Characteristics of Hydrocarbon Migration of YM32 Lower Paleozoic Buried Hill Reservoirs in North Tarim Basin
-
摘要: YM32下古生界潜山油气藏是受断裂控制的低幅度油气藏,油气运聚复杂.结合新钻井的地球化学分析数据,对研究区油气藏油气运移规律进行剖析.依据YM32下古生界潜山气田藏的原油及抽体物样品中的饱和烃的烷烃、甾藿烷,芳烃的萘与菲、烷基二苯并噻吩、三芳甾烷等生物标志化合物进行系统分析,优选油气示踪参数,并归一化,结合族组分分析结果,形成了油气运移示踪二步法.综合研究发现,YM32下古生界潜山油气藏有YM342-YM343和YM322两个油气充注点,以及YM342-YM343→YM34-1H→YM32、YM342-YM343→YM34-7H→YM33、YM342-YM343→YM37-YM35,以及YM322→YM321→YM32共4条油气运移路径,并在YM342-YM343→YM37-YM35油气运移路径上,发现2个资源量超过1.00×106t的潜力圈闭.单参数与油气运移示踪二步法都可以反映油气运移路径,而后者具有全面、直观、准确地表征油气运移路径的特点.Abstract: The YM32 Lower Paleozoic buried hill reservoir is a low-amplitude reservoir controlled by faults, which is characterized by complex migration and accumulation of oil and gas. Firstly, combined with the geochemical analysis of new drilling data, the oil and gas migration law of oil and gas reservoirs in the study area is analyzed. Then, based on the biomarker compounds, alkanes and steroid terpane from saturated hydrocarbon, naphthalene and phenanthrene, DBTs and TAS from aromatic hydrocarbons in the samples of crude oil and extracts from the YM32 Paleozoic buried hill reservoir, the tracer parameters of oil and gas are optimized. Finally, a step-by-step method of hydrocarbon migration tracer is formed by normalization, in combination with the results of group composition analysis. Results show that there are two filling points of YM342-YM343 and YM322 in the YM32 Lower Paleozoic buried hill reservoir, as well as four migration paths of YM342-YM343 to YM34-1H to YM32, YM342-YM343 to YM34-7H to YM33, YM342-YM343 to YM37-YM35, and YM322 to YM321 to YM32. On the migration path of YM342-YM343 to YM37-YM35, two potential traps with more resources than 1.00×106t were found. Both the single parameter and the two-step method of hydrocarbon migration tracer can reflect the migration path of oil and gas, and the latter has the characteristics of comprehensive, intuitive and accurate characterization of the migration path of oil and gas.
-
表 1 YM32下古生界潜山油气藏原油饱和烃地球化学参数
Table 1. Geochemical parameters of saturated hydrocarbons of YM32 Lower Paleozoic buried hill reservoirs
井名 层位 Pr/Ph Pr/nC17 Ph/nC18 Ts/(Ts+Tm) 20S αββ ∑nC21-/
∑nC22+NC22/
NC29CPI OEP YM34 S1k 1.99 0.23 0.11 0.55 0.44 0.34 1.49 1.85 1.09 1.02 YM34-3H S1k 1.65 0.19 0.11 - - - 1.11 2.31 1.08 1.1 YM34-1H S1k 1.39 0.26 0.15 0.55 0.46 0.42 1.88 1.84 1.16 1.2 YM34-2 S1k 1.72 0.21 0.13 - - - 4.29 3.21 1.14 1.23 YM342 S1k 1.2 0.27 0.13 0.9 0.38 0.49 0.55 1.62 1.13 1.08 YM343 S1k 1.16 0.24 0.12 0.87 0.41 0.48 0.48 1.79 1.12 1.02 YM34-H7 S1k 1.79 0.69 0.23 0.58 0.4 0.54 0.86 3.29 1.13 1.06 YM37 S1k 2.23 0.16 0.08 0.68 0.48 0.39 1.67 2.29 1.1 1.03 YM35 S1k 2 0.18 0.09 0.57 0.47 0.4 2.23 2.8 1.09 1.01 YM41 S1k 1.38 0.16 0.11 - - - 0.98 1.71 1.06 1.02 YM50 S1k 1.73 0.63 0.14 0.87 0.41 0.5 0.74 2.66 1.07 1 YM32 ∈ 2 0.18 0.08 0.58 0.49 0.44 2.33 2.23 1.18 1.37 YM321 ∈ 2.03 0.22 0.1 0.59 0.48 0.39 1.17 3.74 1.12 1.04 YM322 O 1.61 0.32 0.18 0.51 0.49 0.47 0.13 0.33 1.04 1 YM33 ∈ 1.93 0.22 0.11 0.588 0.48 0.41 1.8 3.61 1.09 1.03 YM33-H4 ∈ 0.83 0.28 0.11 0.551 0.45 0.45 0.59 2.35 1.1 1.07 注:-表示未测; 20S表示C2920S/(20S+20R),αββ表示C29αββ/(αββ+ααα); NC22/NC29表示(nC21+nC22)/(nC28+nC29),后图表同. 表 2 YM32下古生界潜山油气藏样品芳烃化合物参数
Table 2. Parameters of aromatic compounds of samples in YM32 Lower Paleozoic buried hill reservoirs
井名(样品数) 样品类型 层位 MPR F1 F2 MPI1 4-/1-MDBT 2, 4-/1, 4-DMDBT 4, 6-/1, 4-DMDBT TASC27
(20R)/C28
(20R)YM34 原油 S 1.27 0.48 0.25 0.64 2.31 - - 0.65 YM34-1H 原油 S - 0.39 0.27 0.61 3.88 1.18 1.51 0.59 YM34C 原油 S 1.34 0.48 0.27 - - - - 0.63 YM342(9) 砂岩 S 1.023 0.41 0.21 1 5 1.46 2.45 0.55 YM343(4) 砂岩 S 0.94 0.39 0.19 0.93 4.9 1.45 2.58 0.49 YM50(15) 砂岩 S 1 0.39 0.2 0.96 4.5 1.2 2.37 0.53 YM35 原油 S 1.08 0.42 0.22 0.53 5.51 - - 0.56 YM37 原油 S 1.16 0.44 0.23 1.15 5.84 - - 0.65 YM39 砂岩 S 0.58 0.28 0.2 0.3 1.98 - - 0.34 YM39 灰岩 O2y 1.62 0.59 0.3 0.44 - - - - YM32 砂岩 K 0.87 0.36 0.18 0.44 6.18 - - - YM32 原油 ∈ 1.3 0.46 0.25 0.55 7.61 - - 0.66 YM33 原油 ∈ 1.22 0.46 0.24 0.55 7.39 - - 0.67 YM33 灰岩 ∈ 1.25 0.45 0.24 0.73 - - - 0.61 YM33-H1 原油 ∈ 1.26 0.46 0.26 0.79 6.49 1.61 2.7 0.54 YM33-H4 灰岩 ∈ 1.28 0.49 0.3 0.67 4.3 0.55 1.21 0.5 YM321 原油 ∈ 1.31 0.46 0.24 0.54 7.61 - - 0.69 YM321-H4 原油 ∈ 1.26 0.5 0.25 0.77 5.99 1.54 2.67 0.65 YM322 原油 ∈ 1.26 0.46 0.26 0.96 4.18 1.36 2.32 0.57 注:“-”表示未测. 表 3 YM32下古生界潜山油气藏烃类化合物地球化学优选参数
Table 3. Parameter optimization of hydrocarbon compounds of YM32 Lower Paleozoic buried hill reservoirs
井名 层位 20S ∑nC21-/
∑nC22+NC22/NC29 MPR F1 F2 TASC27(20R)/
C28(20R)饱芳比 YM34 S1k 0.44 1.49 1.85 1.27 0.48 0.25 0.65 4.6 YM34-1H S1k 0.46 1.88 1.84 0.84 0.39 0.21 0.59 4.87 YM342 S1k 0.38 0.55 1.62 1.02 0.41 0.21 0.55 3.17 YM343 S1k 0.4 0.5 2.02 0.94 0.39 0.19 0.49 3.1 YM34⁃H7 S1k 0.4 0.86 3.29 1.34 0.52 0.28 0.64 4.5 YM37 S1k 0.48 1.67 2.29 1.16 0.44 0.23 0.65 6.21 YM35 S1k 0.47 2.23 2.8 1.08 0.42 0.22 0.56 4.01 YM50 S1k 0.41 0.74 2.66 1.08 0.42 0.22 0.56 3.47 YM32 ∈ 0.49 2.33 2.23 1.3 0.44 0.25 0.66 3.12 YM321 ∈ 0.48 1.17 3.74 1.31 0.46 0.24 0.69 3.48 YM322 ∈ 0.49 0.13 0.33 1.26 0.46 0.26 0.57 7.86 YM33 ∈ 0.48 1.8 3.61 1.22 0.46 0.24 0.67 4.06 YM33⁃H4 ∈ 0.45 0.59 2.35 1.28 0.49 0.3 0.5 3.91 表 4 YM32下古生界潜山油气藏烃类化合物地球化学参数评价
Table 4. Evaluation of geochemical parameters of hydrocarbon compounds of YM32 Lower Paleozoic buried hill reservoirs
井名 层位 20S ∑nC21-/
∑nC22+NC22/NC29 SHI MPR F1 F2 TAS C27(20R)/
28(20R)AHI 综合值 YM34 S1k 0.898 0.64 0.5 0.82 0.95 0.92 0.81 0.94 0.18 2.18 YM34-1H S1k 0.939 0.81 0.49 0.83 0 0.76 0.68 0.86 0.17 2.13 YM342 S1k 0 0.24 0.43 0.76 0.77 0.79 0.69 0.8 0.24 1.11 YM343 S1k 0.898 0.22 0.54 0.76 0.7 0 0 0 0.24 1.48 YM34-H7 S1k 0.816 0.86 0.88 0.82 1 1 0.92 0.93 0.48 2.66 YM37 S1k 0.98 0.7 0.61 0.86 0.87 0.85 0.77 0.95 0.39 2.35 YM35 S1k 0.47 0.96 0.75 0.8 0.81 0.81 0.74 0.82 0.2 2.25 YM50 S1k 0.837 0.32 0.71 0.78 0.81 0.81 0.74 0.82 0.22 2.03 YM32 ∈ 1 1 0.6 0.76 1.3 0.89 0.81 0.96 0.24 2.75 YM321 ∈ 0.98 0.5 1 0.78 0.98 0.89 0.8 1 0.22 2.57 YM322 ∈ 0.992 0 0 0.89 0.94 0.88 0.84 0.83 0.11 1.19 YM33 ∈ 0.98 0.77 0.97 0.8 0.91 0.88 0.8 0.98 0.2 2.73 YM33-H4 ∈ 0.918 0.25 0.63 0.8 0.96 0.94 1 0.73 0.2 2.07 -
[1] Bao, J.P., Zhu, C.S., Zhang, Q.C., et al., 2007.Geochemical Characteristics of Crude Oil from Frontal Uplift in Kuqa Depression. Journal of Oil and Gas Technology, 29(4):40-44, 164(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jhsyxyxb200704007 [2] Chen, W.B., Fu, X.G., Tan, F.W., et al., 2017.Geochemical Characteristics and Significance of Permain Dolomite Oil Seepages in Qiangtang Basin. Acta Sedimentologica Sinica, 35(3):611-620(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201703018 [3] Chen, Y., Bao, J.P., Liu, Z.Q., et al., 2010.Relationship between Methylphenanthrene Index, Methylphenanthrene Ratio and Organic Thermal Evolution:Take the Northern Margin of Qaidam Basin as an Example. Petroleum Exploration and Development, 37(4):508-512(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SKYK201004019.htm [4] Chen, Z.H., Zha, M., Jin, Q., et al., 2010.The Evolution and Its Control on Maturation Parameters Relative to C27 Trisnorhopane in the Representative Faulted Lake-Basin:A Case Study from Paleogene System in Dongying Sag. Acta Sedimentologica Sinica, 28(3):635-642(in Chinese with English abstract). doi: 10.1017/S0004972710001772 [5] England, W.A., MaCkenzie, A.S., Mann, D.M., et al., 1987. The Movement and Entrapment of Petroleum Fluids in the Subsurface. Journal of the Geological Society, 144(2):327-347. doi: 10.1144/gsjgs.144.2.0327 [6] Guan, W.S., Zha, M., Zhang, C., et al., 2015.Quantitative Evaluation of Sealing Property of Fault Traps with Improving SGR Method:A Case of Yingmai 34 Area in Tabei Uplift.Xinjiang Petroleum Geology, 36(2):218-221(in Chinese with English abstract). [7] Guan, W.S., Duan, W.S., Zha, M., et al., 2017.Low-Relief Structural Imaging with Model-Based Tomographic Velocity Inversion. Oil Geophysical Prospecting, 52(1):87-93, 16(in Chinese with English abstract). doi: 10.13810/j.cnki.issn.1000-7210.2017.01.013 [8] Guo, X.B., 2013. Analysis of Metabolites of Microbial Degradation of Crude Oil.Yangtze University Press, Jingzhou (in Chinese). [9] Hao, X., Ren, Y.J., Xu, X.D., et al., 2016.Composition Characteristics and Geochemical Significance of Aromatic Hydrocarbon in Crude Oils in Eastern Wushi Sag, Beibu Gulf Basin. Xinjiang Petroleum Geology, 37(6):674-680(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD201606009.htm [10] Huang, J.W., 2003.An Approach to the Application of Biomarkers to the Migration of Crude Oil in Tahe Oil District of the Tarim Basin. Petroleum Geology & Expeximent, 25(S1):573-577(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz2003z1010 [11] Jiang, Y.L., Zha, M., 2010.The Geology and Exploration of Oil and Gas.Petroleum Industry Press, Beijing(in Chinese). [12] Liang, D.G., Zhang, S.C., Zhao, M.J., et al., 2002.Hydrocarbon Accumulation in Kuqa Depression. Chinese Science Bulletin, 47(Suppl.):56-63(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xjsydz201901007 [13] Lü, X.X., Yang, H.J., Wang, X., et al., 2010.Application of Geochemical Parameters in Hydrocarbon Migration Studies:Taking Tazhong Area of the Tarim Basin as an Example. Oil & Gas Geology, 31(6):838-846(in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60008-6 [14] Lu, Z.H., Gan, H.J., Shi, Y., et al., 2016.Geochemical Characteristics of Crude Oil and Oil-Source Correlation in the Western Fushan Depression. Earth Science, 41(11):1909-1920(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201611007 [15] Luo, J., Cheng, K.M., Fu, L.X., et al., 2001.Alkylated Dibenzothiophene Index-A New Method to Assess Thermal Maturity of Source Rocks. Acta Petrolei Sinica, 22(3):27-31, 7(in Chinese with English abstract). doi: 10.7623/syxb200103006 [16] Ma, J., Li, S.F., Hu, S.Z., et al., 2010.The Composition of Aromatic Hydrocarbon and Its Application in Petroleum Geochemistry. Geological Science and Technology Information, 29(6):73-79(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201006012 [17] Mo, X.Y., Zhang, M., Zhang, J., et al., 2011.Geochemical Characteristics of Saturated Hydrocarbon and Its Genesis in Hure Oilfield of Western Qaidam Basin. Natural Gas Geoscience, 22(5):848-853(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DBYD201101003.htm [18] Su, J., Yang, H.J., Yang, W.J., et al., 2012.The Accumulation History of Continental Oil and the Hydrocarbons Enrichment Mechanism in the Silurian Unconformities of the Northern Tarim Basin. Acta Petrologica Sinica, 28(8):2493-2505(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201208016 [19] Wang, T.G., He, F.Q., Li, M.J., et al., 2005.Molecular Markers of Injecting Pathway in Tracer Reservoirs:Alkyl Dibenzothiophene Series. Chinese Science Bulletin, 50(2):176-182(in Chinese). doi: 10.1360/csb2005-50-2-176 [20] Wang, D.L., Li, Y., Jing, B., et al., 2007.Analysis of the Differences and Genesis for the Kekeya Oil in Tarim Basin. Petroleum Geology & Experiment, 29(2):192-198(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz200702016 [21] Wang, Q.R., Chen, H.H., Zhao, Y.T., et al., 2018.Differences of Hydrocarbon Accumulation Periods in Silurian of Tazhong Northern Slope, Tarim Basin. Earth Science, 43(2):577-593(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201802018 [22] Xu, T., Hou, D.J., Cao, B., et al., 2017.Characteristics of Aromatic Geochemistry in Light Oils from Xihu Sag in East China Sea Basin. Acta Sedimentologica Sinica, 35(1):182-192(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201701018 [23] Zha, M., 1997.Geochemical Characteristics and Significance of Petroleum Migration in ES3 and ES4 Members, Dongying Depression. Geoscience, 11(4):540-545(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XDDZ704.015.htm [24] Zhang, Q., Song, X.Y., Zhang, Z.R., et al., 2014.Quantitative Characteristics of Biomarkers of Crude Oils of Tahe Oil Field. Petroleum Geology & Experiment, 36(2):206-210, 217(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201402014 [25] Zhou, Y.J., Guan, P., Wu, Y.X., et al., 2018.Characterization on the Composition of Dibenzothiophene Series in Saline Lacustrine Sediments in Western Qaidam Basin and Its Environmental Implications. Natural Gas Geoscience, 29(6):908-920(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201806016 [26] Zhu, Z.J., Jiang, Y.J., Cheng, Z., et al., 2009.Evaluating Maturity of Source Rocks by Aromatic Compounds:A Case from Dongling Block, Songliao Basin. Petroleum Exploration and Development, 36(6):790-796(in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60009-2 [27] 包建平, 朱翠山, 张秋茶, 等, 2007.库车坳陷前缘隆起带上原油地球化学特征.石油天然气学报, 29(4):40-44, 164. doi: 10.3969/j.issn.1000-9752.2007.04.007 [28] 陈文彬, 付修根, 谭富文, 等, 2017.羌塘盆地二叠系白云岩油苗地球化学特征及意义.沉积学报, 35(3):611-620. http://d.old.wanfangdata.com.cn/Periodical/cjxb201703018 [29] 陈琰, 包建平, 刘昭茜, 等, 2010.甲基菲指数及甲基菲比值与有机质热演化关系——以柴达木盆地北缘地区为例.石油勘探与开发, 37(4):508-512. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201004018 [30] 陈中红, 查明, 金强, 等, 2010.典型断陷湖盆C27三降藿烷参数演化及其控制因素——以东营凹陷古近系为例.沉积学报, 28(3):635-642. http://www.cnki.com.cn/Article/CJFDTotal-CJXB201003029.htm [31] 管文胜, 查明, 张超, 等, 2015.利用改进的SGR方法定量评价断层圈闭封堵性——以塔北隆起英买34井区为例.新疆石油地质, 36(2):218-221. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjsydz201502018 [32] 管文胜, 段文胜, 查明, 等, 2017.利用基于模型的层析速度反演进行低幅度构造成像.石油地球物理勘探, 52(1):87-93, 16. http://d.old.wanfangdata.com.cn/Periodical/sydqwlkt201701013 [33] 郭晓博, 2013.微生物降解原油及其代谢产物的分析.荆州:长江大学出版社. [34] 郝鑫, 任拥军, 徐新德, 等, 2016.北部湾盆地乌石凹陷东部原油芳香烃组成特征及地球化学意义.新疆石油地质, 37(6):674-680. http://d.old.wanfangdata.com.cn/Periodical/xjsydz201606008 [35] 黄继文, 2003.塔里木盆地塔河油区原油生物标志化合物在运移方面的应用探讨.石油实验地质, 25(S1):573-577. http://d.old.wanfangdata.com.cn/Periodical/sysydz2003z1010 [36] 蒋有录, 查明, 2010.石油天然气地质与勘探.北京:石油工业出版社. [37] 梁狄刚, 张水昌, 赵孟军, 等, 2002.库车坳陷的油气成藏期.科学通报, 47(增刊):56-63. http://d.old.wanfangdata.com.cn/Periodical/xasyxyxb201104003 [38] 卢政环, 甘华军, 时阳, 等, 2016.福山凹陷西部地区原油地化特征与油源对比.地球科学, 41(11):1909-1920. doi: 10.3799/dqkx.2016.132 [39] 罗健, 程克明, 付立新, 等, 2001.烷基二苯并噻吩——烃源岩热演化新指标.石油学报, 22(3):27-31, 7. doi: 10.7623/syxb200103006 [40] 吕修祥, 杨海军, 王祥, 等, 2010.地球化学参数在油气运移研究中的应用——以塔里木盆地塔中地区为例.石油与天然气地质, 31(6):838-846. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201006017 [41] 马军, 李水福, 胡守志, 等, 2010.芳烃化合物组成及其在油气地球化学中的应用.地质科技情报, 29(6):73-79. doi: 10.3969/j.issn.1000-7849.2010.06.012 [42] 莫晓靥, 张敏, 张俊, 等, 2011.柴达木盆地尕斯库勒油田原油饱和烃地球化学特征及成因研究.天然气地球科学, 22(5):848-853. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201105014 [43] 苏劲, 杨海军, 杨文静, 等, 2012.塔里木盆地北部志留系顶面不整合中陆相原油的成藏历史与油气富集机制.岩石学报, 28(8):2493-2505. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201208016 [44] 王东良, 李勇, 敬兵, 等, 2007.塔里木盆地柯克亚地区原油差异与成因分析.石油实验地质, 29(2):192-198. doi: 10.3969/j.issn.1001-6112.2007.02.016 [45] 王倩茹, 陈红汉, 赵玉涛, 等, 2018.塔中北坡顺托果勒地区志留系油气成藏期差异性分析.地球科学, 43(2):577-593. doi: 10.3799/dqkx.2018.026 [46] 王铁冠, 何发岐, 李美俊, 等, 2005.烷基二苯并噻吩类:示踪油藏充注途径的分子标志物.科学通报, 50(2):176-182. doi: 10.3321/j.issn:0023-074X.2005.02.013 [47] 许婷, 侯读杰, 曹冰, 等, 2017.东海盆地西湖凹陷轻质原油芳烃地球化学特征.沉积学报, 35(1):182-192. http://d.old.wanfangdata.com.cn/Periodical/cjxb201701018 [48] 张渠, 宋晓莹, 张志荣, 等, 2014.塔河油田原油生物标志物定量特征研究.石油实验地质, 36(2):206-210, 217. http://d.old.wanfangdata.com.cn/Periodical/sysydz201402014 [49] 查明, 1997.东营凹陷沙三、沙四段石油运移地球化学特征及意义.现代地质, 11(4):540-545. http://www.cnki.com.cn/Article/CJFDTotal-XDDZ704.015.htm [50] 周叶骏, 关平, 吴颜雄, 等, 2018.柴达木盆地西部咸水湖相沉积有机质中二苯并噻吩类组成特征及环境意义.天然气地球科学, 29(6):908-920. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201806016 [51] 朱战军, 江永健, 程喆, 等, 2009.利用芳烃化合物评价烃源岩成熟度——以松辽盆地东岭区块为例.石油勘探与开发, 36(6):790-796. doi: 10.3321/j.issn:1000-0747.2009.06.017