The Impact of Different GRACE Filtering Methods on Inversing Terrestrial Water Storage Change in Southwestern Karst Area
-
摘要: 不同滤波方法反演陆地水储量变化的结果不同,但目前关于西南岩溶区的不同滤波方法之间的对比研究相对较少.利用Gauss 200 km、Fan 200 km、Han 200 km和DDK4四种滤波方法反演了西南岩溶区的陆地水储量变化,并采用尺度因子进行了校正.在空间分布上,Han和Fan滤波较Gauss滤波更为平滑,但损失的真实信号更多,Han滤波损失最为严重;DDK滤波在进行南北向滤波的同时更能保持原始信号的量级和形状.在时间序列上,4种滤波的陆地水储量距平(TWSA)年趋势分别为8.64、8.77、9.05和9.39 mm/a,周年振幅分别为90.19、94.47、112.92和89.34.不同滤波反演的陆地水储量变化的空间分布差异较大;4种滤波的周年相位差别不大,且由于尺度因子的影响,校正后的陆地水储量距平振幅大小顺序为Han > Fan > Gauss > DDK.对于研究区的陆地水储量变化反演,Fan滤波和DDK滤波较好.Abstract: The results of different filtering methods for inversing changes in terrestrial water reserves are different, but there are relatively few comparative studies between different filtering methods for the southwestern karst area. This paper uses four filtering methods, namely Gauss 200 km, Fan 200 km, Han 200 km and DDK4 on the inversion of terrestrial water storage in the southwestern karst area, and uses scale factors to correct. In spatial distribution, Han and Fan filters are smoother than Gauss filters, but the loss of real signals is more, and Han filter loss is the most serious. DDK filtering can maintain the magnitude and shape of the original signal while performing north-south filtering. In the time series, the four filtered Terrestrial Water Storage Anomalies (TWSA) annual trends are 8.64, 8.77, 9.05 and 9.39, respectively. The annual amplitudes are 82.30, 87.47, 107.70 and 78.51. The spatial distribution of terrestrial water reserves inversion by different filters is quite different. The annual phase of the four filters is not much different, and due to the influence of scale factors, the order of corrected anomalous amplitude of terrestrial water storageis:Han > Fan > Gauss > DDK. For the inversion of terrestrial water storage change in the study area, Fan filtering and DDK filtering are better.
-
Key words:
- GRACE /
- Gauss filter /
- Fan filter /
- Han filter /
- DDK filter /
- TWSC /
- hydrogeology
-
表 1 不同滤波器反演的TWSA时间序列年趋势及其周期信息
Table 1. Annual trend of TWSA time series and its period information for different filter inversion
滤波函数 年趋势
(mm/a)周年振幅
(mm)半周年振幅
(mm)周年相位 半周年相位 Gauss 200 km 8.64 90.19 26.28 232.25° 153.73° Fan 200 km 8.77 94.47 21.78 231.47° 150.31° Han 200 km 9.05 112.92 16.35 228.61° 139.31° DKK4 9.39 89.34 19.00 232.91° 158.46° -
[1] Chao, N.F., Wang, Z.T., Sun, J., et al., 2015.The Inversion of Terrestrial Water Storage Changes by Non-Isotropic Combination Filter. Acta Geodaetica et Cartographica Sinica, 44(2):174-182 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=45e08ad7bd6a656e69340fa42513592e&encoded=0&v=paper_preview&mkt=zh-cn [2] Chen, J., Wilson, C. R., Tapley, B. D., et al., 2008. The 2005 Amazon Drought as Measured by GRACE and Estimated by Climate Models. AGU Fall Meeting, San Francisco. [3] Han, S. C., Shum, C. K., Jekeli, C., et al., 2005. Non-Isotropic Filtering of GRACE Temporal Gravity for Geophysical Signal Enhancement. Geophysical Journal International, 163(1): 18-25.https://doi.org/10.1111/j.1365-246x.2005.02756.x doi: 10.1111/j.1365-246X.2005.02756.x [4] Huang, Z.Q., Hu, B.Q., 2013. Research Progress on Karst Rocky Desertification in Southwest China. Chinese and Foreign Entrepreneurs, 12:242-243 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201802001 [5] Huang, Z. Y., Pan, Y., Gong, H. L., et al., 2015. Subregional-Scale Groundwater Depletion Detected by GRACE for both Shallow and Deep Aquifers in North China Plain. Geophysical Research Letters, 42(6):1791-1799.https://doi.org/10.1002/2014gl062498 doi: 10.1002/2014GL062498 [6] Iqbal, J., Dai, F. C., Hong, M., et al., 2018. Failure Mechanism and Stability Analysis of an Active Landslide in the Xiangjiaba Reservoir Area, Southwest China. Journal of Earth Science, 29(3):646-661. https://doi.org/10.1007/s12583-017-0753-5 [7] Jing, J.L., Wang, Y.F., 2014.Temporal and Spatial Variation of Vegetation Cover in Southwest China Karst Area during 1998-2012.Research of Soil and Water Conservation, 21(4):163-167 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stbcyj201404034 [8] Kusche, J., Schmidt, R., Petrovic, S., et al., 2009. Decorrelated GRACE Time-Variable Gravity Solutions by GFZ, and Their Validation Using a Hydrological Model. Journal of Geodesy, 83(10):903-913. https://doi.org/10.1007/s00190-009-0308-3 [9] Kusche, J., 2007. Approximate Decorrelation and Non-Isotropic Smoothing of Time-Variable GRACE-Type Gravity Field Models. Journal of Geodesy, 81(11):733-749. https://doi.org/10.1007/s00190-007-0143-3 [10] Li, Z., Zhang, C.Y., Ke, B.G., et al., 2017. Filtering Method of GRACE Time-Variable Gravity Field. Science of Surveying and Mapping, 42(12):14-19 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/chkx201712003 [11] Liu, X.L., 2014. On the Comparison of Non-Isotropic Gaussian Filtering Methods for Time-Variable Gravity Filed. Geomatics & Spatial Information Technology, 37(8):89-91 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbch201408028 [12] Pan, Y., Zhang, C., Gong, H. L., et al., 2017. Detection of Human-Induced Evapotranspiration Using GRACE Satellite Observations in the Haihe River Basin of China. Geophysical Research Letters, 44(1):190-199.https://doi.org/10.1002/2016gl071287 doi: 10.1002/2016GL071287 [13] Rodell, M., Velicogna, I., Famiglietti, J.S., 2009. Satellite-Based Estimates of Groundwater Depletion in India. Nature, 460(7258):999-1002. https://doi.org/10.1038/nature08238 [14] Swenson, S., Wahr, J., 2002. Methods for Inferring Regional Surface-Mass Anomalies from Gravity Recovery and Climate Experiment (GRACE) Measurements of Time-Variable Gravity. Journal of Geophysical Research: Solid Earth, 107(B9): ETG 3-1-ETG 3-13.https://doi.org/10.1029/2001jb000576 doi: 10.1029/2001JB000576 [15] Swenson, S., Wahr, J., 2007. Multi-Sensor Analysis of Water Storage Variations of the Caspian Sea. Geophysical Research Letters, 34(16):L16401.https://doi.org/10.1029/2007gl030733 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eebfc72517dd93e612693bf892cc3a65 [16] Velicogna, I., Wahr, J., 2006. Measurements of Time-Variable Gravity Show Mass Loss in Antarctica. Science, 311(5768):1754-1756. https://doi.org/10.1126/science.1123785 [17] Wahr, J., Molenaar, M., Bryan, F., 1998. Time Variability of the Earth's Gravity Field: Hydrological and Oceanic Effects and Their Possible Detection Using GRACE. Journal of Geophysical Research: Solid Earth, 103(B12): 30205-30229.https://doi.org/10.1029/98jb02844 doi: 10.1029/98JB02844 [18] Wang, J.Y., Wang, J.L., Jin, M.G., et al., 2017. Hydrochemical Characteristics and Formation Causes of Karst Water in Jinan Spring Catchment. Earth Science, 42(5):821-831 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705018 [19] Xi, H., Zhang, Z.Z., Lu, Y., et al., 2016.The Performances of Different Filtering Methods on Ocean Mass Change Estimated from GRACE. Journal of Geodesy and Geodynamics, 36(5):380-385 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201605002 [20] Xiang, L.W., Wang, H.S., Jia, L.L., et al., 2017.The Variability of Terrestrial Water Storage Changes in the Tibetan Plateau and Adjacent Areas Retrieved by GRACE Data. Journal of Geodesy and Geodynamics, 37(3):311-318 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201703019 [21] Zeng, B., Wei, X.Q., Zou, S.Z., et al., 2018.Experiment and Simulation on Migration Rule of Arsenic in Soil of Surface Karst Zone in Southwest China. Earth Science, 43(11):4237-4245 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201811037 [22] Zhang, Z.Z., Chao, B.F., Lu, Y., et al., 2009. An Effective Filtering for GRACE Time-Variable Gravity: Fan Filter. Geophysical Research Letters, 36: L17311.https://doi.org/10.1029/2009gl039459 doi: 10.1029/2009GL039459 [23] Zhao, Y.Y., Su, Z.Y., Liu, Y., et al., 2013. On the Comparison of Filtering Methods for GRACE Time-Variable Gravity. Bulletin of Surveying and Mapping, (S2):271-273 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=8477242351787058ea91dfef9813031c&encoded=0&v=paper_preview&mkt=zh-cn [24] Zhou, X., Xing, L.L., Zou, Z.B., et al., 2008. Gaussian Smoothing Study of GRACE Time-Varying Gravity Field. Journal of Geodesy and Geodynamics, 3:41-45(in Chinese with English abstract). [25] Zhou, Z.C., Wang, W.P., Li, B.Y., et al., 2017. Research on Groundwater Reserve Variation Regulations in Huaihe Basin Based on GRACE Temporal Gravity Field. Water Resources and Power, 35(10):37-41 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdnykx201710010 [26] 超能芳, 王正涛, 孙健, 等, 2015.各向异性组合滤波法反演陆地水储量变化.测绘学报, 44(2):174-182. http://d.old.wanfangdata.com.cn/Periodical/chxb2015020010 [27] 黄志强, 胡宝清, 2013.西南喀斯特石漠化研究进展.中外企业家, 12:242-243. http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201401009 [28] 靖娟利, 王永锋, 2014.1998~2012年中国西南岩溶区植被覆盖时空变化分析.水土保持研究, 21(4):163-167. http://d.old.wanfangdata.com.cn/Periodical/stbcyj201404034 [29] 李圳, 章传银, 柯宝贵, 等, 2017.GRACE时变重力场滤波方法.测绘科学, 42(12):14-19. http://d.old.wanfangdata.com.cn/Periodical/chkx201712003 [30] 刘晓莉, 2014.时变重力场的非各向同性高斯滤波比较.测绘与空间地理信息, 37(8):89-91. doi: 10.3969/j.issn.1672-5867.2014.08.028 [31] 王珺瑜, 王家乐, 靳孟贵, 等, 2017.济南泉域岩溶水水化学特征及其成因.地球科学, 42(5):821-831. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201705017.htm [32] 郗慧, 张子占, 陆洋, 等, 2016.利用GRACE监测全球海水质量变化时滤波处理的影响分析.大地测量与地球动力学, 36(5):380-385. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201605002 [33] 相龙伟, 汪汉胜, 贾路路, 等, 2017.GRACE监测青藏高原及邻区陆地水储量变化结果的可变性.大地测量与地球动力学, 37(3):311-318. http://d.old.wanfangdata.com.cn/Periodical/dkxbydz201703019 [34] 曾斌, 韦晓青, 邹胜章, 等, 2018.西南表层岩溶带土壤中砷的迁移规律实验与模拟.地球科学, 43(11):4237-4245. http://www.cnki.com.cn/Article/CJFDTotal-DQKX201811038.htm [35] 赵元元, 苏宗跃, 刘元, 等, 2013.GRACE时变重力场滤波方法比较.测绘通报, (S2):271-273. http://d.old.wanfangdata.com.cn/Conference/8312143 [36] 周新, 邢乐林, 邹正波, 等, 2008.GRACE时变重力场的高斯平滑研究.大地测量与地球动力学, 3:41-45. http://www.cnki.com.cn/Article/CJFDTotal-DKXB200803008.htm [37] 周志才, 王卫平, 李冰瑶, 等, 2017.基于GRACE卫星时变重力场的淮河流域地下水储量变化规律研究.水电能源科学, 35(10):37-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdnykx201710010