The Source and Natural Gas Lateral Migration Accumulation Model of Y8-1 Gas Bearing Structure, East Deep Water in the Qiongdongnan Basin
-
摘要: 综合钻井天然气地球化学、地震资料,分析了琼东南盆地深水东区Y8-1构造天然气成因、来源及侧向运聚模式.天然气轻烃C6、C7组成分析表明,Y8-1构造天然气既有别于松东凹陷北坡的油型气,也不同于深水L17-2气田的煤型气.根据天然气乙烷、丙烷碳同位素特征,判断Y8-1构造天然气具有煤型气和油型气混合成因特征.选择盆地东部典型煤型气、油型气作为端元,计算得到Y8-1构造天然气中煤型气占53.3%、油型气占46.7%,分别来源于松南-宝岛凹陷下渐新统崖城组陆源海相烃源岩、始新统湖相烃源岩,两套烃源岩均具备生成成熟-高成熟天然气的地质条件.松南-宝岛凹陷中烃源岩生成的天然气沿断裂、构造脊、砂岩层侧向长距离运移,在Y8-1崖城组、花岗岩基岩圈闭中聚集成藏.Abstract: Based on the geochemical analyses of natural gases and seismic exploration data,the genesis,sources and lateral migration accumulation of Y8-1 bearing structure were comprehensively analyzed in the East deep water of the Qiongdong Basin. The analyses of C6,C7 light hydrocarbons show that the natural gas of the Y8-1 bearing structure is different from oil-type gas in the northern slope of Songdong sag,and coal-type gas of L17-2 gas field in the deepwater as well. According to the ethane and the propane carbon isotope,the natural gas in the Y8-1 bearing structurehas the mixing characteristics of coal-type gas and oil-type gas. The typical coal-type gas and the oil-type gas in the east Qiongdongnan Basin are selected to be end elements,the natural gas ethane carbon isotope of the Y8-1 bearing structure is calculated as coal-type gas for 53.3% and oil-type gas for 46.7% in the natural gas. The Y8-1 mixing source gas derived from the terrestrial marine source rock of Lower Oligocene Yacheng formation and Eocene lacustrine source rock in Songnan-Baodao sag respectively,and both sets of source rocks have geological conditions for the formation of mature-high mature natural gas. The natural gas generated from the source rocks in the Songnan,Baodao sags migrates along the tectonic ridges,faults,and sandstone carriers for a long distance,thenaccumulatedin the Yacheng formation and granite basement traps in the Songnan low-uplift,East deep water of the Qiongdong Basin.
-
Key words:
- genesis of the natural gas /
- light hydrocarbon /
- carbon /
- mixing source gas /
- east deep water /
- Qiongdongnan Basin
-
表 1 琼东南盆地东部天然气组分、干燥系数与碳同位素特征
Table 1. Natural gas composition, dry coefficient and carbon isotope characteristics, East Qiongdongnan basin
区带 井号 井段(m) 测试层号 天然气组分(%) 干燥系数 碳同位素δ13C(‰) C1 C2~5 N2 CO2 C1/C1~5 C1 C2 C3 C4 CO2 松东凹陷北坡带 SF24-1-1 2 122.5 MDT 74.30 9.80 6.77 7.81 0.88 -47.06 -30.92 -29.96 -28.64 -7.61 宝岛凹陷北坡带 BF13-1-1 1 573.0 ~1 580.0 DST 86.14 10.24 2.46 0.72 0.89 -48.65 -30.53 -31.15 -27.82 -25.54 BF13-3-1 1 740.0 MDT 84.70 11.40 2.80 0.61 0.88 -48.91 -27.45 -27.93 -27.84 BF13-3S-1 1 967.5 MDT 82.48 8.09 6.67 1.18 0.91 -45.53 -30.39 -29.84 -28.09 -29.33 BF19-2-3 3 911.0 MDT 79.70 8.29 6.28 1.19 0.91 -35.98 -30.39 -28.57 -27.41 -6.23 3 934.5 MDT 72.93 3.73 3.84 18.72 0.95 -35.17 -30.67 -28.60 -27.30 -4.26 松南低凸起 Y8-1-1 2 880.5 MDT 89.90 2.97 6.11 0.59 0.97 -45.44 -27.64 -27.80 -7.82 2 895.6 MDT 89.77 2.99 6.13 0.69 0.97 -45.59 -27.83 -27.88 -8.03 松涛凸起 SF34-3-1 2 301.8 MDT 93.92 4.50 0.43 0.65 0.95 -46.55 -27.57 -27.50 -16.70 2 311.6 MDT 92.70 5.42 0.39 0.72 0.94 -46.54 -25.59 -26.22 -16.22 注:SF24-1-1:下中新统三亚组; BF13-1-1:中中新统梅山组; BF13-3-1:中中新统梅山组; BF13-3S-1:中中新统梅山组; BF19-2-3:上渐新统陵水组Ⅰ气组和上渐新统陵水组Ⅱ气组; Y8-1-1:下渐新统崖城组; SF34-3-1:下中新统三亚组 表 2 琼东南盆地东区、北部湾盆地天然气轻烃C6和C7系列分析数据表
Table 2. The C6 and C7 light hydrocarbon series of the east Qiongdongnan Basin and the Beibu Gulf Basin
井名 井深(m) 采样方式 C6系列(%) C7系列(%) 正构烷烃 异构烷烃 环烷烃 芳香烃 正构烷烃 异构烷烃 环烷烃 芳香烃 SF24-1-1 2 122.5 FMT 21.72 41.95 34.08 2.25 15.52 31.90 49.14 3.45 BF13-1-1 1 573.0~1 580.0 DST 23.08 47.12 29.81 0 13.64 31.82 54.55 0 1 577.3 MDT 20.75 48.11 31.13 0 12.00 30.00 58.00 0 BF13-3-1 1 740.0 MDT 25.00 56.43 18.57 0 14.63 43.90 41.46 0 BF13-3S-1 1 967.5 MDT 21.19 41.53 36.44 0.85 13.21 26.42 58.49 1.89 BF19-2-3 3 911.0 MDT 15.15 36.36 39.39 9.09 16.67 33.33 33.33 16.67 3 934.5 MDT 9.09 18.18 27.27 45.45 6.25 6.25 31.25 56.25 Y8-1-1 2 880.5 MDT 12.82 46.15 30.77 10.26 11.43 31.43 48.57 8.57 2 895.6 MDT 13.33 44.44 28.89 13.33 12.50 32.50 45.00 10.00 L17-2-1 3 306.0 MDT 13.98 34.41 25.81 25.81 13.73 21.57 43.14 21.57 L18-1-1 2 819.9~2 846.7 DST 13.11 40.98 22.95 22.95 11.11 27.78 44.44 16.67 SF34-3-1 2 301.8 MDT 20.11 42.93 35.87 1.09 17.30 23.24 58.38 1.08 2 311.6 MDT 20.00 42.95 36.07 0.98 16.08 24.71 57.65 1.57 WZ1 2 137.5~2 265.8 DST3 29.53 42.13 27.95 0.39 19.63 23.36 56.07 0.93 WZ2 2 351.0~2 357.0 DST2 28.89 53.33 17.04 0.74 20.00 34.29 45.71 0 WZ3 2 459.0~2 473.5 DST2 28.85 48.72 18.59 3.85 20.45 31.82 43.18 4.55 表 3 琼东南盆地主要含气构造天然气C7轻烃组成
Table 3. The Composition of C7 light hydrocarbon series of natural gas in Qiongdongnan basin
井名 深度(m) 地层 天然气C7轻烃组成 甲基环己烷指数(%) 成因类型 甲基环己烷(MCH)(%) 正庚烷(nC7)(%) 二甲基环戊烷(ΣDMCP)(%) SF24-1-1 2 122.5 下中新统三亚组 42.60 24.00 33.30 42.60 油型气 BF13-1-1 1 573.0~1 580.0 中中新统梅山组 40.00 20.00 40.00 40.00 油型气 1 577.3 40.00 17.10 42.90 40.00 油型气 BF13-3-1 1 740.0 中中新统梅山组 30.40 26.00 43.60 30.40 油型气 BF13-3S-1 1 967.5 下中新统三亚组 42.10 18.40 39.50 42.10 油型气 45.80 18.80 35.40 45.80 油型气 BF19-2-3 3 911.0 上渐新统陵水组二段Ⅰ气组 50.00 10.00 40.00 50.00 煤型气 3 934.5 上渐新统陵水组二段Ⅱ气组 50.00 16.70 33.30 50.00 煤型气 57.10 14.30 28.60 57.10 煤型气 60.00 20.00 20.00 60.00 煤型气 L17-2-1 3 306.0 上中新统黄流组 48.30 24.10 27.60 48.30 煤型气 L17-2-2 3 331.3 50.00 21.40 28.60 50.00 煤型气 L18-1-1 2 819.9~2 846.7 莺二段T29A气组 40.00 20.00 40.00 40.00 油型气 Y8-1-1 2 880.5 下渐新统崖城组 47.60 19.10 33.30 47.60 油型气 2 895.6 43.50 21.70 34.80 43.50 油型气 WZ1 2 137.5~2 265.8 流-段 33.30 25.90 40.70 33.30 油型气 WZ2 2 351.0~2 357.0 涠三段 34.80 30.40 34.80 34.80 油型气 WZ3 2 459.0~2 473.5 涠三段 35.71 32.14 32.14 35.71 油型气 注:甲基环己烷指数=MCH/(MCH+nC7+ΣDMCP)×100% 表 4 Y8-1含气构造天然气混源比例计算表
Table 4. The calculation table of mixed source ratios of the natural gas in Y8-1 gas bearing structure
天然气组分 Y8-1气藏天然气碳同位素(‰) 湖相气端元:S24气藏 陆源浅海相气端元:L17气田 混源气藏天然气碳同位素(‰) 天然气组分含量m(%) 天然气碳同位素n (‰) 混合比例fh(%) 天然气组分含量x(%) 天然气碳同位素y (‰) 混合比例fq(%) 计算考虑天然气组分A 计算未考虑天然气组分B 乙烷 -27.74 4.45 -30.92 46.7 4.4 -24.93 53.3 -27.74 -27.73 丙烷 -28.84 3.36 -29.96 40.8 1.1 -23.38 59.2 -27.84 -26.06 注:丙烷同位素倒转偏轻,计算结果仅供参考,A=(m×n×fh+x×y×fq)/(m×fh+x×fq), B=n×fh+y×fq -
[1] Dai, J. X., 1992. Identification and Distinction of Various Alkane Gases. Science in China Series B, 35(10):1246-1257 (in Chinese with English abstract). [2] Dai, J. X., 1993a. Discriminate of Kinds of Alkane Gas. Petroleum Exploration and Development, 20(5):26-32 (in Chinese with English abstract). [3] Dai, J. X., 1993b. Carbon/Hydrogen Isotope Characteristic and Identification of Various Natural Gases. Natural Gas Geoscience, 4(2, 3):1-40 (in Chinese with English abstract). [4] Dai, J. X., 1995.A Biogenic Gas in Oil-Gas Bearing Basins in China and Its Reservoirs. Natural Gas Industry, 15(3):22-27 (in Chinese with English abstract). [5] Dai, J. X., Qi, H. F., Song, Y., 1985. On the Indicators for Identifying Gas from Oil and Gas from Coal Measure. Acta Petroleum Sinica, 6(2):31-38 (in Chinese with English abstract). [6] Dai, J. X., Shi, X., Wei, Y, Z., 2001. Summary of the Abiogenic Origin Theory and the Abiogenic Gas Pools(Fields). Acta Petroleum Sinica, 22(6):5-10 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb200106002 [7] Dai, J.X., Xia, X.Y., Qin, S.F., et al., 2003.Causation of Partly Reversed Orders of Carbon Isotopes in Biogenic Alkane in China.Oil & Gas Geology, 24(1):1-6(in Chinese with English abstract). [8] Hu, T.L., Ge, B. X., Zhang, Y. G., et al., 1990. The Development and Application of Fingerprint Parameters for Hydrocarbons Absorbed by Source Rocks and Light Hydrocarbons in Natural Gas. Experimental Petroleum Geology, 12(4):375-393 (in Chinese with English abstract). [9] Huang, B. J., Huang, H. T., Li, L., et al., 2010. Characteristics of Marine Source Rocks and Effect of High Temperature and Overpressure to Organic Matter Maturation in Yinggehai-Qiongdongnan Basins. Marine Origin Petroleum Geology, 15(3):11-18(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxyqdz201003002 [10] Liu, W. H., Xu, Y. C., 1996. Genetic Indicators of Natural Gas. Acta Sedimentologica Sinica, 14(1):110-116 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_9a1dd89486801d4aba68065885d6b611 [11] Pei, L.X., Gang, W.Z, Zhu C.Z., 2018. Carbon Isotopic Composition and Source of Hydrocarbon Gases in the Junggar Basin. Natural Gas Geoscience, 29(7):1020-1030(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201807011 [12] Schoell, M., 1983.Genetic Characterization of Natural Gases.AAPG Bulletin, 67(12):2225-2238. [13] Song, Y., Xu, Y. C., 2005. Origin and Identification of Natural Gas.Petroleum Exploration and Development, 32 (4):24-29(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/sysydz201802009 [14] Sun, J. L., 1994.Characteristics of the Ya13-1 Gas Field in South China Sea and Its Integrated Reservoir Conditions. Natural Gas Industry, 14(2):1-7(in Chinese with English abstract). [15] Wang, S.Y., Dai, H.M., Wang, H.Q., 2003.Method of Quantity Calculation of Mixed-Source Natural Gas Study of Baimamiao Gas Field of West in Sichuan Basin. Natural Gas Geoscience, 14(5):351-353(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx200305004 [16] Xu, X.D., Zhang, Y.Z., Liang, G., et al., 2016.Hydrocarbon Source Condition and Accumulation Mechanism of Natural Gas in Deepwater area of Qiongdongnan Basin, Northern South China Sea. Natural Gas Geoscience, 27(11):1985-1992(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201611005 [17] Xu, Y. C., 1996. The Mantle Noble Gas of Natural Gases.Earth Science Frontiers, 3(3):63-71(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_eb09fa1316d6f64f0524f3046fcfd3ea [18] Zhang, H. X., Ni, S., Wang, L., et al., 2014. Mixing Source Ratio of Nature Gas in South Branch of Dinan Salient, Zhunggar Basin. Fault-Block Oil and Gas Field, 21(2):176-180(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkyqt201402009 [19] Zhang, S. C., Zhu, G. Y., Chen, J. P., et al., 2007.A Discussion on Gas Sources of the Feixianguan Formation H2S Rich Giant Gas Fields in the North Eastern Sichuan Basin.Chinese Science Bulletin, 52 (Supp.Ⅰ):86-94(in Chinese with English abstract). [20] Zhang, Y. Z., Chen, Z. H., Li, X.S., et al., 2011.Favorable Coastal Gas Reservoir Forming Conditions and Exploration Direction in Qiongdongan Basin of South China Sea.Journal of Oil and Gas Technology, 33(1):21-30(in Chinese with English abstract). [21] Zhang, Y. Z., Fan, C.W., Xu, X.D., et al., 2015.Genesis and Sources of Natural Gas in Eastern Qiongdongnan Basin, South China Sea. Petroleum Geology & Experiment, 37(4):466-472, 478 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201504009 [22] Zhang, Y. Z., Xu, X. D., Gan, J., et al., 2017.Study on the Geological Characteristics, Accumulation Model and Exploration Direction of the Giant Deepwater Gas Field in the Qiongdongnan Basin. Acta Geologica Sinica, 91(7):1620-1633(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201707013 [23] Zhang, Y. Z., Gan, J., Yang, X.B., et al., 2017. Tectonic Evolution and Constraints on the Formation of Deepwater Giant Gas Field in Lingshui Sag, Qiongdongnan Basin. Marine Geology, 33(10):22-31(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/hydzdt201710003 [24] Zhu, G. Y., Zhang, S. C., Li, J., et al., 2004.Formation and Distribution of Hydrogen Sulfide Bearing Gas in China. Petroleum Exploration and Development, 31(3):18-21(in Chinese with English abstract). doi: 10.1016-j.thromres.2010.03.016/ [25] 戴金星, 1992.各类烷烃气的鉴别.中国科学(B辑), 22(2):185-193. [26] 戴金星, 1993a.利用轻烃鉴别煤成气和油型气.石油勘探与开发, 20(5):26-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004619882 [27] 戴金星, 1993b.天然气碳氢同位素特征和各类天然气鉴别.天然气地球科学, 4(2, 3):1-40. [28] 戴金星, 1995.中国含油气盆地的无机成因气及其含气构造.天然气工业, 15(3):22-27. [29] 戴金星, 戚厚发, 宋岩, 1985.鉴别煤成气和油型气若干指标的初步探讨.石油学报, 6(2):31-38. [30] 戴金星, 石昕, 卫延召, 2001.无机成因油气论和无机成因的气田(藏)概略.石油学报, 22(6):5-10. doi: 10.3321/j.issn:0253-2697.2001.06.002 [31] 戴金星, 夏新宇, 秦胜飞, 等, 2003.中国有机烷烃气碳同位素系列倒转的成因.石油与天然气地质, 24(1):1-6. doi: 10.3321/j.issn:0253-9985.2003.01.001 [32] 胡惕麟, 戈葆雄, 张义纲, 等, 1990.源岩吸附烃和天然气轻烃指纹参数的开发和应用.石油实验地质, 12(4):375-393. doi: 10.1097-MOH.0b013e32832ea2f2/ [33] 黄保家, 黄合庭, 李里, 等, 2010.莺-琼盆地海相烃源岩特征及高温高压环境有机质热演化.海相油气地质, 15(3):11-18. doi: 10.3969/j.issn.1672-9854.2010.03.002 [34] 刘文汇, 徐永昌, 1996.天然气成因类型及判识标志.沉积学报, 14(1):110-116. [35] 裴立新, 刚文哲, 朱传真, 等, 2018.准噶尔盆地烷烃气碳同位素组成及来源.天然气地球科学, 29(7):1020-1030. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201807011 [36] 宋岩, 徐永昌, 2005.天然气成因类型及其鉴别.石油勘探与开发, 32(4):24-29. doi: 10.3321/j.issn:1000-0747.2005.04.004 [37] 王顺玉, 戴鸿鸣, 王海清, 2003.混源天然气定量计算方法-以川西地区白马庙气田为例.天然气地球科学, 14(5):351-353. doi: 10.3969/j.issn.1672-1926.2003.05.004 [38] 徐新德, 张迎朝, 梁刚, 等, 2016.南海北部琼东南盆地深水区烃源条件及天然气成藏机制.天然气地球科学, 27(11):1985-1992. doi: 10.11764/j.issn.1672-1926.2016.11.1985 [39] 徐永昌, 1996.天然气中的幔源稀有气体.地学前缘, 3(3):63-71. doi: 10.3321/j.issn:1005-2321.1996.03.006 [40] 张焕旭, 倪帅, 王力, 等, 2014.准噶尔盆地滴南凸起中段南支天然气混源比例研究.断块油气田, 21(2):176-180. http://d.old.wanfangdata.com.cn/Periodical/dkyqt201402009 [41] 张水昌, 朱光有, 陈建平, 等, 2007.四川盆地川东北部飞仙关组高含硫化氢大型气田群气源探讨.科学通报, 52(增刊Ⅰ):86-94. [42] 张迎朝, 陈志宏, 李绪深, 等, 2011.琼东南盆地滨岸天然气成藏有利条件及勘探方向.石油天然气学报, 33(1):21-30. doi: 10.3969/j.issn.1000-9752.2011.01.005 [43] 张迎朝, 范彩伟, 徐新德, 等, 2015.南海琼东南盆地东区天然气成因类型与烃源探讨.石油实验地质, 37(4):466-472, 478. http://d.old.wanfangdata.com.cn/Periodical/sysydz201504009 [44] 张迎朝, 甘军, 杨希冰, 等, 2017a.琼东南盆地陵水凹陷构造演化及其对深水大气田形成的控制作用.海洋地质前沿, 33(10):22-31. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201710003 [45] 张迎朝, 徐新德, 甘军, 等, 2017b.琼东南盆地深水大气田地质特征、成藏模式及勘探方向研究.地质学报, 91(7):1620-1633. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201707013 [46] 朱光有, 张水昌, 李剑, 等, 2004.中国高含硫化氢天然气的形成及其分布.石油勘探与开发, 31(3):18-21. doi: 10.3321/j.issn:1000-0747.2004.03.005