• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    不同滤波方法对GRACE反演西南岩溶区陆地水储量变化的影响

    张青全 潘云 宫辉力 郑龙群 诸云强

    张青全, 潘云, 宫辉力, 郑龙群, 诸云强, 2019. 不同滤波方法对GRACE反演西南岩溶区陆地水储量变化的影响. 地球科学, 44(9): 2955-2962. doi: 10.3799/dqkx.2019.153
    引用本文: 张青全, 潘云, 宫辉力, 郑龙群, 诸云强, 2019. 不同滤波方法对GRACE反演西南岩溶区陆地水储量变化的影响. 地球科学, 44(9): 2955-2962. doi: 10.3799/dqkx.2019.153
    Zhang Qingquan, Pan Yun, Gong Huili, Zheng Longqun, Zhu Yunqiang, 2019. The Impact of Different GRACE Filtering Methods on Inversing Terrestrial Water Storage Change in Southwestern Karst Area. Earth Science, 44(9): 2955-2962. doi: 10.3799/dqkx.2019.153
    Citation: Zhang Qingquan, Pan Yun, Gong Huili, Zheng Longqun, Zhu Yunqiang, 2019. The Impact of Different GRACE Filtering Methods on Inversing Terrestrial Water Storage Change in Southwestern Karst Area. Earth Science, 44(9): 2955-2962. doi: 10.3799/dqkx.2019.153

    不同滤波方法对GRACE反演西南岩溶区陆地水储量变化的影响

    doi: 10.3799/dqkx.2019.153
    基金项目: 

    国家自然科学基金面上项目 41771456

    贵州省公益性基础性地质工作项目 黔国土资地环函[2014]23号

    国家重点研发计划 2017YFC0405802

    详细信息
      作者简介:

      张青全(1995-), 男, 硕士研究生, 主要从事遥感水文方面的研究

      通讯作者:

      潘云

    • 中图分类号: P343

    The Impact of Different GRACE Filtering Methods on Inversing Terrestrial Water Storage Change in Southwestern Karst Area

    • 摘要: 不同滤波方法反演陆地水储量变化的结果不同,但目前关于西南岩溶区的不同滤波方法之间的对比研究相对较少.利用Gauss 200 km、Fan 200 km、Han 200 km和DDK4四种滤波方法反演了西南岩溶区的陆地水储量变化,并采用尺度因子进行了校正.在空间分布上,Han和Fan滤波较Gauss滤波更为平滑,但损失的真实信号更多,Han滤波损失最为严重;DDK滤波在进行南北向滤波的同时更能保持原始信号的量级和形状.在时间序列上,4种滤波的陆地水储量距平(TWSA)年趋势分别为8.64、8.77、9.05和9.39 mm/a,周年振幅分别为90.19、94.47、112.92和89.34.不同滤波反演的陆地水储量变化的空间分布差异较大;4种滤波的周年相位差别不大,且由于尺度因子的影响,校正后的陆地水储量距平振幅大小顺序为Han > Fan > Gauss > DDK.对于研究区的陆地水储量变化反演,Fan滤波和DDK滤波较好.

       

    • 图  1  西南岩溶区分布与研究区位置

      Fig.  1.  Southwest karst area distribution and the location of the study area

      图  2  GRACE反演的陆地水储量变化与实测对比

      Fig.  2.  The comparison between GRACE inversion of terrestrial water storage changes and in situ data

      图  3  Gauss 200 km、Fan 200 km、Han 200 km、DDK4反演的陆地水储量变化(a~d)及尺度因子校正后的储量变化(e~h)

      Fig.  3.  The change trend of terrestrial water storage inversion of Gauss 200 km, Fan 200 km, Han 200 km, and DDK4 before(a-d)and after(e-h)the scale factor correction

      图  4  经尺度因子校正的4种滤波反演的TWSA与降水量的时间序列图

      Fig.  4.  Time series diagram of TWSA and precipitation by four kinds of filter inversion corrected by scale factor

      图  5  不同滤波器反演的TWSA时间序列周年振幅空间分布

      Fig.  5.  The annual amplitude spatial distribution of TWSA time series for different filter inversion

      a.Gauss 200 km; b.Fan 200 km; c.Han 200 km; d.DKK4

      图  6  不同滤波器反演的TWSA时间序列周年相位空间分布

      Fig.  6.  The annual phase spatial distribution of TWSA time series for different filter inversion

      a.Gauss 200 km; b.Fan 200 km; c.Han 200 km; d.DKK4

      表  1  不同滤波器反演的TWSA时间序列年趋势及其周期信息

      Table  1.   Annual trend of TWSA time series and its period information for different filter inversion

      滤波函数 年趋势
      (mm/a)
      周年振幅
      (mm)
      半周年振幅
      (mm)
      周年相位 半周年相位
      Gauss 200 km 8.64 90.19 26.28 232.25° 153.73°
      Fan 200 km 8.77 94.47 21.78 231.47° 150.31°
      Han 200 km 9.05 112.92 16.35 228.61° 139.31°
      DKK4 9.39 89.34 19.00 232.91° 158.46°
      下载: 导出CSV
    • [1] Chao, N.F., Wang, Z.T., Sun, J., et al., 2015.The Inversion of Terrestrial Water Storage Changes by Non-Isotropic Combination Filter. Acta Geodaetica et Cartographica Sinica, 44(2):174-182 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=45e08ad7bd6a656e69340fa42513592e&encoded=0&v=paper_preview&mkt=zh-cn
      [2] Chen, J., Wilson, C. R., Tapley, B. D., et al., 2008. The 2005 Amazon Drought as Measured by GRACE and Estimated by Climate Models. AGU Fall Meeting, San Francisco.
      [3] Han, S. C., Shum, C. K., Jekeli, C., et al., 2005. Non-Isotropic Filtering of GRACE Temporal Gravity for Geophysical Signal Enhancement. Geophysical Journal International, 163(1): 18-25.https://doi.org/10.1111/j.1365-246x.2005.02756.x doi: 10.1111/j.1365-246X.2005.02756.x
      [4] Huang, Z.Q., Hu, B.Q., 2013. Research Progress on Karst Rocky Desertification in Southwest China. Chinese and Foreign Entrepreneurs, 12:242-243 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201802001
      [5] Huang, Z. Y., Pan, Y., Gong, H. L., et al., 2015. Subregional-Scale Groundwater Depletion Detected by GRACE for both Shallow and Deep Aquifers in North China Plain. Geophysical Research Letters, 42(6):1791-1799.https://doi.org/10.1002/2014gl062498 doi: 10.1002/2014GL062498
      [6] Iqbal, J., Dai, F. C., Hong, M., et al., 2018. Failure Mechanism and Stability Analysis of an Active Landslide in the Xiangjiaba Reservoir Area, Southwest China. Journal of Earth Science, 29(3):646-661. https://doi.org/10.1007/s12583-017-0753-5
      [7] Jing, J.L., Wang, Y.F., 2014.Temporal and Spatial Variation of Vegetation Cover in Southwest China Karst Area during 1998-2012.Research of Soil and Water Conservation, 21(4):163-167 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stbcyj201404034
      [8] Kusche, J., Schmidt, R., Petrovic, S., et al., 2009. Decorrelated GRACE Time-Variable Gravity Solutions by GFZ, and Their Validation Using a Hydrological Model. Journal of Geodesy, 83(10):903-913. https://doi.org/10.1007/s00190-009-0308-3
      [9] Kusche, J., 2007. Approximate Decorrelation and Non-Isotropic Smoothing of Time-Variable GRACE-Type Gravity Field Models. Journal of Geodesy, 81(11):733-749. https://doi.org/10.1007/s00190-007-0143-3
      [10] Li, Z., Zhang, C.Y., Ke, B.G., et al., 2017. Filtering Method of GRACE Time-Variable Gravity Field. Science of Surveying and Mapping, 42(12):14-19 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/chkx201712003
      [11] Liu, X.L., 2014. On the Comparison of Non-Isotropic Gaussian Filtering Methods for Time-Variable Gravity Filed. Geomatics & Spatial Information Technology, 37(8):89-91 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbch201408028
      [12] Pan, Y., Zhang, C., Gong, H. L., et al., 2017. Detection of Human-Induced Evapotranspiration Using GRACE Satellite Observations in the Haihe River Basin of China. Geophysical Research Letters, 44(1):190-199.https://doi.org/10.1002/2016gl071287 doi: 10.1002/2016GL071287
      [13] Rodell, M., Velicogna, I., Famiglietti, J.S., 2009. Satellite-Based Estimates of Groundwater Depletion in India. Nature, 460(7258):999-1002. https://doi.org/10.1038/nature08238
      [14] Swenson, S., Wahr, J., 2002. Methods for Inferring Regional Surface-Mass Anomalies from Gravity Recovery and Climate Experiment (GRACE) Measurements of Time-Variable Gravity. Journal of Geophysical Research: Solid Earth, 107(B9): ETG 3-1-ETG 3-13.https://doi.org/10.1029/2001jb000576 doi: 10.1029/2001JB000576
      [15] Swenson, S., Wahr, J., 2007. Multi-Sensor Analysis of Water Storage Variations of the Caspian Sea. Geophysical Research Letters, 34(16):L16401.https://doi.org/10.1029/2007gl030733 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eebfc72517dd93e612693bf892cc3a65
      [16] Velicogna, I., Wahr, J., 2006. Measurements of Time-Variable Gravity Show Mass Loss in Antarctica. Science, 311(5768):1754-1756. https://doi.org/10.1126/science.1123785
      [17] Wahr, J., Molenaar, M., Bryan, F., 1998. Time Variability of the Earth's Gravity Field: Hydrological and Oceanic Effects and Their Possible Detection Using GRACE. Journal of Geophysical Research: Solid Earth, 103(B12): 30205-30229.https://doi.org/10.1029/98jb02844 doi: 10.1029/98JB02844
      [18] Wang, J.Y., Wang, J.L., Jin, M.G., et al., 2017. Hydrochemical Characteristics and Formation Causes of Karst Water in Jinan Spring Catchment. Earth Science, 42(5):821-831 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705018
      [19] Xi, H., Zhang, Z.Z., Lu, Y., et al., 2016.The Performances of Different Filtering Methods on Ocean Mass Change Estimated from GRACE. Journal of Geodesy and Geodynamics, 36(5):380-385 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201605002
      [20] Xiang, L.W., Wang, H.S., Jia, L.L., et al., 2017.The Variability of Terrestrial Water Storage Changes in the Tibetan Plateau and Adjacent Areas Retrieved by GRACE Data. Journal of Geodesy and Geodynamics, 37(3):311-318 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201703019
      [21] Zeng, B., Wei, X.Q., Zou, S.Z., et al., 2018.Experiment and Simulation on Migration Rule of Arsenic in Soil of Surface Karst Zone in Southwest China. Earth Science, 43(11):4237-4245 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201811037
      [22] Zhang, Z.Z., Chao, B.F., Lu, Y., et al., 2009. An Effective Filtering for GRACE Time-Variable Gravity: Fan Filter. Geophysical Research Letters, 36: L17311.https://doi.org/10.1029/2009gl039459 doi: 10.1029/2009GL039459
      [23] Zhao, Y.Y., Su, Z.Y., Liu, Y., et al., 2013. On the Comparison of Filtering Methods for GRACE Time-Variable Gravity. Bulletin of Surveying and Mapping, (S2):271-273 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=8477242351787058ea91dfef9813031c&encoded=0&v=paper_preview&mkt=zh-cn
      [24] Zhou, X., Xing, L.L., Zou, Z.B., et al., 2008. Gaussian Smoothing Study of GRACE Time-Varying Gravity Field. Journal of Geodesy and Geodynamics, 3:41-45(in Chinese with English abstract).
      [25] Zhou, Z.C., Wang, W.P., Li, B.Y., et al., 2017. Research on Groundwater Reserve Variation Regulations in Huaihe Basin Based on GRACE Temporal Gravity Field. Water Resources and Power, 35(10):37-41 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdnykx201710010
      [26] 超能芳, 王正涛, 孙健, 等, 2015.各向异性组合滤波法反演陆地水储量变化.测绘学报, 44(2):174-182. http://d.old.wanfangdata.com.cn/Periodical/chxb2015020010
      [27] 黄志强, 胡宝清, 2013.西南喀斯特石漠化研究进展.中外企业家, 12:242-243. http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201401009
      [28] 靖娟利, 王永锋, 2014.1998~2012年中国西南岩溶区植被覆盖时空变化分析.水土保持研究, 21(4):163-167. http://d.old.wanfangdata.com.cn/Periodical/stbcyj201404034
      [29] 李圳, 章传银, 柯宝贵, 等, 2017.GRACE时变重力场滤波方法.测绘科学, 42(12):14-19. http://d.old.wanfangdata.com.cn/Periodical/chkx201712003
      [30] 刘晓莉, 2014.时变重力场的非各向同性高斯滤波比较.测绘与空间地理信息, 37(8):89-91. doi: 10.3969/j.issn.1672-5867.2014.08.028
      [31] 王珺瑜, 王家乐, 靳孟贵, 等, 2017.济南泉域岩溶水水化学特征及其成因.地球科学, 42(5):821-831. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201705017.htm
      [32] 郗慧, 张子占, 陆洋, 等, 2016.利用GRACE监测全球海水质量变化时滤波处理的影响分析.大地测量与地球动力学, 36(5):380-385. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201605002
      [33] 相龙伟, 汪汉胜, 贾路路, 等, 2017.GRACE监测青藏高原及邻区陆地水储量变化结果的可变性.大地测量与地球动力学, 37(3):311-318. http://d.old.wanfangdata.com.cn/Periodical/dkxbydz201703019
      [34] 曾斌, 韦晓青, 邹胜章, 等, 2018.西南表层岩溶带土壤中砷的迁移规律实验与模拟.地球科学, 43(11):4237-4245. http://www.cnki.com.cn/Article/CJFDTotal-DQKX201811038.htm
      [35] 赵元元, 苏宗跃, 刘元, 等, 2013.GRACE时变重力场滤波方法比较.测绘通报, (S2):271-273. http://d.old.wanfangdata.com.cn/Conference/8312143
      [36] 周新, 邢乐林, 邹正波, 等, 2008.GRACE时变重力场的高斯平滑研究.大地测量与地球动力学, 3:41-45. http://www.cnki.com.cn/Article/CJFDTotal-DKXB200803008.htm
      [37] 周志才, 王卫平, 李冰瑶, 等, 2017.基于GRACE卫星时变重力场的淮河流域地下水储量变化规律研究.水电能源科学, 35(10):37-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdnykx201710010
    • 加载中
    图(6) / 表(1)
    计量
    • 文章访问数:  6805
    • HTML全文浏览量:  2275
    • PDF下载量:  42
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-06-12
    • 刊出日期:  2019-09-15

    目录

      /

      返回文章
      返回