenance migration and its controlling factors. During the Later Oligocene to Middle Miocene, the provenance of the Beikang basin was from the south and the dispersion systems extended from south to north. Two depositional cycles were separated by the Early Miocene Uncomformity (EMU), which formed during seawater deepening. In each cycle, sedimentary supply increased gradually upward. During the Middle Miocene, the depositional provenance migrated northwestward gradually. Regional analysis show that the provenance of the Beikang basin mainly came from Zengmu Foreland basin and the provenance migration is caused by landfill and overthrust northward of the Zengmu Foreland basin.
-
南海地处太平洋板块、欧亚板块和印度-澳大利亚板块交汇处,是西太平洋地区最大的边缘海.在新生代,南海经历了陆缘裂陷、海底扩张和区域性的沉降过程,于早中新世末期停止了区域性的伸展运动,东部边缘的部分洋壳向东俯冲削减,南部边缘的地壳发生了碰撞作用(Taylor and Hayes, 1980, 1983; Briais et al., 1993; Zhou et al., 1995; Lüdmann and Wong, 1999).
作为我国最大的边缘海,油气资源丰富,北部、西部、南部边缘业已发现丰富的油气资源,尤其是南部边缘的油气可采储量据统计已经超过57.8×108 t(HIS统计数据,王龙等,2019),逐渐成为我国重要的油气勘探接替区.自晚白垩世以来,北康盆地长期处在欧亚大陆的南部边缘,与南侧的加里曼丹岛隔海相望,有一个古南海横亘在南大陆与岛屿之间.在新南海扩张过程中,古南海逐渐消亡,直到形成残留的南沙海槽(苏达权等,1996;Madon et al., 2013).因此,北康盆地始终没有来自海槽方向的物源.
曾母盆地的演化过程与北康盆地完全不同.南康与加里曼丹岛的碰撞时间相对较早,早于新南海的扩张时期,大约是45~37 Ma(Hutchison, 1996).在新南海扩张期间,曾母盆地已经进入前陆盆地的演化阶段,而前陆盆地的形成是以沙捞越造山不整合(Cullen, 2010)为标志.这就意味着,新南海的扩张与曾母前陆盆地的形成是同时期的.在这种复杂的背景下,北康盆地的物源变化能说明一些问题.本文试图通过北康盆地早中新世末期不整合面形成前后的物源方向和强弱变化,揭示其南侧的邻区——曾母盆地(其时已经淤积并隆升为增生楔)作为物源区的一些变化,这些研究有助于烃源岩预测.
1. 区域地质背景
北康盆地地处南海南部边缘,东侧紧邻南沙海槽;北西方向面向西南次海盆,仅隔着一个面积很小的南微西盆地;南侧与曾母盆地相连接,为走滑性质的廷贾断裂所隔.北康盆地位于南沙中部海域大陆坡上,面积约为6.2×104 km2(图 1),水深为100~2 000 m,是南沙海域新生代的大型沉积盆地之一.
根据地球物理反演的结果和少量抓取的样品资料推断,北康盆地所在的地壳是减薄的陆壳(Schlüter et al., 1996; Clift et al., 2008; Hutchison and Vijayan, 2010; Ding et al., 2013).重力模拟的结果表明,这里的地壳厚度介于14~19 km (Braitenberg et al., 2006).目前,普遍的观点认为,北康盆地是在始新世裂离华南大陆的.华南陆块的裂陷作用实际上始于晚白垩世-早古新世(Ru and Pigott, 1986; Zhou et al., 2009),形成的一系列地堑或半地堑随后被古新世的陆相到浅海沉积充填(Taylor and Hayes, 1980, 1983).较之于北部边缘,这里的沉积速率要低很多,因此北康盆地早期的断裂构造在海底地貌中还能够辨识出来.北康盆地最大的不整合面形成于早中新世末期,文献中提及的中中新世不整合面(MMU; Schlüter et al., 1996;Hall, 2013)或深部区域不整合面(DRU, Levell, 1987; Tan and Lamy, 1990; Hazebroek and Tan, 1993; Wang et al., 2016),实际上都是指的这个不整合面(EMU).该不整合面实际上是早中新世到中中新世多个构造事件的复合界面(Hutchison, 2010a),大量的古生物资料证实该不整合面的准确年龄是早中新世晚期(17~19 Ma;Krebs, 2011).通过区域对比,这个不整合面在整个南海海域都可以对比(Hutchison, 2004; Madon et al., 2013; 姚永坚等, 2013),因此被统一称为“南海不整合面”(SCSU; Cullen, 2010).
在南海不整合面形成前后,是文莱-沙巴地块与南沙地块的碰撞期(Hutchison, 1996).这一次的碰撞造成了南海海底扩张的停止,不整合面正是这一地质事件的见证(Madon, 1999),在南沙地块内存在明显的挤压抬升和褶皱变形事件的记录(孙珍等,2011).北康盆地形成于减薄的陆壳之上,在不断南向削减的洋壳止步于减薄的陆壳与迎面而来的婆罗洲地块(Vijayan et al., 2013)的相撞.因此,北康盆地的演化经历了2期的伸展过程(Ding et al., 2013):第1期是晚白垩世至早渐新世,属于陆内裂陷,形成半地堑和旋转断块;第2期与南海扩张同步,陆壳继续减薄直到渐新世末期西南次海盆张开,此后伸展速度有所减缓,直到早中新世末期南海扩张结束,此间主要发育深至莫霍面的拆离断层(任建业,2018),这也是陆壳持续减薄的标志.此后,出现了像裂谷一样的沉降活动,推测在晚中新世以后带有前陆盆地的性质.
2. 研究方法
本文采用的地震剖面来自广州海洋地质调查局在20世纪90年代的区域普查工作和2000年的科学考查工作,这些珍贵的资料提供了地震资料解释和属性分析的基础.本次研究是在地层解释和对比的基础上,选择EMU附近的地层,利用地层切片的办法,分析均方根振幅在平面上的变化,进而分析沉积物平面分布,确定物源方向,探讨物源的变化.
具体做法是:(1)选择EMU和上下各一个重要界面,进行地层对比和解释,本文选择T2、T3(EMU)、T4三个界面作为关键界面将EMU上下各分出一套地层;(2)在每套地层内进行地层切片,作出5等分的地层分割(图 2),每一等分的地层近似于同期地层;(3)对每等分的切片进行属性提取,考虑到地层岩性对能量的影响最大,本文选择均方根振幅作为研究对象.实际上,对平均能量强度(APA)等其他属性也做了对比研究,效果与均方根振幅相当,因此本文用均方根振幅进行表征.
3. 地震属性特征
通过对上渐新统-下中新统(图 3a)和中中新统(图 3b)的地震属性地层切片后发现,除了紧邻不整合面的一层有异常高的RMS以外,中中新统的RMS普遍偏低.研究区内的钻井资料(Mulu⁃1和Bako⁃1井;Madon et al., 2013)显示,在EMU不整合面附近地震反射的振幅与岩性的粒度呈正相关关系,反映在海平面大幅度上升以后,岩性普遍偏细,地震反射强度也因此普遍偏低.
不整合面之上,由于下部地层的含砂率比上覆地层高,加上成岩作用的影响,因此出现异常高的RMS.另外,在不整合面的形成过程中,受印-澳板块碰撞挤压的影响,整个应力场发生了反转,从伸展作用向挤压作用转变,下伏上渐新统-下中新统经历了强烈的构造变形,断块和褶皱等变形造成海底地貌的强烈起伏,因此容易引发水下的块体流和浊流,这种粗碎屑沉积也会提升RMS的值.
上渐新统-下中新统的RMS地层切片有两个共同的特点(图 3b):(1)高值区的走向基本上南北向延伸,高值更偏向南侧;(2)RMS的值普遍大于10 000,仅在图 3b④中有非常小的区域小于10 000.由下而上(从①到⑤层)存在两个趋势:(1)RMS的值逐渐增大;(2)RMS大值区域(如大于15 000)逐渐增多.
中中新统的RMS地层切片的共同特点是RMS高值区基本还是南北向延伸,但是层间的差别还是比较大的(图 3a).第①层除了RMS值普遍偏高以外,基本上继承了下伏地层的特点.第②层的RMS普遍很低,大部分区域的RMS值介于10 000~15 000.第③层的RMS值分区明显,南高北低趋势更加突出,南部区大部分介于10 000~15 000,小部分大于15 000,而北部区有一多半小于10 000,一小半介于10 000~15 000.第④层和第⑤层的共同特点是RMS值存在西南高东北低的趋势,西南部基本上大于10 000,而东北部基本上都小于10 000.与第④层相比,第⑤层RMS高值的区域(比如大于15 000)明显偏西集中.
4. 物源分析
通过对北康盆地上渐新统-中中新统的RMS地层切片进行了详细研究,结合区域上的地层分布和钻井Mulu⁃1井和Bako⁃1井等井的资料(图 4;Madon et al., 2013),对研究区的岩性作了初步解释.尽管岩性存在不确定性,但是沉积物的分布规律和分散体系的趋势是可以确定的.
根据前人对联井剖面沉积相解释(Madon et al., 2013),获得如下认识:(1)EMU不整合面是重要的转换界面,无论是岩性还是沉积环境都发生了重大变化,因此成为区域性的不整合;(2)EMU界面之下解释了两期,即主裂陷期和裂陷期(本文研究的下层),两期都是海相沉积;(3)这两期海相沉积,由深水相向浅水相转变,水深变浅,岩性向上变粗;(4)EMU界面之上,水深大幅度加大,覆盖了半远洋沉积物.
根据岩性的初步解释,与上渐新统-下中新统(图 5b)相比,中中新统的岩性(图 5a)普遍偏细,这与区域性的快速沉降所引起的海平面的相对上升有关.唯一例外的是紧邻不整合面的中中新统第①层的岩性偏粗,可能与不整合面形成过程中造成的海底地貌崎岖不平有关.不整合面的形成时间前人推测大约在17~19 Ma(Madon et al., 2013),成因是伸展断层形成的海底地貌及其侵蚀作用.
上渐新统-下中新统粗碎屑的总体走向是自南向北方向(图 5b),分散体系源自南侧.而且自下而上粗碎屑的规模逐渐变大(图 5b自①到⑤层),反映了物源补给逐渐增强;同时,强振幅所反映的极粗碎屑的量也逐渐增多,也从另外一个侧面反映了物源补给的增强.另外,分散体系还有一个共同的特点,即在水道远端往往发育一个垂直于分散体系延伸方向的粗碎屑体,与河口区被改造的沙坝形态特征相近.
中中新统的分散体系体现在3个变化上(图 5a):第1个变化是沉积物粒度,从②到⑤层RMS偏小,沉积物偏细,可能与水深大幅度加大有关;第2个变化是展布方向或源区,①到③层南北向展布,而④和⑤层呈南西-北东向,源区明显向北西迁移;第3个变化是沉积体的连续性,①层连续性较好,②和③层连续性差,④和⑤层连续性也较好.因此,从下而上(图 5a的①至⑤层)物源依次由南侧偏东、南侧、南侧偏西不断向西迁移.从岩性分异情况看,从下到上(从②层到⑤层)从模糊到清晰,表明深水沉积体系趋向稳定的过程.与②层和③层相比,④层和⑤层的细碎屑集中出现在东北部,是水深加大的标志.另外,分散体系还有一个共同特点:在水道的远端往往形成朵状形态的粗碎屑体,形态与海底扇扇面发育的浊积朵叶体相似.
5. 讨论
晚渐新世至中中新世是南海海域重大构造变革期,新南海扩张与古南海消亡同步进行(Taylor and Hayes, 1980, 1983; Madon et al., 2013; Wang et al., 2016).西南次海盆的扩张是在洋中脊南向跃迁之后,即早中新世开始扩张(Taylor and Hayes, 1980, 1983; Briais et al., 1993).因此北康盆地在南海扩张期间主要物源都不可能来自华南大陆,尤其是西南次海盆开始扩张以后.而南部的南沙海槽是古南海南向俯冲的残留,由于北康基底是减薄的陆壳,因此难以俯冲而转化为碰撞带(Hutchison, 2010b).可见,南部边缘也难以为北康盆地提供物源.
与北康盆地相邻的曾母盆地先于北康盆地进入前陆盆地的演化阶段(James, 1984),婆罗洲的逆时针旋转(Fuller et al., 1999)与曾母盆地先进入前陆盆地演化阶段的结论相吻合.廷贾-西巴兰姆线(the Tinjar⁃West Baram Line;Cullen et al., 2013; Cullen, 2014)在北康盆地和曾母盆地的演化过程中,扮演了很重要的角色.在南海扩张期间(晚渐新世-早中新世),曾母盆地实际上是处在前陆盆地演化的“molasse”阶段(图 6),率先出现浅海和滨岸平原沉积(Madon et al., 2013), 地貌呈东倾之势,因此可以为北康盆地提供物源,这与本文的推论相吻合.
图 6 北康盆地的沉积物来源及变迁模式据Madon et al.(2013)改编,研究区内的内容为本文观点Fig. 6. The sedimentary provenance and migration model in the Beikang basin根据Madon et al.(2013)的分析,曾母盆地所在的“拉让海”(the Rajang Sea,晚白垩世-始新世)在南海扩张之前就已经闭合.因此,在南海扩张期前后的相当长的时间内(晚渐新世-中中新世),“拉让海”沉积的拉让群复理石沉积实际上是处在隆升和剥蚀状态,并以石英质再旋回沉积物源的形式源源不断地变成浊积物被搬运到邻近的狭长残余洋盆中.我们认为,补充到南沙海槽的沉积物主要是来自文莱-沙巴推覆带隆升后的剥蚀和再沉积,隆升后的曾母增生楔更多的是提供给北康盆地(图 6).
在南海扩张期间(晚渐新世-早中新世,本文的下层),研究区的物源主要来自婆罗洲西部和巽他大陆架,在研究区处在海岸平原向浅海的过渡地带,推测主要发育三角洲的水下部分,因此粗碎屑体很可能是水下分流河道和河口坝(图 6a);在南海扩张结束后的一段时间内(中中新世,本文的上层),南海处在快速热收缩沉降阶段,南海普遍水深加大,研究区处在浅海向半深海过渡的位置,主要发育深水沉积物,推测粗碎屑沉积体以浊积体为主,分散体系可能主要是海底扇中的深水水道及其前方的浊积朵叶体(图 6b).而且我们推断,随着曾母增生楔的不断隆升和向北推进,作为再沉积的沉积物源也不断地向北西迁移.
物源变化的另一个因素是碳酸盐台地的发育.南康台地和万安盆地东部在中晚中新世发育碳酸盐台地(Epting, 1989; Wilson, 2002; 杨楚鹏等,2014;杨振等,2016;王龙等,2019),晚于礼乐盆地(Steuer et al., 2014),后者在南海扩张期间(晚渐新世-早中新世)就广泛发育碳酸盐台地;因此,北康盆地的物源在中晚中新世受到限制,西南侧有南康台地,西北侧有万安东部碳酸盐台地,碎屑物主要来自南侧偏西的曾母增生楔隆起区.同时,碳酸盐台地的发育也说明陆源碎屑补给的不足,与中中新世以来的海水加深有关,水深加大,沉积物可容纳空间相应增加,沉积物容易在近岸带堆积,北康盆地作为远源区沉积物补给明显下降.
6. 结论
(1)北康盆地在晚渐新世-中中新世的主要物源来自盆地的南侧,分散体系总体上由南向北延伸,中中新世晚期沉积物源逐渐向北西迁移.
(2)以EMU不整合为界研究层段发育2个旋回,除了①层受到了不整合面的影响(粒度偏粗),两个旋回都存在物源补给逐渐增强的趋势.
(3)进入前陆“molasse”阶段的曾母增生楔(现在曾母盆地的位置)为北康盆地提供物源,曾母盆地水体不断变浅、转为陆地并逆冲推覆的前陆盆地演化过程可能是导致北康盆地物源变迁的主要原因.
致谢: 特别感谢两位审稿专家提出的建设性意见和建议! -
图 1 南海南部海域的主要沉积盆地和研究区位置
Fig. 1. The key sedimentary basins and research area in the southern South China Sea
图 4 过井剖面的地震反射特征及沉积解释
Fig. 4. Seismic reflection characteristics and depositional interpretation of cross-well profiles
图 6 北康盆地的沉积物来源及变迁模式
据Madon et al.(2013)改编,研究区内的内容为本文观点
Fig. 6. The sedimentary provenance and migration model in the Beikang basin
-
[1] Braitenberg, C., Wienecke, S., Wang, Y., 2006. Basement Structures from Satellite-Derived Gravity Field:South China Sea Ridge. Journal of Geophysical Research, 111:1-15. https://doi.org/10.1029/2005B003938. 2006 doi: 10.1029/2005B003938.2006 [2] Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies an Seafloor Spreading Stages in the South China Sea:Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research, 98 (B4):6299-6328. https://doi.org/10.1029/92jb02280 [3] Clift, P., Lee, G.H., Anh Duc, N., et al., 2008. Seismic Reflection Evidence for a Dangerous Grounds Miniplate:No Extrusion Origin for the South China Sea. Tectonics, 27:1-16. https://doi.org/10.1029/2007TC002216. [4] Cullen, A., 2014. Reprint of:Nature and Significance of the West Baram and Tinjar Lines, NW Borneo. Marine and Petroleum Geology, 58:674-686. https://doi.org/10.1016/j.marpetgeo.2013.11.010 [5] Cullen, A., Macpherson, C., Taib, N.I., et al., 2013. Age and Petrology of the Usun Apau and Linau Balui Volcanics:Windows to Central Borneo's Interior. Journal of Asian Earth Sciences, 76:372-388. https://doi.org/10.1016/j.jseaes.2013.05.003 [6] Cullen, A. B., 2010. Transverse Segmentation of the Baram-Balabac Basin, NW Borneo:Refining the Model of Borneo's Tectonic Evolution. Petroleum Geoscience, 16:3-29. https://doi.org/10.1144/1354-079309-828 [7] Ding, W., Franke, D., Li, J., et al., 2013. Seismic Stratigraphy and Tectonic Structure from a Composite Multi-Channel Seismic Profile across the Entire Dangerous Grounds, South China Sea. Tectonophysics, 582:162-176. https://doi.org/10.1016/j.tecto.2012.09.026 [8] Epting, M., 1989. The Miocene Carbonate Buildups of Central Luconia, Offshore Sarawak. In: Bally, A.W., ed., Atlas of Seismic Stratigrapgy. AAPG Studies in Geology, Tulsa, 168-173. [9] Fuller, M., Ali, J.R., Moss, S.J., et al., 1999. Paleomagnetism of Borneo. Journal of Asian Earth Sciences, 17:3-24. https://doi.org/10.1016/s0743-9547(98)00057-9 [10] Hall, R., 2013. Contraction and Extension in Northern Borneo Driven by Subduction Rollback. Journal of Asian Earth Sciences, 76:399-411. https://doi.org/10.1016/j.jseaes.2013.04.010 [11] Hazebroek, H.P., Tan, D.N.K., 1993. Tertiary Tectonic Evolution of the NW Sabah Continental Margin. Bulletin of the Geological Society of Malaysia, 33:195-210. doi: 10.7186/bgsm33199315 [12] Hutchison, C.S., 1996. The Rajang Accretionary Prism and Lupar Line Problem of Borneo. In: Hall, R., Blundell, D.J., eds., Tectonic Evolution of Southeast Asia. Geological Society of London Special Publication, 106(1): 247-261. https: //doi.org/10.1144/gsl.sp.1996.106.01.16 [13] Hutchison, C.S., 2004. Marginal Basin Evolution:The Southern South China Sea. Marine and Petroleum Geology, 21:1129-1148. https://doi.org/10.1016/j.marpetgeo.2004.07.002 [14] Hutchison, C.S., 2010a. Oroclines and Paleomagnetism in Borneo and South-East Asia. Tectonophysics, 496:53-67. https://doi.org/10.1016/j.tecto.2010.10.008 [15] Hutchison, C.S., 2010b. The North-West Borneo Trough. Marine Geology, 271:32-43. https://doi.org/10.1016/j.margeo.2010.01.007 [16] Hutchison, C.S., Vijayan, V.R., 2010. What are the Spratly Islands?. Journal of Asian Earth Sciences, 39:371-385. https://doi.org/10.1016/j.jseaes.2010.04.013 [17] James, D.M.D., 1984. Regional Geological Setting. In: James, D.M.D., ed., The Geology and Hydrocarbon Resources of Negara Brunei Darussalam. Brunei Museum and Brunei Shell Petroleum Company, Bandar Seri Begawan, 34-42. [18] Krebs, W.N., 2011. Upper Tertiary Chronosequence Stratigraphy of Offshore Sabah and Sarawak, NW Borneo, Malaysia:A Unified Scheme Based on Graphic Correlation. Bulletin of the Geological Society of Malaysia, 57:39-46. doi: 10.7186/bgsm57201106 [19] Levell, B.K., 1987. The Nature and Significance of Regional Unconformities in the Hydrocarbon-Bearing Neogene Sequences Offshore West Sabah. Bulletin of the Geology Society of Malaysia, 21:55-90. doi: 10.7186/bgsm21198704 [20] Lüdmann, T., Wong, H.K., 1999. Neotectonic Regime on the Passive Continental Margin of the Northern South China Sea. Tectonophysics, 311:113-138. https://doi.org/10.1016/s0040-1951(99)00155-9 [21] Madon, M., 1999. North Luconia Province. Petronas, Kuala Lumpur, 441-454. [22] Madon, M., Ly, K.C., Wong, R., 2013. The Structure and Stratigraphy of Deepwater Sarawak, Malaysia:Implications for Tectonic Evolution. Journal of Asian Earth Sciences, 76(2):312-333. https://doi.org/10.1016/j.jseaes.2013.04.040 [23] Ren, J.Y., 2018. Genetic Dynamics of China Offshore Cenozoic Basins. Earth Science, 43(10):3337-3361 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.330 [24] Ru, K., Pigott, J.D., 1986. Episodic Rifting and Subsidence in the South China Sea. AAPG Bulletin, 70:1136-1155. http://cn.bing.com/academic/profile?id=f9c632abe3e2b600b5afde421ccaa1db&encoded=0&v=paper_preview&mkt=zh-cn [25] Schlüter, H.U., Hinz, K., Block, M., 1996. Tectono-Stratigraphic Terranes and Detachment Faulting of the South China Sea and Sulu Sea. Marine Geology, 130(1-2):39-51, 58-78. https://doi.org/10.1016/0025-3227(95)00137-9 [26] Steuer, S., Franke, D., Meresse, F., et al., 2014. Oligocene-Miocene Carbonates and Their Role for Constraining the Rifting and Collision History of the Dangerous Grounds, South China Sea. Marine and Petroleum Geology, 5:644-657. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=38e9739b3438000b8ca650b0122f3236 [27] Su, D.Q., Huang, C.L., Xia, K.Y., 1996. The Crust in the Nansha Trough. Scientia Geologica Sinica, 31(4):409-415 (in Chinese with English abstract). [28] Sun, Z., Zhao, Z.X, Zhou, D., et al., 2011. The Stratigraphy and Sequence Architecture of the Basins in Nansha Region. Earth Science, 36(5):798-806 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2011.082 [29] Tan, D.N.K., Lamy, J.M., 1990. Tectonic Evolution of the NW Sabah Continental Margin since the Late Eocene. Bulletin of the Geology Society of Malaysia, 27:241-260. doi: 10.7186/bgsm27199012 [30] Taylor, B., Hayes, D.E., 1980. The Tectonic Evolution of the South China Sea. In: Hayes, D.E., ed., The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Part 1. Geophysical Monograph Series, 23: 89-104. [31] Taylor, B., Hayes, D.E., 1983. Origin and History of the South China Sea Basin. In: Hayes, D.E., ed., The Tectonic and Geologic Evolution of the Southeast Asian Seas and Islands. Part 2. Geophysical Monograph Series, 27: 23-56. https: //doi.org/10.1029/gm027p0023 [32] Vijayan, V.R., Foss, C., Stagg, H., 2013. Crustal Character and Thickness over the Dangerous Grounds and beneath the Northwest Borneo Trough. Journal of Asian Earth Sciences, 76(25):389-398. https://doi.org/10.1016/j.jseaes.2013.06.004 [33] Wang, L., Zhao, Z.G., Xie, X.J., et al., 2019. Reservoir Distribution and Hydrocarbon Accumulation Patterns in Central-Southern South China Sea. Earth Science, 44(3):919-928 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.116 [34] Wang, P.C., Li, S.Z., Guo, L.L., et al., 2016. Mesozoic and Cenozoic Accretionary Orogenic Processes in Borneo and Their Mechanisms. Geological Journal, 51(S1):464-489. https://doi.org/10.1002/gj.2835 [35] Wilson, M.E.J., 2002. Cenozoic Carbonates in Southeast Asia:Implications for Equatorial Carbonate Development. Sedimentary Geology, 147(3-4):295-428. https://doi.org/10.1016/s0037-0738(01)00228-7 [36] Yang, C.P., Yao, Y.J., Li, X.J., et al., 2014. Sequence Stratigraphy and Sedimentary Cycle of Miocene Carbonate Buildups in Zengmu Basin, the Southern South China Sea. Earth Science, 39(1):91-98 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2014.009 [37] Yang, Z., Zhang, G.X., Zhang, L., 2016. The Evolution and Main Controlling Factors of Reef and Carbonate Platform in Wan'an Basin. Earth Science, 41(8):1349-1360 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.107 [38] Yao, Y.J., Yang, C.P., Li, X.J., et al., 2013. The Seismic Reflection Characteristics and Tectonic Significance of the Tectonic Revolutionary Surface of Mid-Miocene (T3 Seismic Interface) in the Southern South China Sea. Chinese Journal of Geophysics, 56(4):1274-1286 (in Chinese with English abstract). https://doi.org/10.6038/cjg20130422 [39] Zhou, D., Ru, K., Chen, H.Z., 1995. Kinematics of Cenozoic Extension on the South China Sea Continental Margin and Its Implications for the Tectonic Evolution of the Region. Tectonophysics, 251:161-177. https://doi.org/10.1016/0040-1951(95)00018-6 [40] Zhou, H., Xiao, L., Dong, Y., et al., 2009. Geochemical and Geochronological Study of the Sanshui Basin Bimodal Volcanic Rock Suite, China:Implications for Basin Dynamics in Southeastern China. Journal of Asian Earth Sciences, 34:178-189. https://doi.org/10.1016/j.jseaes.2008.05.001 [41] 任建业, 2018.中国近海海域新生代成盆动力机制分析.地球科学, 43(10):3337-3361. doi: 10.3799/dqkx.2018.330 [42] 苏达权, 黄慈流, 夏戡原, 1996.论南沙海槽的地壳性质.地质科学, 31(4):409-415. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000001821124 [43] 孙珍, 赵中贤, 周蒂, 等, 2011.南沙海域盆地的地层系统与沉积结构.地球科学, 36(5):798-806. doi: 10.3799/dqkx.2011.082 [44] 王龙, 赵志刚, 谢晓军, 等, 2019.南海中南部区域储层分布规律及油气成藏模式.地球科学, 44(3):919-928. doi: 10.3799/dqkx.2018.116 [45] 杨楚鹏, 姚永坚, 李学杰, 等, 2014.南海南部曾母盆地中新世碳酸盐岩的层序地层.地球科学, 39(1):91-98. doi: 10.3799/dqkx.2014.009 [46] 杨振, 张光学, 张莉, 2016.万安盆地生物礁及碳酸盐台地的发育演化及控制因素.地球科学, 41(8):1349-1360. doi: 10.3799/dqkx.2016.107 [47] 姚永坚, 杨楚鹏, 李学杰, 等, 2013.南海南部海域中中新世(T3界面)构造变革界面地震反射特征及构造含义.地球物理学报, 56(4):1274-1286. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201304022 期刊类型引用(8)
1. 徐俊杰,佟殿君,高圆圆. 北康盆地基底构造特征及其对南海南部构造演化的启示. 地质通报. 2024(09): 1607-1619 . 百度学术
2. Bing HAN,Zhongxian ZHAO,Xiaofang WANG,Zhen SUN,Fucheng LI,Benduo ZHU,Yongjian YAO,Liqiang LIU,Tianyue PENG,Genyuan LONG. Formation of the Zengmu and Beikang Basins, and West Baram Line in the southwestern South China Sea margin. Journal of Oceanology and Limnology. 2023(02): 592-611 . 必应学术
3. 唐武,谢晓军,赵志刚,熊连桥,白海强,刘子玉. 南沙海域北康盆地油气地质特征及勘探前景. 中国海上油气. 2023(04): 47-55 . 百度学术
4. 苏海霞,刘姗,张莉,苏明,黄书勤,雷振宇. 南海南部北康盆地晚中新世以来深水沉积单元时空分布特征及其控制因素. 地质科技通报. 2023(06): 129-139 . 百度学术
5. 何家雄,宁子杰,赵斌,万志峰,孟大江. 南海天然气水合物资源勘查战略接替区初步分析与预测. 地球科学. 2022(05): 1549-1568 . 本站查看
6. 王菲,吴艳梅,丁巍伟. 南海西北与西南次海盆沉积通量及其控制因素. 地球科学. 2021(03): 986-1007 . 本站查看
7. 徐俊杰,刘道涵,陈松,刘慧,刘磊,刘盼,刘广宁. 北康盆地基底卷入断层特征及其对南海南部构造演化的启示. 海洋地质与第四纪地质. 2021(04): 116-128 . 百度学术
8. 雷振宇,刘晓峰,张莉,骆帅兵,钱星,刘建平,王智刚,帅庆伟. 南海南部北康盆地构造样式及构造演化. 大地构造与成矿学. 2021(05): 861-874 . 百度学术
其他类型引用(1)
-