• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存

    马安来 金之钧 李慧莉 顾忆 邱楠生 朱秀香 吴鲜 杨鑫 王石

    马安来, 金之钧, 李慧莉, 顾忆, 邱楠生, 朱秀香, 吴鲜, 杨鑫, 王石, 2020. 塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存. 地球科学, 45(5): 1737-1753. doi: 10.3799/dqkx.2019.157
    引用本文: 马安来, 金之钧, 李慧莉, 顾忆, 邱楠生, 朱秀香, 吴鲜, 杨鑫, 王石, 2020. 塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存. 地球科学, 45(5): 1737-1753. doi: 10.3799/dqkx.2019.157
    Ma Anlai, Jin Zhijun, Li Huili, Gu Yi, Qiu Nansheng, Zhu Xiuxiang, Wu Xian, Yang Xin, Wang Shi, 2020. Secondary Alteration and Preservation of Ultra-Deep Ordovician Oil Reservoirs of North Shuntuoguole Area of Tarim Basin, NW China. Earth Science, 45(5): 1737-1753. doi: 10.3799/dqkx.2019.157
    Citation: Ma Anlai, Jin Zhijun, Li Huili, Gu Yi, Qiu Nansheng, Zhu Xiuxiang, Wu Xian, Yang Xin, Wang Shi, 2020. Secondary Alteration and Preservation of Ultra-Deep Ordovician Oil Reservoirs of North Shuntuoguole Area of Tarim Basin, NW China. Earth Science, 45(5): 1737-1753. doi: 10.3799/dqkx.2019.157

    塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存

    doi: 10.3799/dqkx.2019.157
    基金项目: 

    国家自然科学基金项目 41772153

    国家自然科学基金项目 U19B6003-02

    有机地球化学国家重点实验室开放基金项目 SKLOG-201702

    中国石油化工股份有限公司科技部资助项目 P16090

    中国石油化工股份有限公司科技部资助项目 P17049-1

    中国石油化工股份有限公司科技部资助项目 P19024

    详细信息
      作者简介:

      马安来(1969-), 男, 副教授, 博士, 主要从事油气地球化学与成藏机理研究.E-mail:maal.syky@sinopec.com

    • 中图分类号: TE135

    Secondary Alteration and Preservation of Ultra-Deep Ordovician Oil Reservoirs of North Shuntuoguole Area of Tarim Basin, NW China

    • 摘要: 塔里木盆地顺北地区超深层垂深为7 200~7 863.6 m的奥陶系一间房-鹰山组储层中发现了挥发油藏和轻质油藏,油藏赋存深度下限不断突破传统认识.使用地球化学方法研究了顺北地区不同断裂带油气藏的地球化学特征及蚀变作用.顺北地区不同断裂带原油均具有轻碳同位素特征,C23三环萜烷/C21三环萜烷>1,C28甾烷含量低的特点,三芴系列组成中具有较高含量的二苯并噻吩含量,表明与塔河原油具有相似的母源.(C21+C22)甾烷/(C27~C29)甾烷、C27重排/C27规则甾烷、甲基菲指数和二苯并噻吩系列成熟度表明顺北地区原油成熟度呈现1号断裂带(含分支断裂)≈3号断裂带>次级断裂带>5号断裂带>7号断裂的特征,原油成熟度受控于油藏初始静温.顺北地区奥陶系天然气均为湿气,天然气甲烷碳同位素分布范围为-50.7‰~-44.7‰,不同断裂带天然气成熟度的差异与不同断裂带原油成熟度的分布规律相似.顺北地区原油(4+3)甲基双金刚烷含量较低,分布范围为9.25~36.44 μg/g,指示原油裂解程度较低.原油中均可检测出完整系列的低聚硫代金刚烷,含量分布范围为0.76~18.88 μg/g,表明原油硫酸盐热化学还原作用(TSR)弱,顺北地区天然气为湿气及甲烷碳同位素轻表明油气藏未遭受气侵作用.地温研究表明顺北地区地温梯度低,为2.12℃/100 m,埋深8 000 m的地层目前仅为160~170℃,地质历史时期,奥陶系地温未超过170℃,未达到原油大量裂解温度的门限.顺北地区奥陶系长期的低地温加之油气藏蚀变作用弱,是顺北地区奥陶系保持挥发油相的关键.

       

    • 图  1  顺托果勒地区构造位置

      Fig.  1.  The structure location of Shuntuoguole area

      图  2  顺北地区T74时间T0图、主要走滑断裂和钻井井口位置叠合图

      Fig.  2.  The overlay diagram of uninterpreted coherence slice of surface T74 (top of Middle Ordovician), main strike-slip faults and well heads location of North Shuntuoguole area

      图  3  顺北地区不同断裂带奥陶系油气藏流体相态图

      a.顺北1-6H井;b.顺北5井;c.顺北7井

      Fig.  3.  The fluid phase of Ordovician reservoirs of different faults in North Shuntuoguole area

      图  4  顺北地区不同断裂带奥陶系井流物组成

      A.凝析气;B.挥发性油藏;C.黑油;D.低蒸发油;E.干气

      Fig.  4.  Ternary diagram showing fluid components of Ordovician reservoirs of different faults in North Shuntuoguole area

      图  5  顺北地区奥陶系原油Pr/nC17、Ph/nC18之间的关系

      Fig.  5.  The relationship between Pr/nC17 and Ph/nC18 ratios of Ordovician oils from North Shuntuoguole area

      图  6  顺北地区不同断裂带原油生标分布面貌

      Fig.  6.  The biomarker distribution of Ordovician oils from different faults in North Shuntuoguole area

      图  7  顺北地区原油DBT/P与Pr/Ph之间的关系

      Fig.  7.  Plot of DBT/P versus Pr/Ph value of oils from North Shuntuoguole area

      图  8  顺北地区原油三芴系列组成三角图

      Fig.  8.  Ternary plots showing the relative distribution of fluorine, dibenzofuran and dibenzothiophenen in oils fromNorth Shuntuoguole area

      图  9  顺北地区原油单体碳同位素分布

      Fig.  9.  Distribution features of the compound specific carbon isotopic curves of n-alkanes of oils from North Shuntuoguole area

      图  10  顺北地区原油C27规则甾烷/C27重排甾烷~(C21+C22)甾烷/(C27-C29)规则甾烷之间的关系

      Fig.  10.  The relationship between C27 dia/C27 regular steranes and (C21+C22) steranes/(C27-C29) steranes of oils from North Shuntuoguole area

      图  11  顺北地区原油MPI1F1比值之间的关系

      Fig.  11.  Plot of the MPI1 verus F1 of oils from North Shuntuoguole area

      图  12  顺北地区原油4-MDBT/1-MDBT比值与(2-+3-)MDBT/1-MDBT比值之间的关系

      Fig.  12.  Plot of the 4-MDBT/1-MDBT versus (2-+3-)MDBT/1-MDBT of oils from North Shuntuoguole area

      图  13  使用ln(C1/C2)与ln(C2/C3)参数划分顺北地区奥陶系天然气成因

      图版据李剑等(2017)

      Fig.  13.  The Ordovician natural gas classification of North Shuntuoguole area using a plot of ln(C1/C2) and ln(C2/C3) with increasing of Ro value

      图  14  顺北1-3井奥陶系原油中金刚烷质量色谱图

      a.单金刚烷系列;b.双金刚烷系列

      Fig.  14.  The mass chromatograms of diamondoids of oils from Well SB1-3

      图  15  顺北地区奥陶系原油中(4-+3-)MD含量与C29ααα20R含量之间的关系

      Fig.  15.  Plot of the concentrations of (4-+3-)MD versus C29ααα20R of oils from North Shuntuoguole area

      图  16  顺北1-3井原油硫代金刚烷质量色谱图

      a.硫代单金刚烷系列;b.硫代双金刚烷系列;c.硫代三金刚烷系列

      Fig.  16.  The mass chromatograms of thiadiamondoids of oils from Well SB1-3

      图  17  顺北地区原油(4-+3-)MD和硫代金刚烷含量之间的关系

      Fig.  17.  Plot of the concentrations of (4-+3-) MD and thiadiamondoids of oils from North Shuntuoguole area

      图  18  顺北地区不同断裂带原油芳烃成熟度4-MDBT/1-MDBT(a)、原油密度(b)与油藏初始静温之间的关系

      Fig.  18.  The plots of ratio of 4-MDBT/1-MDBT of aromatic maturity parameter versus reservoir initial static temperature (a), oil density versus reservoir initial static temperature of oils from different faults in the North Shuntuoguole area (b)

      图  19  顺托果勒地区8 000 m统一深度现今地层温度分布

      Fig.  19.  The formation temperature at present at the depth of 8 000 m in Shuntuoguole area

      表  1  顺北地区原油物性数据

      Table  1.   The physical property data of oils from North Shuntuoguole area

      断裂带 井号 垂深(m) 密度
      (g/cm3(20℃))
      黏度
      (mPa·s(50℃))
      凝固点
      (℃)
      含硫量(%) 气油比
      (m3/t)
      1号断裂带 SB1-3H 7 255.70~7 357.89 0.794 0 2.54 -17.6 0.104 469
      SB1 7 259.27~7 405.70 0.831 0 7.91 -14 0.032 /
      SB1-10H 7 299.50~7 768.16 0.798 2 2.82 -32 0.116 390
      SB1-6H 7 288.16~7 399.75 0.794 3 2.30 -12.7 0.107 456
      SB1-7H 7 339.36~7 456.00 0.797 0 2.80 -10.5 0.123 362
      SB1-1H 7 458.00~7 557.66 0.791 6 2.40 -18.0 0.105 459
      SB1-4H 7 459.00~7 561.96 0.797 0 2.70 -22.0 0.137 450
      SB1-5H 7 474.52~7 576.19 0.798 0 2.90 -21.0 0.125 447
      SB1-2H 7 469.00~7 569.47 0.795 0 2.62 -24.0 0.092 448
      1号分支断裂带 SB1-8H 7 414.50~7 571.64 0.798 0 2.50 -12.8 0.105 451
      SB1-9H 7 372.74~7 630.00 0.804 0 1.95 -17.0 0.108 451
      次级断裂带 SBP1 7 376.63~7 751.57 0.811 7 4.05 0 0.161
      SB2 7 348.60~7 487.11 0.810 0 3.07 -25.0 0.123 /
      3号断裂带 SB3 7 520.00~7 870.08 0.814 3 7.91 -14 0.032 /
      5号断裂带 SB5 7 315.00~7 650.64 0.829 0 4.97 -29.6 0.211 50
      SB5-2 7 460.33~7 527.16 0.826 0 6.18 -32 0.189 65
      7号断裂带 SB7 7 568.46~7 863.66 0.854 8 15.63 -8 0.128 /
      下载: 导出CSV

      表  2  顺北地区奥陶系油气藏PVT数据

      Table  2.   The PVT data of Ordovician reservoirs in North Shuntuoguole area

      井号 顺北1-6 顺北5 顺北7
      生产井段垂深(m) 7 288.16~7 399.75 7 315.00~7 650.64 7 568.46~7 863.66
      层位 O2yj+O1-2y O2yj+O1-2y O2yj+O1-2y
      油藏压力(MPa) 85.31 85.87 78.61
      油藏温度(℃) 158.0 150.5 148.1
      生产气油比(m3/m3) 264 56 73.85
      饱和压力(MPa) 36.11 13.9 12.08
      地饱压差(MPa) 49.20 71.97 66.53
      临界压力Pc(MPa) 22.24 5.81 5.76
      临界温度Tc(℃) 300.8 480.1 530.1
      临界蒸发压力Pm(MPa) 36.93 14.37 13.67
      临界凝析温度Tm(℃) 345.4 484.9 536.0
      下载: 导出CSV

      表  3  顺北地区奥陶系油气藏天然气组成及碳同位素

      Table  3.   Molecular and carbon isotopic composition of associated gas from North Shuntuoguole Ordovician reservoirs

      井号 垂深(m) C1/C1+ 天然气组分(%) δ13C (‰)
      CH4 C2H6 C3H8 iC4H10 C4H10 iC5H12 C5H12 N2 CO2 CH4 C2H6 C3H8 iC4H10 C4H10
      SB1-3 7 255.70~7 357.89 0.87 83.73 6.99 3.25 0.71 1.04 0.27 0.24 1.16 2.59 -44.7 -33.3 -30.8 -34.2 -29.0
      SB1-4 7 459.00~7 561.96 0.84 80.35 9.05 3.98 0.70 1.01 0.21 0.19 2.20 2.39 -47.0 -33.8 -31.6 -35.2 -29.4
      SB1-8 7 414.50~7 571.64 0.85 74.04 7.83 3.38 0.60 0.92 0.22 0.22 1.81 10.43 -47.2 -33.8 -31.2 -31.9 -30.7
      SB1-9 7 372.74~7 630.00 0.71 67.79 10.39 8.16 2.37 4.16 1.19 1.21 1.12 3.59 -46.6 -34.1 -31.9 -32.1 -31.1
      SB3 7 520.00~7 870.08 0.64 61.16 15.85 11.58 2.21 3.92 0.76 0.67 0.76 3.00 -50.7 -34.3 -31.6 -33.2 -30.4
      SB5 7 315.00~7 650.64 0.63 54.48 17.97 9.43 1.09 2.15 0.36 0.46 5.84 8.06 -48.9 -39.3 -35.6 -34.6 -33.4
      SB7 7 568.46~7 863.66 0.52 46.89 20.92 14.78 1.41 4.92 0.59 0.97 1.85 6.90 -48.4 -39.0 -33.9 -33.6 -32.0
      下载: 导出CSV

      表  4  顺北地区天然气硫化氢含量

      Table  4.   The H2S content of the natural gas from North Shuntuoguole area

      井号 硫化氢含量均值(mg/m3) 样本数(个)
      SB1-3 5 835 7
      SB1-6 10 032 8
      SB1-7 6 074 5
      SB1-1 14 515 41
      SB1-4 9 796 13
      SB1-5 7 221 7
      SB1-2 8 076 5
      SB1-9 2 736 21
      SB1-8 531 22
      SB1 10 1
      SB5 87.26 15
      SB7 7.40 1
      下载: 导出CSV

      表  5  顺北地区不同时期油气藏静温、流温数据

      Table  5.   The static temperature and flow temperature of the Ordovician reservoirs of the North Shuntuoguole area during different periods

      井号 完钻井深(m) 距T74垂深(m) 2017年年初 2017年年底
      静温(℃) 流温(℃) 温差(℃) 静温(℃) 流温(℃) 温差(℃)
      SB1-2H 7 569 89 161.89 167.3 5.4 161.00 169.21 7.32
      SB1-5H 7 576 98 160.70 166.9 6.2 152.82 168.33 15.51
      SB1-4H 7 558 94 159.72 166.3 6.6 150.25 162.20 11.95
      SB1-1H 7 456 83 158.40 163.6 5.2 158.22 171.45 12.23
      SB1-7H 7 400 104 158.10 164.8 6.7 155.17 156.02 0.85
      SB1-6H 7 358 99 157.06 167.2 10.2 159.90 161.29 1.39
      SB1-3 7 497 101 155.37 164.4 9.1 151.19 163.87 12.68
      平均值 7 497 95 158.75 165.8 7.1 157.75 165.79 8.85
      下载: 导出CSV
    • [1] Cai, C. F., Amrani, A., Worden, R. H., et al., 2016. Sulfur Isotopic Compositions of Individual Organosulfur Compounds and Their Genetic Links in the Lower Paleozoic Petroleum Pools of the Tarim Basin, NW China. Geochimica et Cosmochimica Acta, 182:88-108. https://doi.org/10.1016/j.gca.2016.02.036
      [2] Chakhmakhchev, A., Suzuki, M., Takayama, K., 1997. Distribution of Alkylated Dibenzothiophenes in Petroleum as a Tool for Maturity Assessments. Organic Geochemistry, 26(7/8):483-489. https://doi.org/10.1016/s0146-6380(97)00022-3 doi: 10.1016-S0146-6380(97)00022-3/
      [3] Connan, J., Cassou, A. M., 1980. Properties of Gases and Petroleum Liquids Derived from Terrestrial Kerogen at Various Maturation Levels. Geochimica et Cosmochimica Acta, 44(1):1-23. https://doi.org/10.1016/0016-7037(80)90173-8
      [4] Dahl, J. E., Moldowan, J. M., Peters, K. E., et al., 1999. Diamondoid Hydrocarbons as Indicators of Natural Oil Cracking. Nature, 399(6731):54-57. https://doi.org/10.1038/19953
      [5] Deng, S., Li, H.L., Zhang, Z.P., et al., 2018. Characteristics of Differential Activities in Major Strike-Slip Fault Zones and Their Control on Hydrocarbon Enrichment in Shunbei Area and Its Surroundings, Tarim Basin. Oil & Gas Geology, 39(5):878-888 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201805003
      [6] Hughes, W. B., Holba, A. G., Dzou, L. I. P., 1995. The Ratios of Dibenzothiophene to Phenanthrene and Pristane to Phytane as Indicators of Depositional Environment and Lithology of Petroleum Source Rocks. Geochimica et Cosmochimica Acta, 59(17):3581-3598. https://doi.org/10.1016/0016-7037(95)00225-o. doi: 10.1016/0016-7037(95)00225-O
      [7] Jiang, N. H., Zhu, G. Y., Zhang, S. C., et al., 2007. Detection of 2-Thiaadamantanes in the Oils from Well TZ83 in Tarim Basin and Its Geological Implication. Chinese Science Bulletin, 52(24):2871-2875 (in Chinese with English abstract). doi: 10.1360/csb2007-52-24-2871
      [8] Jiao, F.Z., 2017. Significance of Oil and Gas Exploration in NE Strike-Slip Fault Belts in Shuntuoguole Area of Tarim Basin. Oil & Gas Geology, 38(5):831-839 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201705002
      [9] Kvalheim, O. M., Christy, A. A., Telnæs, N., et al., 1987. Maturity Determination of Organic Matter in Coals Using the Methylphenanthrene Distribution. Geochimica et Cosmochimica Acta, 51(7):1883-1888. https://doi.org/10.1016/0016-7037(87)90179-7
      [10] Li, J., Li, Z.S., Wang, X.B., et al., 2017. New Indexes and Charts for Genesis Identification of Multiple Natural Gases. Petroleum Exploration & Development, 44(4):503-512 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201704003
      [11] Li, P.J., Chen, H.H., Tang, D.Q., et al., 2017.Coupling Relationship between NE Strike-Slip Faults and Hypogenic Karstification in Middle-Lower Ordovician of Shunnan Area, Tarim Basin, Northwest China. Earth Science, 42(1):93-104 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201701007
      [12] Li, S. M., Amrani, A., Pang, X. Q., et al., 2015. Origin and Quantitative Source Assessment of Deep Oils in the Tazhong Uplift, Tarim Basin. Organic Geochemistry, 78:1-22. https://doi.org/10.1016/j.orggeochem.2014.10.004
      [13] Li, Y., Xiong, Y. Q., Liang, Q. Y., et al., 2018. The Application of Diamondoid Indices in the Tarim Oils. AAPG Bulletin, 102(2):267-291. https://doi.org/10.1306/0424171518217073
      [14] Liu, Q. Y., Wu, X. Q., Wang, X. F., et al., 2019. Carbon and Hydrogen Isotopes of Methane, Ethane, and Propane:A Review of Genetic Identification of Natural Gas. Earth-Science Reviews, 190:247-272. https://doi.org/10.1016/j.earscirev.2018.11.017
      [15] Ma, A. L., 2016. Kinetics of Oil-Cracking for Different Types of Marine Oils from Tahe Oilfield, Tarim Basin, NW China. Journal of Natural Gas Geoscience, 1(1):35-43. https://doi.org/10.1016/j.jnggs.2016.03.001
      [16] Ma, A.L., Jin, Z.J., Wang, Y., 2006. Problems of Oil-Source Correlation for Marine Reservoirs in Paleozoic Craton Area in Tarim Basin and Future Direction of Research. Oil & Gas Geology, 27(3):356-362 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz200603010
      [17] Ma, A. L., Jin, Z. J., Zhu, C. S., 2018a. Detection and Research Significance of Thiadiamondoids from Crude oil in Well Shunnan 1, Tarim Basin. Acta Petrolei Sinica, 38(1):42-53 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syxb201801004
      [18] Ma, A. L., Jin, Z. J., Zhu, C. S., et al., 2018b. Effect of TSR on the Crude Oil in Ordovician Reservoirs of Well Luosi 2 from Magaiti Slope, Tarim Basin:Evidences from Molecular Markers.Oil & Gas Geology, 39(4):730-737 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYYT201804011.htm
      [19] Ma, A.L., Jin, Z.J., Zhu, C.S., et al., 2009. Quantitative Analysis on Absolute Concentration of Diamondoids in Oils from Tahe Oilfield. Acta Petrolei Sinica, 30(2):214-218 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb200902009
      [20] Ma, A. L., Jin, Z. J., Zhu, C. S., et al., 2017. Cracking and Thermal Maturity of Ordovician Oils from Tahe Oilfield, Tarim Basin, NW China. Journal of Natural Gas Geoscience, 2(4):239-252. https://doi.org/10.1016/j.jnggs.2017.12.001
      [21] Ma, A. L., Jin, Z. J., Zhu, C. S., et al., 2018. Detection and Significance of Higher Thiadiamondoids and Diamondoidthiols in Oil from the Zhongshen 1C Well of the Tarim Basin, NW China. Science China Earth Sciences, 61(10):1440-1450. https://doi.org/10.1007/s11430-017-9244-7
      [22] Pepper, A. S., Dodd, T. A., 1995. Simple Kinetic Models of Petroleum Formation. Part Ⅱ:Oil-Gas Cracking. Marine and Petroleum Geology, 12(3):321-340. https://doi.org/10.1016/0264-8172(95)98382-f doi: 10.1016/0264-8172(95)98382-F
      [23] Peters, K. E., Walters, C. C., Moldowan, J. M., 2005. The Biomarker Guide. Volume 2. Biomarkers and Isotopes in Petroleum Exploration and Earth History. Cambridge University Press, Cambridge.
      [24] Qi, L.X., 2016. Oil and Gas Breakthrough in Ultra-Deep Ordovician Carbonate Formations in Shuntuoguole Uplift, Tarim Basin. China Petroleum Exploration, 21(3):38-51 (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsykt201603004
      [25] Quigley, T. M., MacKenzie, A. S., 1988. The Temperatures of Oil and Gas Formation in the Sub-surface. Nature, 333(6173):549-552. https://doi.org/10.1038/333549a0
      [26] Radke, M., Welte, D. H., Willsch, H., 1982. Geochemical Study on a Well in the Western Canada Basin:Relation of the Aromatic Distribution Pattern to Maturity of Organic Matter. Geochimica et Cosmochimica Acta, 46(1):1-10. https://doi.org/10.1016/0016-7037(82)90285-x doi: 10.1016/0016-7037(82)90285-X
      [27] Schoell, M., Carlson, R. M. K., 1999. Diamondoids and Oil are not Forever. Nature, 399(6731):15-16. https://doi.org/10.1038/19847
      [28] Tian, H., Wang, Z. M., Xiao, Z. Y., et al., 2006. Oil Cracking to Gases:Kinetic Modeling and Geological Significance. Chinese Science Bulletin, 51(22):2763-2770. https://doi.org/10.1007/s11434-006-2188-8
      [29] Tissot, B. P., Welte, D. H., 1984. Petroleum Formation and Occurrence. Springer, Berlin. https: //doi.org/10.1007/978-3-642-87813-8
      [30] Wang, Q.R., Chen, H.H., Zhao, Y.T., et al., 2018.Differences of Hydrocarbon Accumulation Periods in Silurian of Tazhong Northern Slope, Tarim Basin. Earth Science, 43(2):577-593 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.026 http://d.old.wanfangdata.com.cn/Periodical/dqkx201802018
      [31] Waples, D. W., 2000. The Kinetics of In-Reservoir Oil Destruction and Gas Formation:Constraints from Experimental and Empirical Data, and from Thermodynamics. Organic Geochemistry, 31(6):553-575. https://doi.org/10.1016/s0146-6380(00)00023-1 doi: 10.1016/S0146-6380(00)00023-1
      [32] Wei, Z. B., Moldowan, J. M., Fago, F., et al., 2007a. Origins of Thiadiamondoids and Diamondoidthiols in Petroleum. Energy & Fuels, 21(6):3431-3436. https://doi.org/10.1021/ef7003333 http://cn.bing.com/academic/profile?id=c484aece8d234d34313c91c5ffafbf95&encoded=0&v=paper_preview&mkt=zh-cn
      [33] Wei, Z. B., Moldowan, J. M., Zhang, S. C., et al., 2007b. Diamondoid Hydrocarbons as a Molecular Proxy for Thermal Maturity and Oil Cracking:Geochemical Models from Hydrous Pyrolysis. Organic Geochemistry, 38(2):227-249. https://doi.org/10.1016/j.orggeochem.2006.09.011
      [34] Zhang, S. C., Huang, H. P., 2005. Geochemistry of Palaeozoic Marine Petroleum from the Tarim Basin, NW China:Part 1. Oil Family Classification. Organic Geochemistry, 36(8):1204-1214. https://doi.org/10.1016/j.orggeochem.2005.01.013 http://cn.bing.com/academic/profile?id=719c1550a1442e347bed232581bb4f41&encoded=0&v=paper_preview&mkt=zh-cn
      [35] Zhang, S. C., Su, J., Wang, X. M., et al., 2011. Geochemistry of Palaeozoic Marine Petroleum from the Tarim Basin, NW China:Part 3. Thermal Cracking of Liquid Hydrocarbons and Gas Washing as the Major Mechanisms for Deep Gas Condensate Accumulations. Organic Geochemistry, 42(11):1394-1410. https://doi.org/10.1016/j.orggeochem.2011.08.013
      [36] Zhao, X. Z., Jin, F. M., Wang, Q., et al., 2011. Niudong 1 Ultra-Deep and Ultra-High Temperature Subtle Buried Hill Field in Bohai Bay Basin:Discovery and Significance. Acta Petrolei Sinica, 32(6):915-926 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=01c7e5816be8d62a22a610de64d64a1d&encoded=0&v=paper_preview&mkt=zh-cn
      [37] Zhu, G. Y., Milkov, A. V., Chen, F. R., et al., 2018a. Non-Cracked Oil in Ultra-Deep High-Temperature Reservoirs in the Tarim Basin, China. Marine and Petroleum Geology, 89:252-262. https://doi.org/10.1016/j.marpetgeo.2017.07.019
      [38] Zhu, G. Y., Zhang, Y., Zhang, Z. Y., et al., 2018b. High Abundance of Alkylated Diamondoids, Thiadiamondoids and Thioaromatics in Recently Discovered Sulfur-Rich LS2 Condensate in the Tarim Basin. Organic Geochemistry, 123:136-143. https://doi.org/10.1016/j.orggeochem.2018.07.003
      [39] Zhu, G. Y., Wang, H. T., Weng, N., 2016. TSR-Altered Oil with High-Abundance Thiaadamantanes of a Deep-buried Cambrian Gas Condensate Reservoir in Tarim Basin. Marine and Petroleum Geology, 69:1-12. https://doi.org/10.1016/j.marpetgeo.2015.10.007
      [40] Zhu, G. Y., Zhang, S. C., Su, J., et al., 2012. The Occurrence of Ultra-Deep Heavy Oils in the Tabei Uplift of the Tarim Basin, NW China. Organic Geochemistry, 52:88-102. https://doi.org/10.1016/j.orggeochem.2012.08.012
      [41] 邓尚, 李慧莉, 张仲培, 等, 2018.塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系.石油与天然气地质, 39(5):878-888. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201805003
      [42] 姜乃煌, 朱光有, 张水昌, 等, 2007.塔里木盆地塔中83井原油中检测出2-硫代金刚烷及其地质意义.科学通报, 52(24):2871-2875. doi: 10.3321/j.issn:0023-074x.2007.24.009
      [43] 焦方正, 2017.塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义.石油与天然气地质, 38(5):831-839. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201705002
      [44] 李剑, 李志生, 王晓波, 等, 2017.多元天然气成因判识新指标及图版.石油勘探与开发, 44(4):503-512. http://d.old.wanfangdata.com.cn/Periodical/syktykf201704003
      [45] 李培军, 陈红汉, 唐大卿, 等., 2017.塔里木盆地顺南地区中-下奥陶统NE向走滑断裂及其与深成岩溶作用的耦合关系.地球科学, 42(1):93-104. http://d.old.wanfangdata.com.cn/Periodical/dqkx201701007
      [46] 马安来, 金之钧, 王毅, 2006.塔里木盆地台盆区海相油源对比存在的问题及进一步工作方向, 石油与天然气地质, 27(3):356-362. doi: 10.3321/j.issn:0253-9985.2006.03.010
      [47] 马安来, 金之钧, 朱翠山, 等, 2009.塔河油田原油中金刚烷化合物绝对定量分析.石油学报, 30(2):214-218. doi: 10.3321/j.issn:0253-2697.2009.02.009
      [48] 马安来, 金之钧, 朱翠山, 2018a.塔里木盆地顺南1井原油硫代金刚烷系列的检出及意义.石油学报, 39(1):42-53. http://d.old.wanfangdata.com.cn/Periodical/syxb201801004
      [49] 马安来, 金之钧, 朱翠山, 等, 2018b.塔里木盆地麦盖提斜坡罗斯2井奥陶系油气藏的TSR作用:来自分子标志物的证据.石油与天然气地质, 39(4):730-737. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201804010
      [50] 漆立新, 2016.塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义.中国石油勘探, 21(3):38-51. doi: 10.3969/j.issn.1672-7703.2016.03.004
      [51] 田辉, 王招明, 肖中尧, 等., 2006.原油裂解成气动力学模拟及其意义.科学通报, 51(15):1821-1827. doi: 10.3321/j.issn:0023-074X.2006.15.014
      [52] 王倩茹, 陈红汉, 赵玉涛, 等, 2018.塔中北坡顺托果勒地区志留系油气成藏期差异性分析.地球科学, 43(2):577-593. http://d.old.wanfangdata.com.cn/Periodical/dqkx201802018
      [53] 赵贤正, 金凤鸣, 王权, 等, 2011.渤海湾盆地牛东超深潜山高温油气藏的发现及其意义.石油学报, 32(6):915-926.
    • 加载中
    图(19) / 表(5)
    计量
    • 文章访问数:  1121
    • HTML全文浏览量:  182
    • PDF下载量:  72
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-07-01
    • 刊出日期:  2020-05-15

    目录

      /

      返回文章
      返回