Characteristics and Tectonic Significance of the Miocene Strata in the Milashan Area, Eastern Lhasa Terrane
-
摘要: 中新世是拉萨地块增厚隆升的重要时期.本次报道了拉萨地块东部首次厘定的中新世地层,岩石类型包括流纹岩、英安岩、火山碎屑岩、黑曜岩和岩屑砂岩等,由3组喷发旋回构成.锆石U-Pb定年显示,该套地层形成于17.2~18.2 Ma.全岩地球化学和锆石Hf同位素分析显示,地层中的流纹岩具有钾质火山岩的地球化学特征,同时兼具A型花岗岩的亲缘性,为古老中下地壳部分熔融的产物.英安岩具有埃达克质岩的地球化学特征,为增厚新生下地壳部分熔融的产物.米拉山钾质流纹岩和埃达克质英安岩野外共生,丰富了拉萨地块中新世岩浆岩的研究内容,为青藏高原中新世岩石圈减薄/拆沉模型提供了新的证据.Abstract: Miocene is an important period for the thickening and uplifting of the Lhasa terrane. A set of Miocene strata were recently identified in the eastern Lhasa terrane. It can be divided into three eruption cycles, and consists of rhyolite, dacite, pyroclastic rock, obsidian and lithic sandstone. Zircon U-Pb dating shows that the strata formed during 17.2-18.2 Ma. Whole-rock major and trace element analysis and zircon Hf isotope analysis show that the rhyolite has the geochemical characteristics of potassic volcanic rocks, and is derived from the partial melting of a middle-lower crust. The dacite has the geochemical characteristics of adakite related with A-type granite, and is derived from the partial melting of a new thickened lower crust. The coexistence of the potassic and adakitic rocks enriches the research of the Miocene volcanic rocks, and provides new evidence for the Miocene lithospheric detachment model in the Tibetan Plateau.
-
Key words:
- Tibetan Plateau /
- eastern Lhasa terrane /
- Miocene /
- potassic rock /
- adakite /
- geochemistry
-
图 1 藏南拉萨地块后碰撞岩浆活动分布(a)和米拉山地区地质简图(b)
底图据刘栋(2017)修改;BNS.班公湖-怒江缝合带;SNMZ.狮泉河-纳木错蛇绿混杂岩带;LMF.洛巴堆-米拉山断裂;IYZS.雅鲁藏布江缝合带;STDS.藏南拆离系;MCT.主中央逆冲断裂;MBT.主边界逆冲断裂;1.晚石炭世-早二叠世松多岩组;2.二叠纪洋岛残片;3.早-中侏罗世叶巴组;4.晚侏罗世-早白垩世林布宗组;5.早白垩世楚木龙组;6.早白垩世塔克那组;7.晚白垩世设兴组;8.中新世地层第一旋回;9.中新世地层第二旋回;10.中新世地层第三旋回;11.全新世冲积物;12.早侏罗世花岗闪长岩;13.晚白垩世二长花岗岩;14.中新世花岗斑岩;15.火山机构;16.实测剖面;17.断层、不整合接触;18.采样位置
Fig. 1. The distribution of post-collision magmatism of Lhasa block, southern Tibet (a) and simplified geological map of Milashan area (b)
图 6 中新世火山岩主量元素判别图解(a~c)和微量元素Sr/Y-Y图解(d)
a. (Na2O+K2O)-SiO2图解,Middlemost(1994);b. A/NK-A/CNK图解;c. K2O-SiO2图解,Peccerillo and Taylor(1976);d. Sr/Y-Y图解,Defant and Drummond(1990)
Fig. 6. Discriminant diagrams of major elements (a-c) and Sr/Y-Y diagrams (d) of Miocene volcanic rocks
图 7 中新世火山岩稀土元素配分模式图(a)和微量元素蛛网图(b)
标准化数据引自Sun and McDonough(1989)
Fig. 7. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spidergrams (b) of Miocene volcanic rocks
图 8 SiO2-主微量元素埃达克质岩判别图解
a. MgO-SiO2;b. TFeO/MgO-SiO2;据Wang et al. (2006)
Fig. 8. Distinction diagrams of SiO2-primary elements of adakite
图 9 I.M.S.A花岗岩判别图解
a. (K2O+Na2O)/CaO-Zr+Nb+Ce+Y;b. Zr-10 000×Ga/Al;据Whalen (1987)
Fig. 9. Distinction diagrams of I.M.S.A granite
图 10 花岗岩与埃达克质岩构造判别图解
a. Al2O3-SiO2,据Maniar et al. (1989);b. Th/Ce-Th,据Wang et al. (2006);c. Rb-Y+Nb,据Pearce et al. (1984)
Fig. 10. Distinction diagrams of granite and adakite tectonic setting
表 1 米拉山中新世火山岩LA-ICP-MS锆石U-Pb定年结果
Table 1. LA-ICP-MS zircon U-Pb dating results of Miocene volcanic rocks from Milashan area
编号 U (10-6) Th (10-6) Th/U 同位素比值 同位素年龄(Ma) 207Pb/235Pb ±σ 206Pb/238Pb ±σ 207Pb/235Pb ±σ 206Pb/238Pb ±σ ST1英安质岩屑晶屑凝灰岩 1 634 799 2.28 0.017 3 0.000 4 0.002 7 0.000 1 17.4 0.4 17.3 0.4 2 1 144 330 3.48 0.017 5 0.000 2 0.002 9 0.000 1 17.6 0.2 18.3 0.4 3 1 078 1 858 4.53 0.017 3 0.000 4 0.002 8 0.000 1 17.4 0.4 17.8 0.4 4 455 452 1.65 0.017 5 0.000 6 0.002 8 0.000 1 17.6 0.6 18.1 0.6 5 678 284 2.26 0.016 9 0.000 2 0.003 0 0.000 1 17.0 0.2 19.2 0.4 6 761 605 2.86 0.017 8 0.000 3 0.003 1 0.000 1 17.9 0.3 19.9 0.4 7 534 548 1.95 0.017 5 0.000 9 0.002 8 0.000 1 17.6 0.9 18.0 0.5 8 385 304 1.28 0.017 7 0.000 5 0.002 8 0.000 1 17.8 0.5 17.8 0.6 9 836 941 3.04 0.017 4 0.000 3 0.002 7 0.000 1 17.5 0.3 17.1 0.4 10 460 467 1.67 0.017 6 0.000 5 0.002 7 0.000 1 17.8 0.5 17.6 0.6 11 706 720 2.66 0.017 3 0.000 5 0.002 8 0.000 1 17.4 0.5 17.9 0.5 12 711 936 3.08 0.018 6 0.000 3 0.002 8 0.000 1 18.7 0.2 17.8 0.5 13 460 471 1.65 0.017 8 0.000 5 0.002 8 0.000 1 18.0 0.5 17.9 0.5 14 567 524 3.17 0.018 1 0.000 7 0.003 0 0.000 1 18.2 0.7 19.2 0.6 15 1 357 1 041 4.89 0.017 9 0.000 9 0.002 9 0.000 1 18.0 0.9 18.9 0.4 16 1 021 1 291 3.87 0.017 3 0.000 4 0.002 7 0.000 1 17.4 0.4 17.5 0.4 17 1 685 1 027 6.25 0.018 1 0.001 0 0.003 0 0.000 1 18.3 1.0 19.6 0.4 18 472 414 1.66 0.017 8 0.000 4 0.002 8 0.000 1 18.0 0.4 17.8 0.5 19 239 345 0.95 0.017 0 0.000 8 0.002 7 0.000 1 17.1 0.7 17.2 0.7 20 455 472 1.70 0.017 5 0.000 9 0.002 9 0.000 1 17.6 0.9 18.5 0.5 ST4英安岩 1 691 501 0.73 0.018 6 0.002 2 0.002 9 0.000 1 19.0 2.0 18.7 0.3 2 648 639 0.99 0.017 8 0.002 5 0.002 8 0.000 1 18.0 3.0 18.0 0.3 3 588 451 0.77 0.017 1 0.002 7 0.002 7 0.000 1 17.0 3.0 17.3 0.3 4 261 181 0.69 0.018 8 0.006 3 0.002 9 0.000 1 19.0 6.0 18.4 0.4 5 401 490 1.22 0.018 0 0.003 6 0.002 8 0.000 1 18.0 4.0 18.1 0.3 6 495 368 0.74 0.016 9 0.003 1 0.002 6 0.000 1 17.0 3.0 17.0 0.3 7 877 682 0.78 0.016 7 0.001 7 0.002 6 0.000 0 17.0 2.0 16.9 0.3 8 511 321 0.63 0.017 2 0.003 1 0.002 7 0.000 1 17.0 3.0 17.3 0.3 9 509 477 0.94 0.019 0 0.003 2 0.002 9 0.000 1 19.0 3.0 18.7 0.3 10 838 588 0.70 0.018 1 0.001 8 0.002 8 0.000 0 18.0 2.0 18.2 0.3 11 983 821 0.84 0.017 3 0.001 7 0.002 7 0.000 0 17.0 2.0 17.4 0.3 12 450 286 0.64 0.020 0 0.004 7 0.002 8 0.000 1 20.0 5.0 18.2 0.4 13 570 403 0.71 0.017 2 0.002 5 0.002 7 0.000 1 17.0 2.0 17.3 0.3 14 560 550 0.98 0.018 5 0.002 8 0.002 9 0.000 1 19.0 3.0 18.5 0.3 15 133 73 0.55 0.067 3 0.010 1 0.010 3 0.000 2 66.0 10.0 66.0 1.0 ST23流纹岩 1 352 472 1.34 0.019 3 0.003 0 0.002 8 0.000 1 19.0 3.0 18.0 0.3 2 357 402 1.13 0.017 9 0.002 1 0.002 8 0.000 0 18.0 2.0 17.9 0.3 3 501 686 1.37 0.018 3 0.001 6 0.002 9 0.000 0 18.0 2.0 18.4 0.2 4 657 772 1.17 0.018 2 0.001 5 0.002 8 0.000 0 18.0 1.0 18.0 0.3 5 311 341 1.10 0.017 5 0.000 7 0.002 8 0.000 0 17.6 0.7 17.7 0.2 6 1 251 3 671 2.93 0.017 9 0.000 9 0.002 8 0.000 0 18.1 0.9 18.0 0.2 7 276 346 1.25 0.018 0 0.002 8 0.002 7 0.000 0 18.0 3.0 17.4 0.3 8 336 508 1.51 0.018 1 0.002 2 0.002 8 0.000 0 18.0 2.0 18.2 0.3 9 550 796 1.45 0.017 0 0.001 5 0.002 7 0.000 0 17.0 2.0 17.1 0.3 10 320 388 1.21 0.017 6 0.002 4 0.002 8 0.000 1 18.0 2.0 17.8 0.3 11 1 753 1 638 0.93 0.017 4 0.000 7 0.002 7 0.000 0 17.5 0.7 17.5 0.2 12 308 376 1.22 0.018 6 0.002 6 0.002 9 0.000 1 19.0 3.0 18.7 0.3 ST24流纹质岩屑晶屑凝灰岩 1 950 614 0.65 0.017 8 0.001 2 0.002 7 0.000 0 18.0 1.0 17.2 0.2 2 122 73 0.60 0.066 0 0.008 0 0.009 7 0.000 2 65.0 8.0 62.0 1.0 3 202 127 0.63 0.062 8 0.005 0 0.009 6 0.000 1 62.0 5.0 61.7 0.8 4 1 198 904 0.75 0.017 0 0.000 7 0.002 7 0.000 0 17.1 0.7 17.1 0.2 5 539 522 0.97 0.017 5 0.001 8 0.002 7 0.000 0 18.0 2.0 17.6 0.3 6 1 732 4 544 2.62 0.016 9 0.000 7 0.002 7 0.000 0 17.0 0.7 17.1 0.2 7 195 146 0.75 0.063 1 0.004 9 0.009 7 0.000 1 62.0 5.0 62.1 0.8 8 629 683 1.09 0.017 1 0.002 0 0.002 7 0.000 0 17.0 2.0 17.2 0.3 9 722 1 469 2.03 0.017 2 0.001 4 0.002 7 0.000 0 17.0 1.0 17.4 0.3 10 1 375 974 0.71 0.017 1 0.000 7 0.002 7 0.000 0 17.2 0.7 17.2 0.2 11 1 331 259 0.19 0.667 2 0.008 5 0.082 1 0.000 8 519.0 5.0 509.0 5.0 12 551 337 0.61 0.017 0 0.001 6 0.002 7 0.000 0 17.0 2.0 17.1 0.3 13 1 150 763 0.66 0.017 0 0.000 9 0.002 7 0.000 0 17.1 0.9 17.1 0.2 14 965 865 0.90 0.017 5 0.001 1 0.002 7 0.000 0 18.0 1.0 17.1 0.2 15 881 834 0.95 0.017 0 0.001 0 0.002 7 0.000 0 17.0 1.0 17.1 0.2 表 2 米拉山中新世火山岩Hf同位素测试结果
Table 2. Analytical results of Hf isotope of Miocene volcanic rocks from Milashan area
编号 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf ±σ εHf(0) εHf(t) ±σ TDM(Ma) TDMC(Ma) fLu/Hf ST4英安岩 3 17.0 0.038 935 0.001 741 0.282 767 0.000 018 -0.2 0.2 0.6 701 1 086 -0.95 6 17.0 0.038 912 0.001 737 0.282 718 0.000 019 -1.9 -1.6 0.7 773 1 198 -0.95 7 17.0 0.037 254 0.001 654 0.282 802 0.000 019 1.1 1.4 0.7 649 1 007 -0.95 8 17.0 0.035 398 0.001 584 0.282 770 0.000 021 -0.1 0.3 0.7 694 1 079 -0.95 11 17.0 0.046 933 0.002 039 0.282 707 0.000 021 -2.3 -1.9 0.8 794 1 221 -0.94 ST23流纹岩 1 19.0 0.025 391 0.001 125 0.282 391 0.000 018 -13.5 -13.1 0.6 1 222 1 929 -0.97 3 18.0 0.026 909 0.001 148 0.282 413 0.000 019 -12.7 -12.3 0.7 1 192 1 882 -0.97 4 18.0 0.025 146 0.001 152 0.282 434 0.000 019 -11.9 -11.6 0.7 1 161 1 833 -0.97 5 17.6 0.024 063 0.001 088 0.282 396 0.000 021 -13.3 -12.9 0.7 1 214 1 920 -0.97 7 18.0 0.020 022 0.000 798 0.282 180 0.000 017 -20.9 -20.5 0.6 1 504 2 399 -0.98 表 3 米拉山中新世火山岩主量元素(%)和微量元素(10-6)分析结果
Table 3. Analytical results of major (%) and trace elements (10-6) of Miocene volcanic rocks from Milashan area
岩性 ST23流纹岩 ST4英安岩 编号 ST23H1 ST23H2 ST23H3 ST4H1 ST4H2 ST4H3 SiO2 76.28 76.96 76.53 66.89 66.01 69.21 TiO2 0.14 0.13 0.14 0.43 0.47 0.39 Al2O3 13.44 12.99 12.70 15.34 15.66 14.56 TFe2O3 0.15 0.36 0.12 3.48 3.73 3.12 MnO 0.03 0.02 0.03 0.07 0.08 0.06 MgO 0.16 0.18 0.14 1.45 1.64 1.24 CaO 0.07 0.05 0.11 3.07 2.94 2.80 Na2O 0.13 1.27 0.52 4.04 4.36 3.84 K2O 6.97 5.35 7.47 3.44 3.27 3.34 P2O5 0.01 0.01 0.01 0.17 0.20 0.15 LOI 1.57 1.70 1.13 0.90 0.96 0.47 Mg# 70.22 53.62 73.34 49.17 50.63 48.21 K2O/Na2O 52.89 4.22 14.36 0.85 0.75 0.87 Sc 2.27 1.95 2.90 6.52 6.49 5.77 Cr 3.22 3.15 1.23 28.66 18.42 18.63 Ni 1.61 1.78 0.07 20.84 14.79 13.85 Ga 18.51 16.60 15.56 21.68 21.00 19.99 Rb 319 234 341 134 125 133 Sr 58.68 91.06 78.28 820 814 795 Y 15.18 9.42 11.51 10.19 10.52 9.82 Zr 137 126 130 135 154 145 Nb 10.86 10.38 10.67 9.22 8.87 8.91 Ba 1271 955 1576 1059 995 1078 La 57.60 30.26 56.92 38.96 39.24 37.54 Ce 119 59.08 107.60 74.88 75.10 71.74 Pr 13.81 6.11 11.67 8.17 8.39 7.80 Nd 49.86 19.91 38.88 28.44 29.48 27.16 Sm 8.67 3.13 5.97 4.61 4.79 4.35 Eu 1.37 0.51 0.99 1.17 1.20 1.11 Gd 5.97 2.26 3.96 3.21 3.38 3.03 Tb 0.72 0.30 0.48 0.39 0.41 0.37 Dy 3.56 1.65 2.45 1.99 2.05 1.92 Ho 0.61 0.32 0.43 0.36 0.37 0.36 Er 1.65 0.99 1.21 1.02 1.04 1.00 Tm 0.23 0.15 0.17 0.14 0.15 0.14 Yb 1.51 1.06 1.14 0.95 0.96 0.94 Lu 0.21 0.17 0.16 0.14 0.14 0.14 Hf 3.36 3.09 3.21 3.24 3.55 3.45 Ta 0.73 0.67 0.66 0.60 0.54 0.60 Pb 70.76 24.72 28.00 35.88 31.20 34.34 Th 25.98 15.28 25.20 21.32 20.70 22.88 U 4.79 4.10 4.60 4.63 4.23 4.76 Eu* 0.58 0.58 0.62 0.93 0.92 0.94 Sr/Y 3.87 9.67 6.80 80.58 77.36 81.01 Zr/Hf 40.8 40.7 40.5 41.7 43.3 42.0 Nb/Ta 14.9 15.5 16.1 15.3 16.5 14.9 Th/Ce 0.22 0.26 0.23 0.28 0.28 0.32 LaN/YbN 27.3 20.5 35.8 29.4 29.3 28.7 TZr(℃) 819 809 800 755 765 765 注:Eu*=Eu/SQRT(Sm×Gd);Mg#=(MgO/40.31)/(MgO/40.31+TFe2O3×0.899 8×0.85/71.85)×100;锆石饱和温度(TZr)计算方法据Watson and Harrison (1983). -
[1] Atherton, M. P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416): 144-146. https://doi.org/10.1038/362144a0 [2] Castillo, P. R., Janney, P. E., Solidum, R. U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. https://doi.org/10.1007/s004100050467 [3] Chen, J. L., Xu, J. F., Kang, Z. Q., et al., 2007. Geochemistry and Origin of Miocene Volcanic Rocks in Cazé Area, South-Western Qinghai-Xizang Plateau. Geochimica, 36(5): 437-447 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200705002 [4] Chen, J. L., Xu, J. F., Wang, B. D., et al., 2010. Origin of Cenozoic Alkaline Potassic Volcanic Rocks at KonglongXiang, Lhasa Terrane, Tibetan Plateau: Products of Partial Melting of a Mafic Lower-Crustal Source?. Chemical Geology, 273(3-4): 286-299. https://doi.org/10.1016/j.chemgeo.2010.03.003 [5] Chen, X. J., Xu, Z. Q., Meng, Y. K., et al., 2014. Petrogenesis of Miocene Adakitic Diorite-Porphyrite in Middle Gangdese Batholith, Southern Tibet: Constraints from Geochemistry, Geochronology and Sr-Nd-Hf Isotopes. Acta Petrologica Sinica, 30(8): 2253-2268 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201408010 [6] Chung, S. L., Liu, D. Y., Ji, J. Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust Beneath Southern Tibet. Geology, 31(11): 1021. https://doi.org/10.1130/g19796.1 [7] Chung, S. L., Chu, M. F., Ji, J. Q., et al., 2009. The Nature and Timing of Crustal Thickening in Southern Tibet: Geochemical and Zircon Hf Isotopic Constraints from Postcollisional Adakites. Tectonophysics, 477(1-2): 36-48. https://doi.org/10.1016/j.tecto.2009.08.008 [8] Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0 [9] Foley, S. F., Venturelli, G., Green, D. H., et al., 1987. The Ultrapotassic Rocks: Characteristics, Classification, and Constraints for Petrogenetic Models. Earth-Science Reviews, 24(2): 81-134. https://doi.org/10.1016/0012-8252(87)90001-8 [10] Guo, Z. F., Wilson, M., Liu, J. Q., 2007. Post-Collisional Adakites in South Tibet: Products of Partial Melting of Subduction-Modified Lower Crust. Lithos, 96(1-2): 205-224. https://doi.org/10.1016/j.lithos.2006.09.011 [11] Guo, Z. F., Wilson, M., Zhang, M. L., et al., 2015. Post-Collisional Ultrapotassic Mafic Magmatism in South Tibet: Products of Partial Melting of Pyroxenite in the Mantle Wedge Induced by Roll-Back and Delamination of the Subducted Indian Continental Lithosphere Slab. Journal of Petrology, 56(7): 1365-1406. https://doi.org/10.1093/petrology/egv040 [12] Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391. https://doi.org/10.1039/c2ja30078h [13] Hou, Z. Q., Gao, Y. F., Qu, X. M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East–west Extension in Southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155. https://doi.org/10.1016/s0012-821x(04)00007-x [14] Kadioglu, Y. K., Dilek, Y., 2010. Structure and Geochemistry of the Adakitic Horoz Granitoid, Bolkar Mountains, South-Central Turkey, and Its Tectonomagmatic Evolution. International Geology Review, 52(4-6): 505-535. https://doi.org/10.1080/09507110902954847 [15] Kay, R. W., Kay, S.M., 1993. Delamination and Delamination Magmatism. Tectonophysics, 219(1-3): 177-189. https://doi.org/10.1016/0040-1951(93)90295-u [16] Liu, D., 2017. Geochemistry and Petrogenesis of Post-collisional Potassic and Utrapotassic Rocks in Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [17] Liu, D., Zhao, Z. D., Zhu, D. C., et al., 2014a. Zircon Xenocrysts in Tibetan Ultrapotassic Magmas: Imaging the Deep Crust through Time. Geology, 42(1): 43-46. https://doi.org/10.1130/g34902.1 [18] Liu, D., Zhao, Z. D., Zhu, D. C., et al., 2014b. Postcollisional Potassic and Ultrapotassic Rocks in Southern Tibet: Mantle and Crustal Origins in Response to India-Asia Collision and Convergence. Geochimica et Cosmochimica Acta, 143: 207-231. https://doi.org/10.1016/j.gca.2014.03.031 [19] Ma, X. X., Xu, Z. Q., Chen, X. J., et al., 2017. The Origin and Tectonic Significance of the Volcanic Rocks of the Yeba Formation in the Gangdese Magmatic Belt, South Tibet. Journal of Earth Science, 28(2): 265-282. https://doi.org/10.1007/s12583-016-0925-8 [20] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co; 2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 [21] Meng, Y. K., Ma, S. W., Xu, Z. Q., et al., 2018. Geochronology, Geochemistry and Petrogenesis of the Granitoid Porphyries from Jiama Ore Deposit in Gangdese Belt. Earth Science, 43(4): 1142-1171 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.713 [22] Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [23] Miller, C., Schuster, R., Klotzli, U., et al., 1999. Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis. Journal of Petrology, 40(9): 1399-1424. https://doi.org/10.1093/petroj/40.9.1399 [24] Nomade, S., Renne, P. R., Mo, X. X., et al., 2004. Miocene Volcanism in the Lhasa Block, Tibet: Spatial Trends and Geodynamic Implications. Earth and Planetary Science Letters, 221(1-4): 227-243. https://doi.org/10.1016/s0012-821x(04)00072-x [25] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 [26] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745 [27] Qu, X. M., Hou, Z. Q., Li, Y., 2004. Melt Components Derived from a Subducted Slab in Late Orogenic Ore-Bearing Porphyries in the Gangdese Copper Belt, Southern Tibetan Plateau. Lithos, 74(3-4): 131-148. https://doi.org/10.1016/s0024-4937(04)00027-1 [28] Sun, C. G., Zhao, Z. D., Mo, X. X., et al., 2008. Enriched Mantle Source and Petrogenesis of Sailipu Ultrapotassic Rocks in Southwestern Tibetan Plateau:Constraints from Zircon U-Pb Geochronology and Hf Isotopic Compositions. Acta Petrologica Sinica, 24(2): 249-264 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=b1f3203436d0914bd26209ce17d4feac&encoded=0&v=paper_preview&mkt=zh-cn [29] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [30] Tang, J. X., Wang, Q., Yang, H. H., et al., 2017. Mineralization, Exploration and Resource Potential of Porphyry-Skarn-Epithermal Copper Polymetallic Deposits in Tibet. Acta Geoscientia Sinica, 38(5): 571-613 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201705002 [31] Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821x(83)90211-x [32] Wang, B., Xie, C. M., Li, C., et al., 2017. The Discovery of Wenmulang Ophiolite in Songduo Area of the Tibetan Plateau and Its Geological Significance. Geological Bulletin of China, 36(11): 2076-2081 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201711017 [33] Wang, Q., Xu, J. F., Jian, P., et al., 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119-144. https://doi.org/10.1093/petrology/egi070 [34] Wang, Q., Zhu, D. C., Cawood, P. A., et al., 2015. Eocene Magmatic Processes and Crustal Thickening in Southern Tibet: Insights from Strongly Fractionated Ca. 43Ma Granites in the Western Gangdese Batholith. Lithos, 239: 128-141. https://doi.org/10.1016/j.lithos.2015.10.003 [35] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202 [36] Wei, Y. Q., 2017. Mesozoic Volcanic and Sedimentary Rocks on the Southern Margin of Lhasa Terrane, Southern Tibet: Geochronology, Geochemistry and Tectonic Implications (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [37] Williams, H. M., 2004. Nature of the Source Regions for Post-Collisional, Potassic Magmatism in Southern and Northern Tibet from Geochemical Variations and Inverse Trace Element Modelling. Journal of Petrology, 45(3): 555-607. https://doi.org/10.1093/petrology/egg094 [38] Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science in China (Series D), 47(7): 745-765 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201708010 [39] Xu, W. C., Zhang, H. F., Guo, L., et al., 2010. Miocene High Sr/Y Magmatism, South Tibet: Product of Partial Melting of Subducted Indian Continental Crust and Its Tectonic Implication. Lithos, 114(3-4): 293-306. https://doi.org/10.1016/j.lithos.2009.09.005 [40] Yang, D. M., He, Z. H., Huang, Y. C., et al., 2005. Metamorphism Characteristics of Songduo Group in Menba Township Mozhugongka County, Tibet and the Discussion on Its Age. Journal of Jilin University (Earth Science Edition), 35(4): 430-435 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb200504004 [41] Zheng, Y. C., Hou, Z. Q., Li, Q. Y., et al., 2012. Origin of Late Oligocene Adakitic Intrusives in the Southeastern Lhasa Terrane: Evidence from in Situ Zircon U-Pb Dating, Hf-O Isotopes, and Whole-Rock Geochemistry. Lithos, 148: 296-311. https://doi.org/10.1016/j.lithos.2012.05.026 [42] Zhang, Q., Ran, H., Li, C. D., 2012. A-Type Granite: What is the Essence?. Acta Petrologica et Mineralogica, 31(4):621-626 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_8c2890609571b9a5f39733c2b59b003c [43] Zhao, Z. D., Mo, X. X., Nomade, S., et al., 2006. Post-Collisional Ultrapotassic Rocks in Lhasa Block, Tibetan Plateau: Spatial and Temporal Distribution and Its' Implications. Acta Petrologica Sinica, 22(4): 787-794 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=5b842cb5c28cd916ca619e87f192869d&encoded=0&v=paper_preview&mkt=zh-cn [44] 陈建林, 许继峰, 康志强, 等, 2007.青藏高原西南部查孜地区中新世钾质火山岩地球化学及其成因.地球化学, 36(5): 437-447. doi: 10.3321/j.issn:0379-1726.2007.05.002 [45] 陈希节, 许志琴, 孟元库, 等, 2014.冈底斯带中段中新世埃达克质岩浆作用的年代学、地球化学及Sr-Nd-Hf同位素制约.岩石学报, 30(8): 2253-2268. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201408010 [46] 刘栋, 2017.青藏高原后碰撞钾质-超钾质岩石的地球化学特征与岩石成因(博士学位论文).北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1017126687.htm [47] 孟元库, 马士委, 许志琴, 等, 2018.冈底斯带甲玛矿区花岗斑岩类年代学、地球化学及岩石成因.地球科学, 43(4): 1142-1171. http://earth-science.net/WebPage/Article.aspx?id=3787 [48] 孙晨光, 赵志丹, 莫宣学, 等, 2008.青藏高原西南部赛利普超钾质火山岩富集地幔源区和岩石成因: 锆石U-Pb年代学和Hf同位素制约.岩石学报, 24(2): 249-264. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200802008.htm [49] 唐菊兴, 王勤, 杨欢欢, 等, 2017.西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力.地球学报, 38(5): 571-613. http://d.old.wanfangdata.com.cn/Periodical/dqxb201705002 [50] 王斌, 解超明, 李才, 等, 2017.青藏高原松多地区温木朗蛇绿岩的发现及其地质意义.地质通报, 36(11): 2076-2081. doi: 10.3969/j.issn.1671-2552.2017.11.017 [51] 魏友卿, 2017.西藏拉萨地体南缘中生代火山岩与碎屑沉积岩的年代学、地球化学及构造意意义(博士学位论文).北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1017126688.htm [52] 吴福元, 刘小驰, 纪伟强, 等, 2017.高分异花岗岩的识别与研究.中国科学(D辑), 47(7): 745-765. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201707001 [53] 杨德明, 和钟铧, 黄映聪, 等, 2005.西藏墨竹工卡县门巴地区松多岩群变质作用特征及时代讨论.吉林大学学报(地球科学版), 35(4):430-435. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb200504004 [54] 张旗, 冉皞, 李承东, 2012. A型花岗岩的实质是什么.岩石矿物学杂志, 31(4):621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014 [55] 赵志丹, 莫宣学, Nomade, S., 等, 2006.青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义.岩石学报, 22(4): 787-794. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200604003