• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏甲鲁朗地区叶巴组火山岩成因及其对新特提斯洋俯冲的约束

    宋宇航 解超明 范建军 曾孝文 郝宇杰 李晓波

    宋宇航, 解超明, 范建军, 曾孝文, 郝宇杰, 李晓波, 2019. 西藏甲鲁朗地区叶巴组火山岩成因及其对新特提斯洋俯冲的约束. 地球科学, 44(7): 2319-2338. doi: 10.3799/dqkx.2019.147
    引用本文: 宋宇航, 解超明, 范建军, 曾孝文, 郝宇杰, 李晓波, 2019. 西藏甲鲁朗地区叶巴组火山岩成因及其对新特提斯洋俯冲的约束. 地球科学, 44(7): 2319-2338. doi: 10.3799/dqkx.2019.147
    Song Yuhang, Xie Chaoming, Fan Jianjun, Zeng Xiaowen, Hao Yujie, Li Xiaobo, 2019. Petrogenesis of Volcanic Rocks from the Yeba Formation in Jialulang Area, Tibet and Its Constraints on the Subduction of Neo-Tethyan Oceanic Slab. Earth Science, 44(7): 2319-2338. doi: 10.3799/dqkx.2019.147
    Citation: Song Yuhang, Xie Chaoming, Fan Jianjun, Zeng Xiaowen, Hao Yujie, Li Xiaobo, 2019. Petrogenesis of Volcanic Rocks from the Yeba Formation in Jialulang Area, Tibet and Its Constraints on the Subduction of Neo-Tethyan Oceanic Slab. Earth Science, 44(7): 2319-2338. doi: 10.3799/dqkx.2019.147

    西藏甲鲁朗地区叶巴组火山岩成因及其对新特提斯洋俯冲的约束

    doi: 10.3799/dqkx.2019.147
    基金项目: 

    自然资源部东北亚矿产资源评价重点实验室自主课题基金项目 DBY-ZZ-18-06

    中国地质调查局项目 DD20160015

    国家自然科学基金项目 41602230

    国家自然科学基金项目 41872231

    中国地质调查局项目 DD20160026

    详细信息
      作者简介:

      宋宇航(1995-), 男, 硕士研究生, 构造地质学专业

      通讯作者:

      解超明

    • 中图分类号: P548

    Petrogenesis of Volcanic Rocks from the Yeba Formation in Jialulang Area, Tibet and Its Constraints on the Subduction of Neo-Tethyan Oceanic Slab

    • 摘要: 西藏冈底斯岩浆弧叶巴组火山岩对于新特提斯洋俯冲时限的制约存在着重要的意义.通过对甲鲁朗地区叶巴组凝灰岩的LA-ICP-MS锆石U-Pb年龄和岩石地球化学组成的研究,锆石测年获得3件凝灰岩样品206Pb/238U年龄加权平均值分别为207.8±1.6 Ma、204.8±1.7 Ma和209.3±3.4 Ma,结合古生物化石证据,表明其形成于晚三叠世;凝灰岩样品富集轻稀土元素和大离子亲石元素(Rb、K、Th、U、Pb),亏损重稀土元素和高场强元素(Nb、Ta、Ti、P),同时亏损Sr元素,Eu负异常较明显.岩石地球化学特征表明叶巴组中酸性岩可能为壳幔混染成因.综合前人研究成果,认为叶巴组形成于新特提斯洋俯冲环境下的大陆边缘弧,新特提斯洋的俯冲从晚三叠世就已经开始.本研究为叶巴组的形成时代以及动力学背景提供了新的制约.

       

    • 图  1  西藏冈底斯岩浆岩分布简图及研究区叶巴组火山岩地质简图

      图据黄丰等(2015)修改;图a中:JSSZ.西金乌兰-金沙江板块缝合带;LSSZ.龙木措-双湖-澜沧江板块缝合带;BNSZ.班公湖-怒江板块缝合带;SNMZ.狮泉河–纳木错蛇绿混杂岩带;IYZSZ.印度河-雅鲁藏布江板块缝合带;图b中:1.早侏罗世叶巴组;2.中新世达弄多组;3.中新世石英二长斑岩;4.中新世石英斑岩;5.中新世二长花岗岩;6.早侏罗世花岗闪长岩;7.早侏罗世二长花岗岩;8.推测断层;9.角岩化带;10.剖面位置;11采样位置及编号;12.本文获得年龄

      Fig.  1.  The simplified distribution map of magmatic rocks on Gangdese and simplified geological map of volcanic rocks of Yeba Formation in researched area, Tibet

      图  2  叶巴组实测剖面

      Fig.  2.  A measured sectional view for the Yeba Formation

      图  3  甲鲁朗地区叶巴组火山岩样品野外及镜下照片

      Pl.斜长石;Cry.晶屑;Q.石英

      Fig.  3.  Outcrop photos and microscopic pictures of typical rock assemblage of volcanic rocks from Yeba Formation in Jialulang area

      图  4  甲鲁朗地区叶巴组火山岩锆石U-Pb年龄谐和图、CL图像及稀土元素球粒陨石标准化配分图

      图中比例尺为100 μm;标准化数据引自Sun and McDonough (1989).

      Fig.  4.  Zircon U-Pb concordia diagrams and CL images and chondrite-normalized REE patterns of zircons for the Yeba Formation volcanic rocks in Jialulang area

      图  5  叶巴组火山岩分类图

      a. TAS图解;b. A/CNK-A/NK图解;c. AFM图解;d. (La/Yb)N-(Yb)N图解;文献数据耿全如等(2005)董彦辉等(2006)Zhu et al.(2008)曾忠诚等(2009)陈炜等(2009)熊秋伟等(2015)Wei et al.(2017)

      Fig.  5.  Classification diagram for the Yeba Formation volcanic rocks

      图  6  叶巴组火山岩球粒陨石标准化稀土元素配分模式图(a、c、e)和原始地幔标准化微量元素蛛网图(b、d、f)

      文献数据同图 5;标准化值据Sun and McDonough (1989)

      Fig.  6.  Chondrite-normalized REE diagram (a, c, e) and primitive mantle-normalized spider diagram (b, d, f) for the volcanic rocks from the Yeba Formation

      图  7  叶巴组双壳类化石

      a~e.拼第嵘前凸蛤Pronoella pindiroensis Cox 1965;f.古栗蛤Palaeonucula sp.;g.花蛤未定种Astarte sp.;h, i.速水小林蛤Kobayashites hemicylindricus Hayami 1959;图中比例尺为1 cm

      Fig.  7.  Bivalve fossils from the Yeba Formation

      图  8  叶巴组中酸性火山岩部分熔融图解

      Schiano et al.(2010);a. Th/Sm-Th图解;b. Th/Hf-Th图解

      Fig.  8.  Partial melting diagram for intermediate acid volcanic rocks from the Yeba Formation

      图  9  叶巴组火山岩FeOT-MgO图解(a)和Yb/Ta-Y/Nb图解(b)

      图a底图据Zorpi et al.(1991);图b数据来源:BBC.平均大陆地壳,据Rudnick and Gao(2003);LCC.大陆下地壳,据Rudnick and Gao(2003);DMM.亏损地幔,据Salters and Stracke(2004)

      Fig.  9.  Diagrams of FeOT-MgO(a) and Yb/Ta-Y/Nb(b) for volcanic rocks from the Yeba Formation

      图  10  叶巴组火山岩构造判别图解

      a. Zr×3-Nb×50-Ce/P2O5图解,据Müller et al.(1992);b. Th/Ta-Yb图解,据Gorton and Schandl(2000);c. La/Yb-Sc/Ni图解,据Pearce(1982);d. Th/Yb-Nb/Yb图解,据Condie et al.(1986)

      Fig.  10.  Structure discriminant diagrams of the Yeba Formation

      表  1  叶巴组凝灰岩LA-ICP-MS锆石U-Pb定年结果

      Table  1.   LA-ICP-MS zircon U-Pb dating results of the Yeba Formation tuffs

      样品号 含量(10-6) Th/U 同位素比值 年龄值(Ma)
      Th U 207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U
      ST32
      2 177 266 0.66 0.206 27 0.006 40 0.029 66 0.000 42 190 5 188 3
      3 214 321 0.67 0.228 28 0.007 25 0.032 89 0.000 48 209 6 209 3
      4 224 340 0.66 0.228 51 0.006 83 0.032 68 0.000 46 209 6 207 3
      5 148 258 0.57 0.233 56 0.015 58 0.032 47 0.000 53 213 13 206 3
      6 288 330 0.87 0.230 00 0.007 43 0.032 88 0.000 47 210 6 209 3
      7 189 303 0.62 0.228 31 0.006 83 0.032 51 0.000 46 209 6 206 3
      8 138 232 0.59 0.226 99 0.006 41 0.032 71 0.000 46 208 5 207 3
      12 158 221 0.71 0.230 11 0.011 67 0.033 05 0.000 56 210 10 210 3
      13 414 427 0.97 0.229 41 0.007 38 0.032 92 0.000 47 210 6 209 3
      14 166 241 0.69 0.228 23 0.006 74 0.032 84 0.000 46 209 6 208 3
      17 285 274 1.04 0.228 68 0.011 90 0.032 63 0.000 58 209 10 207 4
      19 339 418 0.81 0.230 01 0.007 26 0.032 88 0.000 46 210 6 209 3
      20 108 164 0.66 0.225 35 0.007 17 0.032 48 0.000 46 206 6 206 3
      ST33
      1 218 338 0.65 0.234 57 0.011 97 0.032 04 0.000 46 214 10 203 3
      2 317 370 0.86 0.226 55 0.007 40 0.032 38 0.000 45 207 6 205 3
      4 176 269 0.65 0.223 43 0.006 97 0.032 17 0.000 44 205 6 204 3
      5 285 357 0.80 0.225 26 0.006 77 0.032 21 0.000 43 206 6 204 3
      6 217 155 1.40 0.223 91 0.008 41 0.032 17 0.000 46 205 7 204 3
      7 376 431 0.87 0.230 13 0.006 44 0.030 52 0.000 41 210 5 194 3
      8 281 329 0.86 0.215 42 0.007 04 0.030 83 0.000 43 198 6 196 3
      9 133 226 0.59 0.224 41 0.008 64 0.032 18 0.000 46 206 7 204 3
      10 242 295 0.82 0.224 01 0.011 19 0.032 12 0.000 54 205 9 204 3
      14 182 266 0.69 0.226 72 0.007 87 0.032 63 0.000 46 207 7 207 3
      15 178 292 0.61 0.225 23 0.015 14 0.032 45 0.000 66 206 13 206 4
      17 167 220 0.76 0.227 96 0.008 88 0.032 71 0.000 49 209 7 207 3
      18 187 284 0.66 0.221 58 0.012 93 0.032 41 0.000 46 203 11 206 3
      ST34
      7 195 299 0.65 0.239 25 0.007 50 0.032 76 0.000 45 218 6 208 3
      10 515 478 1.08 0.232 89 0.007 22 0.033 27 0.000 45 213 6 211 3
      16 153 204 0.75 0.229 18 0.009 22 0.032 98 0.000 48 210 8 209 3
      下载: 导出CSV

      表  2  叶巴组凝灰岩锆石稀土元素(10-6)分析结果

      Table  2.   Analytical results of the zircon REE elements(10-6)of the tuffs from the Yeba Formation

      样品号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
      ST32
      2 0.2 9.1 0.1 1.1 1.9 0.4 10.3 4.1 53.6 22.6 112.0 29.6 334.6 87.7
      3 0.3 10.9 0.1 1.1 2.0 0.5 11.9 4.3 58.2 23.9 117.0 29.8 334.1 86.4
      4 0.4 11.0 0.1 1.4 2.5 0.6 11.7 4.8 69.5 29.2 147.2 37.5 412.9 118.5
      5 0.1 8.3 0.1 1.3 2.9 0.5 15.6 6.0 78.8 32.2 152.0 37.3 399.3 94.5
      6 2.2 16.3 0.5 2.5 1.9 0.5 9.0 3.7 49.6 21.0 103.8 27.8 309.9 80.2
      7 1.7 11.2 0.4 2.7 2.7 0.5 14.6 6.1 81.7 33.6 160.5 40.9 446.5 107.8
      8 3.4 15.9 0.8 4.1 2.4 0.5 10.2 3.9 50.6 21.3 103.9 27.1 313.9 78.5
      12 0.0 11.5 0.1 0.9 2.6 0.6 13.9 5.6 71.0 29.1 145.3 37.8 429.1 106.0
      13 2.2 16.0 0.4 2.7 2.0 0.7 10.1 4.1 55.9 23.6 117.7 31.5 370.8 97.6
      14 0.6 10.2 0.2 1.2 2.0 0.4 10.1 4.0 55.1 23.2 116.3 28.8 309.3 82.0
      17 0.0 14.4 0.1 1.9 4.9 1.3 30.0 11.2 143.0 56.3 245.2 56.3 555.6 126.1
      19 2.7 19.4 0.9 7.0 10.3 1.8 50.2 18.1 220.0 80.0 347.2 76.3 734.6 168.9
      20 0.0 7.0 0.1 0.7 2.0 0.5 10.5 3.8 48.9 19.7 92.4 23.1 262.4 65.9
      ST33
      1 0.4 11.8 0.2 1.4 2.3 0.5 12.9 5.2 70.4 29.3 144.3 36.5 411.1 101.6
      2 18.5 47.0 4.7 19.6 4.6 0.5 11.5 3.9 49.9 20.6 97.8 23.9 249.8 60.0
      4 1.0 12.3 0.3 2.4 3.3 0.7 16.3 6.2 78.1 31.2 144.4 35.8 382.9 89.7
      5 0.0 14.9 0.0 0.8 1.8 0.6 11.9 4.6 64.5 27.7 143.6 38.9 452.2 115.3
      6 0.0 22.9 0.3 5.6 10.2 3.3 44.7 15.7 181.1 67.0 286.1 64.9 659.3 145.3
      7 0.1 11.0 0.1 1.0 1.6 0.5 10.8 4.5 59.7 24.7 118.0 30.9 339.1 82.3
      8 0.1 13.9 0.1 2.6 5.3 1.1 29.9 11.0 134.9 52.9 234.6 54.6 548.9 127.7
      9 0.0 8.7 0.0 0.8 2.1 0.4 11.2 4.5 57.9 24.4 117.5 29.3 323.7 79.4
      10 0.1 15.3 0.1 1.4 3.3 1.0 15.7 6.4 84.1 34.8 172.7 45.3 516.2 131.6
      14 1.1 12.2 0.4 3.9 5.9 1.5 28.0 10.2 125.2 47.2 211.8 51.6 552.0 118.3
      15 0.6 3.4 0.3 1.6 1.5 0.4 9.6 4.7 60.5 26.3 134.8 34.4 376.8 93.4
      17 0.1 10.0 0.1 1.3 2.5 0.5 12.8 4.9 65.7 27.0 127.7 33.0 371.4 94.6
      18 0.0 9.6 0.1 2.0 4.2 0.9 26.0 9.4 120.3 47.6 209.8 48.5 499.6 117.4
      ST34
      7 0.1 14.7 0.0 0.4 0.9 0.4 6.9 3.0 43.0 19.2 102.4 28.1 346.1 87.8
      10 3.2 40.9 0.7 4.1 3.8 0.9 18.8 7.4 96.9 39.4 192.1 49.7 562.0 138.2
      16 0.0 10.7 0.1 0.9 2.7 0.6 18.1 7.7 105.0 45.3 221.6 58.9 661.2 170.6
      下载: 导出CSV

      表  3  叶巴组凝灰岩主量元素(%)及微量元素(10-6)分析结果

      Table  3.   Analytical results of major (%) and trace elements (10-6) of the tuffs from the Yeba Formation

      样品号 ST32H2 ST32H4 ST33H3 ST33H4 ST35H2 ST35H3
      SiO2 61.13 62.97 67.19 68.87 76.61 77.19
      Al2O3 21.96 21.08 18.49 17.42 13.08 12.45
      Fe2O3T 2.44 2.16 2.58 2.85 0.76 0.79
      FeOT 2.2 1.95 2.32 2.57 0.68 0.71
      FeO 1.87 1.66 1.97 2.18 0.58 0.61
      MgO 0.8 0.79 0.79 0.91 0.11 0.51
      CaO 2.43 3.22 1.32 0.56 0.23 0.81
      Na2O 1.25 1.64 0.88 0.54 4.97 3.8
      K2O 7.15 5.31 5.68 5.43 2.57 2.19
      P2O5 0..02 0.01 0.02 0.02 0.03 0.04
      MnO 0.07 0.06 0.05 0.05 0.02 0.02
      TiO2 0.56 0.53 0.37 0.33 0.12 0.15
      LOI 1.76 1.83 2.1 2.46 0.79 1.32
      Total 99.57 99.59 99.47 99.44 99.3 99.27
      Li 11.51 10.95 14.98 15.2 5.66 3.95
      P 89.32 95.62 121.4 56.9 107.72 133.6
      K 44 620 36 440 42 720 37 800 17 340 14 520
      Sc 9.12 9.3 8.84 7.68 1.87 1.96
      Ti 2756 2864 2208 1958.6 631.4 802
      Cr 7.86 7.71 7.63 6.43 1.97 2.82
      Co 5.78 4.14 3.78 6.97 1.02 0.86
      Ni 2.2 1.73 2.89 2.96 0.67 0.94
      Rb 199.9 163.98 208 220.4 66.92 76.32
      Sr 180.05 266.7 130.12 61.76 94.42 204.5
      Y 28.84 31.62 31.04 33.34 11.27 15.32
      Zr 217.8 222.2 159.26 145.28 50.58 70.79
      Nb 18.84 20.1 16.65 15.76 8.03 10.48
      Ba 1 045.44 997.04 933.24 827.2 296.78 581.46
      La 36.96 41.52 40.74 40.82 9.72 16.8
      Ce 69.2 78.44 77.38 79.2 18.93 31.2
      Pr 7.89 8.58 8.63 9.01 2.01 3.24
      Nd 28.56 30.36 30.22 32.64 6.58 10.85
      Sm 5.69 5.88 5.84 6.65 1.38 2.23
      Eu 1.33 1.28 1.26 1.26 0.2 0.38
      Gd 5.5 5.7 5.65 6.61 1.4 2.29
      Tb 0.82 0.86 0.83 0.98 0.24 0.38
      Dy 5.29 5.73 5.35 6.33 1.72 2.63
      Ho 1.1 1.21 1.11 1.32 0.38 0.58
      Er 3.12 3.49 3.12 3.75 1.17 1.74
      Tm 0.49 0.54 0.48 0.58 0.2 0.29
      Yb 3.29 3.65 3.17 3.9 1.43 2.02
      Lu 0.52 0.57 0.5 0.63 0.23 0.33
      Hf 5.26 5.58 3.99 3.72 1.3 1.88
      Ta 1.07 1.17 1.04 0.98 0.58 0.67
      Th 19.93 21.06 19.38 20.83 9.15 16
      U 5.68 5.82 4.57 5.06 3.24 5.26
      Pb 38.76 45.1 22.47 13.39 4.79 13.63
      Eu* 0.73 0.68 0.67 0.58 0.44 0.52
      Mg# 43.2 45.9 41.7 42.6 25.9 59.9
      A/CNK 1.54 1.48 1.85 2.24 1.15 1.23
      A/NK 2.24 2.5 2.43 2.57 1.19 1.44
      (La/Yb)N 8.06 8.16 9.23 7.51 4.89 5.98
      (Yb)N 19.4 21.5 18.62 22.93 8.38 11.86
      注:FeOT=Fe2O3T×0.89;A/CNK=(Al2O3/102)/((CaO/56.1)+(Na2O/62.0)+(K2O/94.2));A/NK=(Al2O3/102)/((Na2O/62.0)+(K2O/94.2));Mg#=(MgO/40.3)/(MgO/40.3+Fe2O3T×0.89/71.9×0.85)×100;Eu*=Eu/SQRT(Sm×Gd).
      下载: 导出CSV

      表  4  叶巴组化石统计表

      Table  4.   Statistical table of the Yeba Formation fossils

      地区 层位 主要化石种类 代表时代 资料来源
      叶巴沟 / 珊瑚化石Theosmilia sp. 晚三叠世 西藏地质局, 1974, 内部资料
      却桑温泉 / 菊石化石 早-中三叠世 西藏综合队, 1976, 内部资料
      甲马沟 / 水螅化石 晚三叠世-早侏罗世 成都地震大队, 1976, 内部资料
      白堆乡 杂砂岩夹千枚岩 双壳类化石Pronoella (Gythemon) sp等 中侏罗世巴柔期 苟金,1994
      白堆乡 板岩 双壳类化石Protocardia stricldandi 中侏罗世巴柔-巴通期 苟金,1994
      白堆乡 千枚岩夹凝灰岩 虫迹化石Pelecypodichnus sp. 侏罗世 苟金,1994
      得中剖面 浅变质泥岩 双壳类化石Palaeonucula sp., Grammatodon sp. Propeamussium (P.) laeviradiatum (Waagen)等 早-中侏罗世托尔-巴柔期 裴树文,1999
      加兴乡 灰白色细砂岩 双壳类化石Trigonodus xiabolangensis sp., Isocyprina lhasaensis sp., 等 中-晚三叠世 Yin and Grant-Mackie, 2005
      得中地区 泥岩 双壳类化石Grammatodon sp., Kobayashites hayamii Yin, Limatula sp., Aguilerella sp., 早侏罗世 Yin and Grant-Mackie, 2005
      甲鲁朗 凝灰岩 双壳类化石Pronoella pindiroensis Cox 1965,Palaeonucula sp., Kobayashites hemicylindricus 晚三叠世-早侏罗世 本文
      下载: 导出CSV

      表  5  叶巴组火山岩及冈底斯岩浆弧岩浆岩形成时代

      Table  5.   Ages of Miocene magmatic rocks of Gangdese metallogenic belt

      地区 岩性 测试方法 测试对象 年龄(Ma) 资料来源
      达孜 英安岩 SHRIMP U-Pb 锆石 181.7±5.2 耿全如等,2006
      甲马沟 流纹岩 LA-ICP-MS U-Pb 锆石 174.4±1.7 董彦辉等,2006
      达孜 英安岩 SHRIMP U-Pb 锆石 174.2±3.6 Zhu et al, ,2008
      得明顶 英安岩 SHRIMP U-Pb 锆石 192.7±1.3 陈炜等,2009
      驱龙 玄武岩 LA-ICP-MS U-Pb 锆石 188±2 黄丰等,2015
      甲马 安山岩 LA-ICP-MS U-Pb 锆石 175±2 黄丰等,2015
      得明顶 安山岩 LA-ICP-MS U-Pb 锆石 188.8±1.8 熊秋伟等,2015
      达孜 玄武岩 LA-ICP-MS U-Pb 锆石 178±1.3 Wei et al., 2017
      达孜 英安岩 LA-ICP-MS U-Pb 锆石 174~183 Wei et al., 2017
      达孜 流纹岩 LA-ICP-MS U-Pb 锆石 177.9±1.7 Wei et al., 2017
      达孜 安山岩 LA-ICP-MS U-Pb 锆石 174~178 Liu et al., 2018
      达孜 英安岩 LA-ICP-MS U-Pb 锆石 182 Liu et al., 2018
      达孜 流纹岩 LA-ICP-MS U-Pb 锆石 171~176 Liu et al., 2018
      达孜 玄武岩 LA-ICP-MS U-Pb 锆石 168~174 Liu et al., 2018
      下载: 导出CSV
    • [1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
      [2] Atherton, M. P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416):144-146. https://doi.org/10.1038/362144a0
      [3] Bacon, C. R., Druitt, T. H., 1988. Compositional Evolution of the Zoned Cal-Calkaline Magma Chamber of Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology, 98(2):224-256. https://doi.org/10.1007/bf00402114
      [4] Chen, W., Ma, C. Q., Bian, Q. J., et al., 2009. Evidences from Geochemistry and Zircon U-Pb Geochronology of Volcanic Rocks of Yeba Formation in Demingding Area, the East of Middle Gangdise, Tibet. Geological Science and Technology Information, 28(3):31-40 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200903006
      [5] Chu, M. F., Chung, S. L., Song, B., et al., 2006. Zircon U-Pb and Hf Isotope Constraints on the Mesozoic Tectonics and Crustal Evolution of Southern Tibet. Geology, 34(9):745. https://doi.org/10.1130/g22725.1
      [6] Condie, K. C., Bowling, G. P., Allen, P., 1986. Origin of Granites in an Archean High-Grade Terrane, Southern India. Contributions to Mineralogy and Petrology, 92(1):93-103. https://doi.org/10.1007/bf00373967
      [7] Dong, X., Zhang, Z. M., 2013. Genesis and Tectonic Significance of the Early Jurassic Magmatic Rocks from the Southern Lhasa Terrane. Acta Petrologica Sinica, 29(6):1933-1948 (in Chinese with Englishabstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306006
      [8] Dong, Y. H., Xu, J. F., Zeng, Q. G., et al., 2006. Is there a Neo-Tethys' Subduction Record Earlier than Arc Volcanic Rocks in the Sangri Group?. Acta Petrologica Sinica, 22(3):661-668 (in Chinese with English abstract).
      [9] Fitton, J. G., James, D., Kempton, P. D., et al., 1988. The Role of Lithospheric Mantle in the Generation of Late Cenozoic Basic Magmas in the Western United States. Journal of Petrology, Special_Volume, (1):331-349. https://doi.org/10.1093/petrology/special_volume.1.331
      [10] Geng, Q. R., Pan, G. T., Jin, Z. M., et al., 2005. Geochemistry and Genesis of the Yeba Volcanic Rocks in the Gangdise Magmatic Arc, Tibet. Earth Science, 30(6):747-760 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200506011
      [11] Geng, Q. R., Pan, G. T., Wang, L. Q., et al., 2006. Isotopic Geochronology of the Volcanic Rocks from the Yeba Formation in the Gangdise Zone, Xizang. Sedimentary Geology and Tethyan Geology, 26(1):1-7 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl200601001
      [12] Gorton, M. P., Schandl, E. S., 2000. From Continents to Island Arcs:A Geochemical Index of Tectonic Setting for Arc-Related and Within-Plate Felsic to Intermediate Volcanic Rocks. The Canadian Mineralogist, 38(5):1065-1073. https://doi.org/10.2113/gscanmin.38.5.1065
      [13] Gou, J., 1994. A New Knowledge on the Attributes of Yeba Formation in Lhasa Area. Tibetan Geology, (11):1-6 (in Chinese with English abstract).
      [14] Guo, L., Zhang, H. F., Harris, N., et al., 2013. Late Cretaceous (~81 Ma) High-Temperature Metamorphism in the Southeastern Lhasa Terrane:Implication for the Neo-Tethys Ocean Ridge Subduction. Tectonophysics, 608:112-126. https://doi.org/10.1016/j.tecto.2013.10.007
      [15] Gutscher, M. A., Maury, R., Eissen, J. P., et al., 2000. Can Slab Melting be Caused by Flat Subduction?. Geology, 28(6):535-538. https://doi.org/10.1130/0091-7613(2000)28<535:csmbcb>2.0.co;2 doi: 10.1130/0091-7613(2000)28<535:csmbcb>2.0.co;2
      [16] He, Z. H., Yang, D. M., Zheng, C. Q., et al., 2006. Isotopic Dating of the Mamba Granitoid in the Gangdise Tectonic Belt and Its Constraint on the Subduction Time of the Neotethys. Geological Review, 52(1):100-106 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000004928
      [17] Hu, P. Y., Zhai, Q. G., Wang, J., et al., 2018. Precambrian Origin of the North Lhasa Terrane, Tibetan Plateau:Constraint from Early Cryogenian Back-Arc Magmatism. Precambrian Research, 313:51-67. https://doi.org/10.1016/j.precamres.2018.05.014
      [18] Huang, F., Xu, J. F., Chen, J. L., et al., 2015. Early Jurassic Volcanic Rocks from the Yeba Formation and Sangri Group:Products of Continental Marginal Arc and Intra-Oceanic Arc during the Subduction of Neo-Tethys Ocean?. Acta Petrologica Sinica, 31(7):2089-2098 (in Chinese with English abstract).
      [19] Kelemen, P. B., Hanghøj, K., Greene, A. R., 2007. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. Treatise on Geochemistry, 3:593-660. https://doi.org/10.1016/B0-08-043751-6/03035-8
      [20] Leat, P. T., Thompson, R. N., Morrison, M. A., et al., 1988. Compositionally-Diverse Miocene-Recent Rift- Related Magmatism in Northwest Colorado:Partial Melting, and Mixing of Mafic Magmas from 3 Different Asthenospheric and Lithospheric Mantle Sources. Journal of Petrology, Special Volume (1):351-377. https://doi.org/10.1093/petrology/special_volume.1.351
      [21] Li, H. Q., Xu, Z. Q., Yang, J. S., et al., 2011. Syn-Collisional Exhumation of Sumdo Eclogite in the Lhasa Terrane, Tibet:Evidences from Structural Deformation and 40Ar-39Ar Geochronology. Earth Science Frontiers, 18(3):66-78 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201103008
      [22] Liu, Z. C., Ding, L., Zhang, L. Y., et al., 2018. Sequence and Petrogenesis of the Jurassic Volcanic Rocks (Yeba Formation) in the Gangdese Arc, Southern Tibet:Implications for the Neo-Tethyan Subduction. Lithos, 312-313:72-88. https://doi.org/10.1016/j.lithos.2018.04.026
      [23] Ma, X. X., Xu, Z. Q., Chen, X. J., et al., 2017. The Origin and Tectonic Significance of the Volcanic Rocks of the Yeba Formation in the Gangdese Magmatic Belt, South Tibet. Journal of Earth Science, 28(2):265-282. https://doi.org/10.1007/s12583-016-0925-8
      [24] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
      [25] McCarron, J. J., Smellie, J. L., 1998. Tectonic Implications of Fore-Arc Magmatism and Generation of High-Magnesian Andesites:Alexander Island, Antarctica. Journal of the Geological Society, 155(2):269-280. https://doi.org/10.1144/gsjgs.155.2.0269
      [26] Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 274(4):321-355. https://doi.org/10.2475/ajs.274.4.321
      [27] Mo, X. X., Dong, G. C., Zhao, Z. D., et al., 2005. Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution. Geological Journal of China Universities, 11(3):281-290 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200503001
      [28] Mo, X. X., Niu, Y. L., Dong, G. C., et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth:A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250(1-4):49-67. https://doi.org/10.1016/j.chemgeo.2008.02.003
      [29] Murphy, M. A., Yin, A., Harrison, T. M., et al., 1997. Did the Indo-Asian Collision Alone Create the Tibetan Plateau?. Geology, 25(8):719. https://doi.org/10.1130/0091-7613(1997)025<0719:dtiaca>2.3.co;2 doi: 10.1130/0091-7613(1997)025<0719:dtiaca>2.3.co;2
      [30] Müller, D., Rock, N. M. S., Groves, D. I., 1992. Geochemical Discrimination between Shoshonitic and Potassic Volcanic Rocks in Different Tectonic Settings:A Pilot Study. Mineralogy and Petrology, 46(4):259-289. https://doi.org/10.1007/bf01173568
      [31] Pan, F. B., Zhang, H. F., Xu, W. C., et al., 2016. U-Pb Zircon Dating, Geochemical and Sr-Nd-Hf Isotopic Compositions of Mafic Intrusive Rocks in the Motuo, SE Tibet Constrain on Their Petrogenesis and Tectonic Implication. Lithos, 245:133-146. https://doi.org/10.1016/j.lithos.2015.05.011
      [32] Pan, G. T., Mo, X. X., Hou, Z. Q., et al., 2006. Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3):521-533 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001
      [33] Patiño Douce, A. E., Johnston, A. D., 1991. Phase Equilibria and Melt Productivity in the Pelitic System:Implications for the Origin of Peraluminous Granitoids and Aluminous Granulites. Contributions to Mineralogy and Petrology, 107(2):202-218. https://doi.org/10.1007/bf00310707
      [34] Pearce, J. A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. Andesites: Orogenic Andesites and Related Rocks. John Wiley and Sons, New York, 525-548.
      [35] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956
      [36] Pearce, J. A., Mei, H. J., 1988. Volcanic Rocks of the 1985 Tibet Geotraverse:Lhasa to Golmud. Philosophical Transactions of the Royal Society A:Mathmatical, Physical and Engineering Science, 327(1594):169-201. https://doi.org/10.1098/rsta.1988.0125
      [37] Pei, S. W., 1999. Early and Middle Jurassic Bivalve Fauna in Volcanic Rocks of Tibetan Lhasa Block and Its Paleobiogeography. Geoscience, 13(3):291-297 (in Chinese with English abstract).
      [38] Plank, T., 2005. Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents. Journal of Petrology, 46(5):921-944. https://doi.org/10.1093/petrology/egi005
      [39] Qiu, J. S., Wang, R. Q., Zhao, J. L, et al., 2015. Petrogenesis of the Early Jurassic Gabbro-Granite Complex in the Middle Segment of the Gangdese Belt and Its Implications for Tectonic Evolution of Neo-Tethys:A Case Study of the Dongga Pluton in Xi'gaze. Acta Petrologica Sinica, 31(12):3569-3580 (in Chinese with English abstract).
      [40] Rudnick, R. L., Gao, S., 2003. Composition of the Contiental Crust. Treatise on Geochemistry, 3:1-64
      [41] Salters, V. J. M., Stracke, A., 2004. Composition of the Depleted Mantle. Geochemistry, Geophysics, Geosystems, 5(5):1-27. https://doi.org/10.1029/2003gc000597
      [42] Schiano, P., Monzier, M., Eissen, J. P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160(2):297-312. https://doi.org/10.1007/s00410-009-0478-2
      [43] Shinjo, R., Kato, Y., 2000. Geochemical Constraints on the Origin of Bimodal Magmatism at the Okinawa Trough, an Incipient Back-Arc Basin. Lithos, 54(3-4):117-137. https://doi.org/10.1016/s0024-4937(00)00034-7
      [44] Sisson, T. W., 1994. Hornblende-Melt Trace-Element Partitioning Measured by Ion Microprobe. Chemical Geology, 117(1-4):331-344. https://doi.org/10.1016/0009-2541(94)90135-x
      [45] Song, S. G., Niu, Y. L., Wei, C. J., et al., 2010. Metamorphism, Anatexis, Zircon Ages and Tectonic Evolution of the Gongshan Block in the Northern Indochina Continent-An Eastern Extension of the Lhasa Block. Lithos, 120(3-4):327-346. https://doi.org/10.1016/j.lithos.2010.08.021
      [46] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [47] Tafti, R., Lang, J. R., Mortensen, J. K., et al., 2014. Geology and Geochronology of the Xietongmen (Xiongcun) Cu-Au Porphyry District, Southern Tibet, China. Economic Geology, 109(7):1967-2001. https://doi.org/10.2113/econgeo.109.7.1967
      [48] Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2):241-265. https://doi.org/10.1029/95rg00262
      [49] Tepper, J. H., Nelson, B. K., Bergantz, G. W., et al., 1993. Petrology of the Chilliwack Batholith, North Cascades, Washington:Generation of Calc-Alkaline Granitoids by Melting of Mafic Lower Crust with Variable Water Fugacity. Contributions to Mineralogy and Petrology, 113(3):333-351. https://doi.org/10.1007/bf00286926
      [50] Wang, C., Ding, L., Zhang, L. Y., et al., 2016. Petrogenesis of Middle-Late Triassic Volcanic Rocks from the Gangdese Belt, Southern Lhasa Terrane:Implications for Early Subduction of Neo-Tethyan Oceanic Lithosphere. Lithos, 262:320-333. https://doi.org/10.1016/j.lithos.2016.07.021
      [51] Wang, Q., Zhu, D. C., Cawood, P. A., et al., 2015. Eocene Magmatic Processes and Crustal Thickening in Southern Tibet:Insights from Strongly Fractionated Ca. 43 Ma Granites in the Western Gangdese Batholith. Lithos, 239:128-141. https://doi.org/10.1016/j.lithos.2015.10.003
      [52] Wei, Y. Q., Zhao, Z. D., Niu, Y. L., et al., 2017. Geochronology and Geochemistry of the Early Jurassic Yeba Formation Volcanic Rocks in Southern Tibet:Initiation of Back-Arc Rifting and Crustal Accretion in the Southern Lhasa Terrane. Lithos, 278-281:477-490. https://doi.org/10.1016/j.lithos.2017.02.013
      [53] Wilson, M., 1993. Magmatism and the Geodynamics of Basin Formation. Sedimentary Geology, 86(1-2):5-29. https://doi.org/10.1016/0037-0738(93)90131-n
      [54] Wu, F. Y., Ji, W. Q., Liu, C. Z., et al., 2010. Detrital Zircon U-Pb and Hf Isotopic Data from the Xigaze Fore-Arc Basin:Constraints on Transhimalayan Magmatic Evolution in Southern Tibet. Chemical Geology, 271(1-2):13-25. https://doi.org/10.1016/j.chemgeo.2009.12.007
      [55] Wu, Y., Chen, S. Y., Qin, M. K., et al., 2018. Zircon U-Pb Ages of Dongcuo Ophiolite in Western Bangonghu-Nujiang Suture Zone and Their Geological Significance. Earth Science, 43(4):1070-1084 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.710
      [56] Wu, Y. W., Li, C., Xu, M. J., et al., 2017. Zircon U-Pb Age, Geochemical Data:Constraints on the Origin and Tectonic Evolution of the Metamafic Rocks from Longmuco-Shuanghu-Lancang Suture Zone, Tibet. Journal of Earth Science, 28(3):422-432. https://doi.org/10.1007/s12583-017-0730-z
      [57] Xiong, Q. W., Chen, J. L., Xu, J. F., et al., 2015. LA-ICP-MS Zircon U-Pb Geochronology, Geochemical Characteristics and Genetic Study of Yeba Formation Lavas in Demingding Area, Southern Tibet. Geological Bulletin of China, 34(9):1645-1655 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201509006
      [58] Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2007. The Tibetan Plateau:Formed by Orogeny. Geological Publishing House, Beijing (in Chinese).
      [59] Yang, J. S., Xu, Z. Q., Geng, Q. R., et al., 2006. A Possible New HP/UHP(?) Metamorphic Belt in China:Discovery of Eclogite in the Lasha Terrane, Tibet. Acta Geologica Sinica, 80(12):1787-1792 (in Chinese with English abstract).
      [60] Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      [61] Yin, J. R., Cai, H. W., Zhou, Z. G., 2006. Study of Marine Triassic/Jurassic Boundary Stratigraphy and the Latest Triassic Mass Extinction in Tibet. Earth Science Frontiers, 13(4):244-254 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200604023
      [62] Yin, J. R., Grant-Mackie, J. A., 2005. Late Triassic-Jurassic Bivalves from Volcanic Sediments of the Lhasa Block, Tibet. New Zealand Journal of Geology and Geophysics, 48(3):555-577. https://doi.org/10.1080/00288306.2005.9515133
      [63] Zeng, Y. C., Xu, J. F., Chen, J. L., et al., 2018. Geochronological and Geochemical Constraints on the Origin of the Yunzhug Ophiolite in the Shiquanhe-Yunzhug-Namu Tso Ophiolite Belt, Lhasa Terrane, Tibetan Plateau. Lithos, 300-301:250-260. https://doi.org/10.1016/j.lithos.2017.11.025
      [64] Zeng, Z. C., Liu, D. M., Zeren, Z. X., et al., 2009. Geochemistry and Tectonic Setting of Lavas in the Yeba Formation in the Eastern Part of the Gangdise Belt. Journal of Jilin University (Earth Science Edition), 39(3):435-445 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb200903010
      [65] Zhang, H. F., Xu, W. C., Guo, J. Q., et al., 2007. Zircon U-Pb and Hf Isotopic Composition of Deformed Granite in the Southern Margin of the Gangdise Belt, Tibet:Evidence for Early Jurassic Subduction of Neo-Tethyan Oceanic Slab. Acta Petrologica Sinica, 23(6):1347-1353 (in Chinese with English abstract).
      [66] Zhou, S., 2002. Study on the Geochronology of Several Key Regions of Gangdese Magmatic and Yarlung Zangpo Ophiolite Belts, Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      [67] Zhu, D. C., Pan, G. T., Chung, S. L., et al., 2008. SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet. International Geology Review, 50(5):442-471. https://doi.org/10.2747/0020-6814.50.5.442
      [68] Zhu, D. C., Pan, G. T., Wang, L. Q., et al., 2008a. Spatial-Temporal Distribution and Tectonic Setting of Jurassic Magmatism in the Gangdise Belt, Tibet, China. Geological Bulletin of China, 27(4):458-468 (in Chinese with English abstract). doi: 10.1039-c0cc02534h/
      [69] Zhu, D. C., Pan, G. T., Wang, L. Q., et al., 2008b. Tempo-Spatial Variations of Mesozoic Magmatic Rocks in the Gangdise Belt, Tibet, China, with a Discussion of Geodynamic Setting-Related Issues. Geological Bulletin of China, 27(9):1535-1550 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200809013
      [70] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      [71] Zhu, J., Du, Y. S., Liu, Z. X., et al., 2005. Mesozoic Radiolarian Chert from the Middle Sector of the Yarlung-Zangbo Suture Zone, Tibet and Its Tectonic Implications. Science in China (Series D), 35(12):1131-1139 (in Chinese).
      [72] Zorpi, M. J., Coulon, C., Orsini, J. B., 1991. Hybridization between Felsic and Mafic Magmas in Calc-Alkaline Granitoids-A Case Study in Northern Sardinia, Italy. Chemical Geology, 92(1-3):45-86. https://doi.org/10.1016/0009-2541(91)90049-w
      [73] 陈炜, 马昌前, 边秋娟, 等, 2009.西藏得明顶地区叶巴组火山岩地球化学特征和同位素U-Pb年龄证据.地质科技情报, 28(3):31-40. doi: 10.3969/j.issn.1000-7849.2009.03.006
      [74] 董昕, 张泽明, 2013.拉萨地体南部早侏罗世岩浆岩的成因和构造意义.岩石学报, 29(6):1933-1948. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306006
      [75] 董彦辉, 许继峰, 曾庆高, 等, 2006.存在比桑日群弧火山岩更早的新特提斯洋俯冲记录么?.岩石学报, 22(3):661-668. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603015
      [76] 耿全如, 潘桂棠, 金振民, 等, 2005.西藏冈底斯带叶巴组火山岩地球化学及成因.地球科学, 30(6):747-760. http://earth-science.net/WebPage/Article.aspx?id=1528
      [77] 耿全如, 潘桂棠, 王立全, 等, 2006.西藏冈底斯带叶巴组火山岩同位素地质年代.沉积与特提斯地质, 26(1):1-7. doi: 10.3969/j.issn.1009-3850.2006.01.001
      [78] 苟金, 1994.对拉萨地区叶巴组时代归属的新认识.西藏地质, (11):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400904468
      [79] 和钟铧, 杨德明, 郑常青, 等, 2006.冈底斯带门巴花岗岩同位素测年及其对新特提斯洋俯冲时代的约束.地质论评, 52(1):100-106. doi: 10.3321/j.issn:0371-5736.2006.01.013
      [80] 黄丰, 许继峰, 陈建林, 等, 2015.早侏罗世叶巴组与桑日群火山岩:特提斯洋俯冲过程中的陆缘弧与洋内弧?.岩石学报, 31(7):2089-2098. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507022
      [81] 李化启, 许志琴, 杨经绥, 等, 2011.拉萨地体内松多榴辉岩的同碰撞折返:来自构造变形和40Ar-39Ar年代学的证据.地学前缘, 18(3):66-78. http://d.old.wanfangdata.com.cn/Periodical/dxqy201103008
      [82] 莫宣学, 董国臣, 赵志丹, 等, 2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报, 11(3):281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001
      [83] 潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001
      [84] 裴树文, 1999.拉萨地块火山岩系内早-中侏罗世双壳类动物群及其古生物地理.现代地质, 13(3):291-297.
      [85] 邱检生, 王睿强, 赵姣龙, 等, 2015.冈底斯中段早侏罗世辉长岩-花岗岩杂岩体成因及其对新特提斯构造演化的启示:以日喀则东嘎岩体为例.岩石学报, 31(12): 3569-3580. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201512005
      [86] 武勇, 陈松永, 秦明宽, 等, 2018.西藏班公湖-怒江缝合带西段洞错蛇绿岩中的辉长岩锆石U-Pb年代学及地质意义.地球科学, 43(4):1070-1084. http://earth-science.net/WebPage/Article.aspx?id=3793
      [87] 熊秋伟, 陈建林, 许继峰, 等, 2015.拉萨地块南部得明顶地区叶巴组火山岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其成因.地质通报, 34(9):1645-1655. doi: 10.3969/j.issn.1671-2552.2015.09.006
      [88] 许志琴, 杨经绥, 李海兵, 等, 2007.造山的高原——青藏高原的地体拼合、碰撞造山及隆升机制.北京:地质出版社
      [89] 杨经绥, 许志琴, 耿全如, 等, 2006.中国境内可能存在一条新的高压/超高压(?)变质带——青藏高原拉萨地体中发现榴辉岩带.地质学报, 80(12):1787-1792. doi: 10.3321/j.issn:0001-5717.2006.12.001
      [90] 阴家润, 蔡华伟, 周志广, 等, 2006.西藏海相三叠系-侏罗系界线及晚三叠世生物绝灭事件研究.地学前缘, 13(4), 244-254. doi: 10.3321/j.issn:1005-2321.2006.04.023
      [91] 曾忠诚, 刘德民, 泽仁扎西, 等, 2009.西藏冈底斯东段叶巴组火山岩地球化学特征及其地质构造意义.吉林大学学报(地球科学版), 39(3):435-445. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb200903010
      [92] 张宏飞, 徐旺春, 郭建秋, 等, 2007.冈底斯南缘变形花岗岩错石U-Pb年龄和Hf同位素组成:新特提斯洋早侏罗世俯冲作用的证据.岩石学报, 23(6):1347-1353. doi: 10.3969/j.issn.1000-0569.2007.06.011
      [93] 周肃, 2002.西藏冈底斯岩浆岩带及雅鲁藏布蛇绿岩带关键地段同位素年代学研究(博士学位论文).北京: 中国地质大学.
      [94] 朱弟成, 潘桂棠, 王立全, 等, 2008a.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境.地质通报, 27(4):458-468. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200804003
      [95] 朱弟成, 潘桂棠, 王立全, 等, 2008b.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论.地质通报, 27(9):1535-1550. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200809013
      [96] 朱杰, 杜远生, 刘早学, 等, 2005.西藏雅鲁藏布江缝合带中段中生代放射虫硅质岩成因及其大地构造意义.中国科学(D辑), 35(12):1131-1139. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200512004
    • 加载中
    图(10) / 表(5)
    计量
    • 文章访问数:  4868
    • HTML全文浏览量:  1702
    • PDF下载量:  49
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-04-13
    • 刊出日期:  2019-07-15

    目录

      /

      返回文章
      返回