Hydrochemistry Characteristics and Origin of Geothermal Water in Northeastern Guizhou
-
摘要: 目前在黔东北地区未系统地开展过地热水水文地球化学特征以及地热水来源方面的研究,存在地热水来源、补给区域、径流和排泄等特征不清等问题.在充分了解黔东北地热地质条件的基础上,采集区内15组地热水进行水化学全分析、收集12组地热水氢氧同位素和3组地热水碳同位素数据,得到了该区地热水的水化学特征和同位素特征,分析出地热水的补给来源,估算了地热水的补给高程、补给温度、热储温度、循环深度以及冷水混入比例.结果表明,受地形地貌及地质构造的影响,该区地热水总体由南向北径流,水化学类型主要为HCO3·SO4-Ca·Mg、HCO3-Ca·Mg、HCO3-Na、SO4-Ca·Mg及SO4-Ca型,有益元素主要有F-和H2SiO3,沿径流方向地热水呈现pH降低、TDS增加的趋势,水化学类型则由重碳酸盐型水变为硫酸盐型水.同位素分析结果表明,该区地热水补给源为大气降水,补给区为海拔1 500~2 000 m的梵净山地区,地热水年龄为(6 400~11 570)±560 a,补给时的年平均气温为7.0~9.1℃;选用二氧化硅温标及lg(Q/K)-T法估算热储温度为45.0~107.0℃,地热水循环深度为1 000~3 000 m;硅-焓混合模型估算地热水混合前的热储温度极大值为110~200℃,地热水在上升过程中受浅部冷水混合,冷水混入比例为50%~90%.Abstract: The hydrochemical characteristics of geothermal water and the source of geothermal water have not been systematically carried out in the northeastern Guizhou, and there are problems such as unclear geothermal water sources, recharge areas, runoff and excretion. On the basis of fully understanding the geothermal geological conditions in the northeastern Guizhou, 15 groups of geothermal water in the collection area for water chemistry were analyzed, 12 groups of geothermal water hydrogen and oxygen isotopes and 3 pieces of geothermal water carbon isotope data were collected in this study, aimed to firstly obtain the water chemical characteristics and isotopic characteristics of geothermal water in this area, secondly to find the source of geothermal water and thirdly to estimate the recharge elevation, recharge temperature, heat storage temperature, circulation depth, and cold water mixing ratio of geothermal water. The results show that the geothermal water in this area mainly runs from south to north due to the topography and geological structure. The hydrochemical types of geothermal water are mainly HCO3·SO4-Ca·Mg, HCO3-Ca·Mg, HCO3-Na, SO4-Ca·Mg and SO4-Ca types, the beneficial elements are mainly F- and H2SiO3, the geothermal water in the direction of runoff shows a decrease in pH and an increase in TDS, the type of water chemistry changes from bicarbonate to sulfuric acid salt-type water. The results of isotope analysis indicate that the geothermal water supply source in this area is atmospheric precipitation, and the recharge area is Fanjing Mountain area with an altitude of 1 500-2 000 m. The geothermal water age is (6 400-11 570) ±560 a, and the annual average temperature during recharge is 7.0-9.1℃. Using silica temperature scale and lg (Q/K)-T method, the heat storage temperature is estimated at 45.0-107.0℃, and geothermal water circulation depth of 1 000-3 000 m. By silicon-helium mixed model, the heat storage is estimated before the mixing of geothermal water, showing the maximum temperature at 110-200℃.The geothermal water is mixed by the shallow cold water during the ascending process, and the proportion of cold water mixed is 50% to 90%.
-
Key words:
- northeastern Guizhou /
- geothermal water /
- isotope /
- hydrochemistry /
- hydrogeology
-
表 1 黔东北地区热储单元特征
Table 1. Heat-reservoir unit in northeastern Guizhou
热储单元 热储特征及其分布 第三 盖层 二叠系上统吴家坪-长兴组 热储含水层以灰岩为主,累计厚度约400 m;上覆盖层为碳酸盐岩与碎屑岩互层,累计厚度约150 m.主要分布于研究区西南部,天然出露温泉1处,由于埋藏深度小,该热储单元热储温度较低,开发利用价值不高 储层 二叠系中统栖霞-茅口组 第二 盖层 志留系下统韩家店组-奥陶系下统湄潭组 热储层以白云岩、灰岩为主,累计厚度大于1 000 m;热储层上覆盖层为泥岩、页岩、石英砂岩等碎屑岩,累计厚度大于800 m.该热储单元是研究区地热水形成和赋存的主要层位,广泛分布于研究区内,除1处天然热泉出露于第三热储单元外,其余天然温泉和地热井全部分布于该热储单元 储层 寒武系中上统娄山关群-下统清虚洞组 第一 盖层 寒武系下统金顶山组-牛蹄塘组 分布于整个研究区,热储层以台地边缘相的硅质白云岩为主,厚度8~130 m,含水性较差 储层 震旦系上统灯影组 表 2 黔东北地区地热水水样分析结果
Table 2. Hydrochemical analysis data of the geothermal water in northeastern Guizhou
编号 类型 pH 水量(L/s) 温度(℃) δD δ18O TDS K+ Na+ Ca2+ Mg2+ Cl- SO42- CO32- OH- F- NO3- HCO3- 偏硅酸 (mg/L) S1 温泉 7.23 4.0 41.0 -53.3 -7.83 2 272.0 11.93 171.80 396.71 83.10 257.64 1 198.18 0 0 1.79 1.81 148.85 31.85 S2 温泉 6.95 2.5 28.0 -52.9 -7.93 819.0 5.56 4.28 175.80 29.95 5.25 431.36 0 0 1.10 5.57 151.72 15.60 S3 温泉 7.56 5.3 38.8 -54.9 -8.48 1 027.7 10.98 2.33 232.71 39.51 2.70 624.78 0 0 1.74 2.27 155.38 32.50 S4 温泉 7.15 9.2 47.0 - - 1 158.0 7.46 2.26 245.60 40.03 2.75 637.98 - - 3.40 4 169.53 55.25 S6 温泉 7.37 0.83 31.0 -52.2 -8.42 1 257.5 9.39 2.56 254.83 59.14 2.38 679.62 0 0 1.96 1.60 246.02 33.08 S8 温泉 7.35 3.06 51.0 -57.2 -9.17 1 217.3 18.05 1.57 268.76 43.24 1.78 679.29 0 0 3.10 0.80 200.70 71.50 S9 温泉 7.69 3.85 32.0 -48.8 -8.24 600.4 6.30 2.40 112.67 28.95 2.01 248.81 0 0 0.90 0.86 197.46 18.93 S11 温泉 7.81 3.0 37.0 -53.2 -7.85 325.1 0.60 0.59 46.50 22.24 1.10 14.87 0 0 0.14 2.71 236.31 16.35 S14 温泉 7.91 10.0 39.0 -53.2 -8.36 428.2 3.11 2.82 78.25 14.66 4.02 87.47 0 0 0.32 2.37 202.32 32.51 S15 温泉 7.79 1.0 30.0 -57.6 -8.61 313.8 1.07 1.34 51.01 17.52 1.45 37.40 0 0 0.18 1.45 202.32 23.68 ZK1 地热井 7.78 21.3 44.2 - - 429.7 2.93 21.85 59.30 22.08 31.20 110.12 0 0 0.37 1.42 169.88 28.80 ZK2 地热井 7.23 23.1 58.0 -54.2 -8.56 988.5 17.40 3.65 307.79 53.18 4.06 856.80 - - 2.50 - 137.79 60.55 ZK4 地热井 7.16 3.62 59.0 - - 1 376.8 11.90 1.50 269.52 68.96 1.15 805.22 0 0 2.60 2.16 213.57 40.89 ZK9 地热井 8.06 8.82 43.8 -59.3 -8.89 810.3 7.49 170.20 32.74 12.05 5.05 77.50 0 - 0.60 0 504.40 31.86 ZK10 地热井 8.40 8.07 42.2 -56.4 -8.99 599.6 7.13 159.10 4.80 1.85 3.03 9.75 7.75 - 0.36 0 405.88 26.33 表 4 黔东北地区地热水补给高程及温度
Table 4. Recharge elevation and temperature statistics of geothermal water in northeastern Guizhou
编号 出露高程(m) 补给高程(m) 补给区温度(℃) S1 287.0 1 544.5 8.32 S2 340.0 1 622.5 8.40 S3 575.0 1 995.0 8.04 S4 395.0 - - S6 453.0 1 858.0 - S8 420.0 2 012.5 - S9 410.0 1 770.0 - S11 638.0 1 900.5 8.34 S14 550.0 1 940.0 8.34 S15 455.0 1 907.5 7.56 ZK1 325.0 - - ZK2 465.0 1 905.0 8.16 ZK4 457.0 - - ZK9 460.0 1 982.5 7.25 ZK10 480.0 2 027.5 - 表 3 黔东北地区地热水特征系数
Table 3. Numerical features of the geothermal water in northeastern Guizhou
编号 类型 rNa+/rCl- rCl-/r(HCO3-+CO32-) S1 温泉 1.03 2.97 S2 温泉 1.26 0.06 S3 温泉 1.33 0.03 S4 温泉 1.27 0.03 S6 温泉 1.66 0.02 S8 温泉 1.36 0.02 S9 温泉 1.84 0.02 S11 温泉 0.86 0.01 S14 温泉 1.08 0.03 S15 温泉 1.43 0.01 ZK1 地热井 1.08 0.32 ZK2 地热井 1.39 0.05 ZK4 地热井 2.01 0.01 ZK9 地热井 52.02 0.02 ZK10 地热井 81.05 0.01 表 5 黔东北地区地热水地球化学温标计算结果
Table 5. Geothermometers calculation results of geothermal water in northeastern Guizhou
编号 TSiO2(℃) Tlg(Q/K) (℃) T硅-焓 (℃) 冷水混合比例(%) S1 89.76 86.0 135.80 67.27 S2 44.38 73.0 111.86 87.10 S3 72.51 84.0 150.84 82.73 S4 94.90 95.0 185.57 82.90 S6 73.23 90.0 201.82 91.51 S8 106.72 102.0 205.00 82.92 S9 51.57 81.0 116.08 82.40 S11 46.11 47.0 76.25 65.99 S14 72.53 74.0 111.86 82.30 S15 60.07 56.0 159.41 88.84 ZK1 67.70 67.0 115.59 74.52 ZK2 99.02 92.0 163.04 72.76 ZK4 81.93 90.0 116.53 58.26 ZK9 71.72 69.0 128.64 77.91 ZK10 64.18 60.0 111.81 74.98 -
[1] Chen, J., Chen, D.Q., 2014.Distribution Status and Causes of Geothermal Resources in Shiqian County of Guizhou. Ground Water, 36(3):7-8, 33 (in Chinese). [2] Chen, L. A., 1995.Estimate of Thermal Reservoir Temperature of Thermal Mineral Water in Guizhou. Guizhou Geology, 12(1): 69-77 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GZDZ501.009.htm [3] Chen, L. A., Zhang, S. C., Gan, C. X., et al., 1993.Natrural Mineral Water Resource in Guizhou and Its Prospect of Exploitation and Utilization. Guizhou Geology, 10(4):325-334 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GZDZ199304007.htm [4] Chen, L. A., Zhang, S. C., Nie, Y.P., et al., 1997.A Study on Isotopic Ages of Mineral Waters of Shiqian Area, Guizhou.Guizhou Geology, 14(3):274-278 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GZDZ199703013.htm [5] Craig, H., 1963.The Isotope Geochemistry of Water and Carbon in Geothermal Areas. In: Tongiorgi, E., ed., Nuclear Geology on Geothermal Areas. Geol Nucl, Spoleto, 17-53. [6] Dai, C.G., Wang, X.H., Chen.J.S., et al., 2017.Regional Geology of China, Guizhou Province. Geological Publishing House, Beijing (in Chinese). [7] Dansgaard, W., 1964. Stable Isotopes in Precipitation. Tellus, 16(4): 436-468. https://doi.org/10.3402/tellusa.v16i4.8993 [8] Fournier, R. O., 1977. Chemical Geothermometers and Mixing Models for Geothermal Systems. Geothermics, 5(1-4): 41-50. https://doi.org/10.1016/0375-6505(77)90007-4 [9] Foumier, R. O., Potter, R. W., 1982. A Revised and Expanded Silica Geothernorneter. Geothernal Resource Council Bulletin, 11(10):3-12. https://doi.org/10.1016/0375-6505(77)90007-4 [10] Giggenbach, W. F., 1988. Geothermal Solute Equilibria. Derivation of Na-K-Mg-Ca Geoindicators. Geochimica et Cosmochimica Acta, 52(12): 2749-2765. https://doi.org/10.1016/0016-7037(88)90143-3 [11] Gu, W.Z., Pang, Z.H., Wang, Q.J., et al., 2011.Isotope Hydrology. Science Press, Beijing (in Chinese). [12] Guo, C., Qin, Y., Xia, Y.C., et al., 2017.Source Discrimination of Produced Water from CBM Commingling Wells Based on the Hydrogen and Oxygen Isotopes: A Case Study of the Upper Permian, Bide-Santang Basin, Western Guizhou Area.Acta Petrolei Sinica, 38(5):493-501(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201705002.htm [13] Guo, J., Mao, X.M., Tong, S., et al., 2016.Using Hydrochemical Geothermometers Calculate Exchange Temperature of Deep Geothermal System in West Coastal Area of Guangdong Province. Earth Science, 41(12): 2075-2087 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201612008 [14] Lang, X.J., Lin, W.J., Liu, Z.M., et al., 2016.Hydrochemical Characteristics of Geothermal Water in Guide Basin. Earth Science, 41(10): 1723-1734 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201610008 [15] Li, C.S., Wu, X.C., Sun, B., et al., 2018.Hydrochemical Characteristics and Formation Mechanism of Geothermal Water in Northern Ji'nan. Earth Science, 43(S1):313-325 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx2018z1027 [16] Li, D.W., Wang, Y.X., 2015.Major Issues of Research and Development of Hot Dry Rock Geothermal Energy. Earth Science, 40(11):1858-1869 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201511010 [17] Li, S.H., Li, X., Fu, M., 2012.Analysis on the Distribution and Causes of Hot Springs in Tongren Area in Guizhou.Ground Water, 34(5):43-45 (in Chinese). [18] Li, X.C., Ma, Z.Y., Zhang, X.L., et al., 2016. Genetic Model of the Dongda Geothermal Field in Guanzhong Basin, Shaanxi Province. Geology in China, 43(6):2082-2091 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201606019 [19] Liu, Y., Wu, Y.Y., Shen, Z.J., et al., 2014.Interpretation of the Water Recourse of Davidia Involucrate in the Fanjing Mountain Viathe Characteristics of Hydrogen Isotopic Composition and Photosynthesis. Earth and Environment, 42(6):726-732 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ201406004.htm [20] Mao, J.Q., Wang, W.J., 1991.Study of the Fluorine in Hot Spring in Guizhou. Journal of Guizhou Institute of Technology, 20(2):13-21 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GZGX199102004.htm [21] Mao, Q.Y., Wang, J.L., Wang, J.L., et al., 2017.Analysis of the Characteristics of δD and δ18O in the Meteoric Precipitation in Anshun, Guizhou Province and Beibei Chongqing. Journal of Southwest University(Natural Science Edition), 39(2):114-120 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnnydxxb201702018 [22] Mao, X.P., Wang, X.W., Li, K.W., et al., 2018.Sources of Heat and Control Factors in Geothermal Field. Earth Science, 43(11):4256-4266 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201811039 [23] Portugal, E., Birkle, P., Barragán, R. M., et al., 2000. Hydrochemical-Isotopic and Hydrogeological Conceptual Model of the Las Tres Vı́rgenes Geothermal Field, Baja California Sur, México. Journal of Volcanology and Geothermal Research, 101(3-4): 223-244. https://doi.org/10.1016/s0377-0273(99)00195-x [24] Qiao, Y.L., Chen, P.Y., Shen, C.M., et al., 1996.Quantitative Reconstruction of Vegetation and Climate of Fanjingshan Section in Guizhou during Last 10 000 Years.Geochimica, 25(5):445-457 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600048588 [25] Rybach, L., Muffler, L.J.P., 1987. Geothermal Systems Principles and Case Histories. Translated by Geothermal Research of Deparment of Geology, Peking University. Geological Publishing House, Beijing. [26] Wang, Y., Zhou, X., Yu, Y., et al., 2007.Application of Geothermometers to Calculation of Temperature of Geothermal Reservoirs.Geoscience, 21(4):605-612 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200704003 [27] Wen, Y.H., Wang, N.A., Zhu, X.F., et al., 2010.Hydrochemistry and Origin of the Wushan Geothermal Field, Gansu. Journal of Natural Resources, 25(7):1186-1193(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZRZX201007014.htm [28] Xu, W.C., 1992. Application of the Saturation Index Method to the Study of Geothermal Geochemistry. Journal of Xi'an University (Earth Science Edition), 14(3):66-70(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX199203011.htm [29] Yang, R.K., Luo, W., Pei, Y.W., et al., 2018.Distribution and Fluids Hydrochemistry Characteristics of Hydrothermal Geothermal Resources in Guizhou Province. Geological Survey of China, 5(2):38-44 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdzdc201802006 [30] Yuan, Y.S., Ma, Y.S., Hu, S.B., et al., 2006.Present-Day Geothermal Characteristics in South China. Chinese Journal of Geophysics, 49(4):1118-1126 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200604025 [31] Zhang, B.J., 2011.Hydrogeochemical Characteristics and Formation Conditions of the Geothermal Water in Northwestern Shandong Province (Dissertation).China University of Geosciences, Beijing (in Chinese with English abstract). [32] Zhang, H.B., Deng, X.S., Wang, B., et al., 2018.Structural Characteristics and Its Control Function to Geothermal Resources of Shiqian-Huaqiao Fault in Guizhou. Guizhou Geology, 35(2):131-137 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzdz201802008 [33] Zhang, S.C., Chen, L. A., 1992.Isotopic Geochemical Studties of Thermal Mineral Waters in the Shiqian Area, Guizhou.Geological Review, 38(5):457-466 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000003206 [34] Zhao, Y.H., Yang, J.Y., Wang, H., et al., 2017.Hydrogen and Oxygen Isotope Distribution Characteristics of Geothermal Water. Progress in Geophysics, 32(6):2415-2423 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201706018 [35] Zheng, X.L., Liu, H.J., 1996. Study of the Water Rock Equilibrium State in the Application of Geothermometer. Journal of Xi'an Engineering University, 18(1):74-79(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX601.014.htm [36] 陈进, 陈登齐, 2014.贵州省石阡县地热资源分布现状及成因分析.地下水, 36(3):7-8, 33. doi: 10.3969/j.issn.1004-1184.2014.03.003 [37] 陈履安, 1995.贵州热矿水热储温度的估算.贵州地质, 12(1):69-77. http://www.cqvip.com/Main/Detail.aspx?id=1751453 [38] 陈履安, 张世从, 甘朝勋, 等, 1993.贵州天然矿泉水资源及其开发利用前景.贵州地质, 10(4):325-334. http://www.cnki.com.cn/Article/CJFDTotal-GZDZ199304007.htm [39] 陈履安, 张世从, 聂跃平, 等, 1997.贵州石阡地区矿泉水的同位素年龄研究.贵州地质, 14(3):274-278. http://www.cnki.com.cn/Article/CJFDTotal-GZDZ199703013.htm [40] 戴传固, 王雪华, 陈建书, 等, 2017.中国区域地质志——贵州志.北京:地质出版社. [41] 顾慰祖, 庞忠和, 王全九, 等, 2011.同位素水文学.北京:科学出版社. [42] 郭晨, 秦勇, 夏玉成, 等, 2017.基于氢、氧同位素的煤层气合排井产出水源判识——以黔西地区比德-三塘盆地上二叠统为例.石油学报, 38(5):493-501. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201705002 [43] 郭静, 毛绪美, 童晟, 等, 2016.水化学温度计估算粤西沿海深部地热系统热交换温度.地球科学, 41(12):2075-2087. http://d.old.wanfangdata.com.cn/Periodical/dqkx201612008 [44] 郎旭娟, 蔺文静, 刘志明, 等, 2016.贵德盆地地下热水水文地球化学特征.地球科学, 41(10):1723-1734. http://d.old.wanfangdata.com.cn/Periodical/dqkx201610008 [45] 李常锁, 武显仓, 孙斌, 等, 2018.济南北部地热水水化学特征及其形成机理.地球科学, 43(增刊1):313-325. http://d.old.wanfangdata.com.cn/Periodical/dqkx2018z1027 [46] 李德威, 王焰新, 2015.干热岩地热能研究与开发的若干重大问题.地球科学, 40(11):1858-1869. http://d.old.wanfangdata.com.cn/Periodical/dqkx201511010 [47] 李生红, 李晓, 付梅, 等, 2012.贵州省铜仁地区温泉分布及成因浅析.地下水, 34(5):43-45. doi: 10.3969/j.issn.1004-1184.2012.05.015 [48] 李修成, 马致远, 张雪莲, 等, 2016.陕西省关中盆地东大地热田成因机制分析.中国地质, 43(6):2082-2091. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201606019 [49] 刘莹, 吴沿友, 沈志君, 等, 2014.氢同位素组成及光合特征对梵净山珙桐水源的解析.地球与环境, 42(6):726-732. http://d.old.wanfangdata.com.cn/Periodical/dzdqhx201406004 [50] 毛健全, 王伍军, 1991.贵州温泉水氟研究.贵州工学院学报, 20(2):13-21. http://d.old.wanfangdata.com.cn/Thesis/Y2150599 [51] 毛庆亚, 王建力, 王家录, 等, 2017.贵州安顺与重庆北碚大气降水中δD和δ18 O特征分析.西南大学学报(自然科学版), 39(2):114-120. http://d.old.wanfangdata.com.cn/Periodical/xnnydxxb201702018 [52] 毛小平, 汪新伟, 李克文, 等, 2018.地热田热量来源及形成主控因素.地球科学, 43(11):4256-4266. http://d.old.wanfangdata.com.cn/Periodical/dqkx201811039 [53] 乔玉楼, 陈佩英, 沈才明, 等, 1996.定量重建贵州梵净山一万年以来的植被与气候.地球化学, 25(5):445-457. doi: 10.3321/j.issn:0379-1726.1996.05.003 [54] 王莹, 周训, 于湲, 等, 2007.应用地热温标估算地下热储温度.现代地质, 21(4):605-612. doi: 10.3969/j.issn.1000-8527.2007.04.003 [55] 温煜华, 王乃昂, 朱锡芬, 等, 2010.甘肃武山地热田水化学与地热水起源.自然资源学报, 25(7):1186-1193. http://www.cnki.com.cn/Article/CJFDTotal-ZRZX201007014.htm [56] 许万才, 1992.饱和指数法在地下热水化学研究中的应用.西安地质学院学报, 14(3):66-70. http://www.cnki.com.cn/Article/CJFDTotal-XAGX199203011.htm [57] 杨荣康, 罗维, 裴永炜, 等, 2018.贵州省水热型地热资源分布及流体水化学特征.中国地质调查, 5(2):38-44. http://d.old.wanfangdata.com.cn/Periodical/zgdzdc201802006 [58] 袁玉松, 马永生, 胡圣标, 等, 2006.中国南方现今地热特征.地球物理学报, 49(4):1118-1126. doi: 10.3321/j.issn:0001-5733.2006.04.025 [59] 张保建, 2011.鲁西北地区地下热水的水文地球化学特征及形成条件研究(博士学位论文).北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1011077655.htm [60] 张晗彬, 邓旭升, 王波, 等, 2018.贵州石阡-花桥断裂构造特征及其对地热资源的控制作用.贵州地质, 35(2):131-137. doi: 10.3969/j.issn.1000-5943.2018.02.008 [61] 张世从, 陈履安, 1992.贵州石阡地区热矿水同位素地球化学研究.地质论评, 38(5):457-466. doi: 10.3321/j.issn:0371-5736.1992.05.010 [62] 赵永红, 杨家英, 王航, 等, 2017.地热水氢氧同位素分布特性.地球物理学进展, 32(6):2415-2423. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201706018 [63] 郑西来, 刘鸿俊, 1996.地热温标中的水-岩平衡状态研究.西安工程学院学报, 18(1):74-79. http://www.cnki.com.cn/Article/CJFDTotal-XAGX601.014.htm