Characteristics of Aromatic Compounds in High-over Matured Marine Shale and Its Significance to Shale Gas
-
摘要: 为了合理评价我国南方下古生界页岩有机质热演化程度,研究其与页岩含气性关系;采用气相色谱-质谱联用仪对中扬子地区6口调查井、3个露头剖面的20件页岩样品的芳烃馏分进行了分析,并对代表不同区域的6件样品进行显微激光拉曼测试.分析结果显示拉曼D、G峰参数可以很好地计算过成熟至球粒石墨阶段高演化样品的有机质成熟度;拉曼D峰的子峰包含有芳烃含量的重要信息,随着有机质热演化程度的增加,与芳烃含量有关的D4子峰强度不断降低.芳烃中菲系列化合物和二苯并噻吩系列化合物在RmcRo=2.73%~4.67%范围内的演化具有明显规律性;虽然甲基菲成熟度公式在该阶段已经不适用,但表征3-MP+2-MP相对含量的参数F1仍是很好的有机质成熟度指标;在有机质过成熟演化阶段,F1先随成熟度增加逐渐增加至0.74附近(Ro=3%附近),之后随成熟度增加逐渐减小.二苯并噻吩化合物参数2,4-/1,4-DMDBT和4,6-/1,4-DMDBT在过成熟阶段随成熟度增加而增大,两值分别增至2和4.5时对应页岩等效镜质体反射率为4%.页岩芳烃系列化合物在过成熟阶段随有机质热演化程度增加而发生的异构化作用和脱甲基作用与有机质的比表面积变化有较好的耦合作用,与页岩气调查井的气显情况也有较好的相关性;页岩芳烃特征对过成熟阶段页岩气的生成具有重要的指示意义,可以作为我国南方下古生界有机质过成熟地区页岩气勘探的有效指标.Abstract: In order to evaluate the thermal evolution degree of organic matter of Lower Paleozoic shale in South China and discuss its relationship with shale gas, gas chromatography-mass spectrometry analysis of aromatic compounds in 20 shale samples collected from 6 investigation wells and 3 outcrop profiles in the Central Yangtze region was made, and 6 samples representing different regions were determined by laser Raman spectroscopy. The results show that the parameters of Raman D and G bands can be used to calculate the maturity of organic matter from over-maturity to spheroidal graphite stage. The sub-bands of D band contain important information of aromatics content. The strength of D4 sub-band, which is related to aromatics content, decreases with the increase of thermal evolution degree of organic matter. The evolution regularities of phenanthrene series compounds and dibenzothiophene series compounds are remarkable in the range of RmcRo=2.73%-4.67%. Although the formula for maturity of methylphenanthrene is no longer applicable in this stage, the parameter F1 which characterizes the relative content of 3-MP+2-MP is still a good maturity index of organic matter. F1 gradually increases to about 0.74(Ro=3%) firstly, and then decreases with the increase of maturity at the over-maturity stage. The parameters of dibenzothiophene compounds, 2, 4-/1, 4-DMDBT and 4, 6-/1, 4-DMDBT, increase with maturity at the over-maturity stage. When the two ratios are 2 and 4.5 respectively, the Raman reflectance value of shale is RmcRo=4%. The isomerization and demethylation of aromatic hydrocarbon series compounds occur with the increase of thermal evolution degree of organic matter in the over-mature stage, which has a good coupling effect with the change of specific surface area of organic matter and a good correlation with analytical gas about investigation wells. The characteristics of aromatic hydrocarbon compounds have important indicative significance for shale gas generation at the over-mature stage, and can be used as an effective index for shale gas exploration in over-mature areas of Lower Paleozoic in South China.
-
Key words:
- aromatic hydrocarbon /
- phenanthrene series /
- thermal maturity /
- Raman spectra /
- shale gas /
- petroleum geology
-
表 1 样品的拉曼光谱参数及计算反射率
Table 1. Raman spectral parameters and calculated reflectance for samples
样品 拉曼峰 拉曼位移
(cm-1)峰高 半高宽 峰面积 峰间距
(G-D)计算反射率
(%)LZ-C1lz-1 D 1 339.72 25 907.80 166.830 0 1.80E+06 259.52 2.73 G 1 599.24 39 319.10 55.610 0 926 298 D′ YD5-∈1sh-1 D 1 337.76 31 831.00 227.260 0 3 012 300 261.04 2.82 G 1 598.80 44 359.00 61.420 0 1 160 220 D′ / / / / YD4-∈1n-1 D 1 331.62 29 028.00 165.830 0 2.02E+06 270.25 3.31 G 1 601.87 38 762.00 49.140 0 812 297 D′ / / / / XZD1-Z2dy-1 D 1 334.69 45 475.00 135.124 0 2.59E+06 257.97 3.97* G 1 592.66 43 778.60 61.420 2 1.15E+06 D′ XXD2-∈1n-1 D 1 340.83 42 464.70 79.846 2 1.44E+06 245.68 4.67* G 1 586.51 25 881.40 79.846 2 878 014 D′ XPN-∈1n-1 D 1 346.97 40 254.40 55.278 1 9.48E+05 233.40 G 1 580.37 26 715.40 49.136 0 5.60E+05 D′ 2 685.93 9 890.30 85.987 8 359 078 注:计算公式据 Liu et al.(2012) ;带*值采用RmcRo%=1.165 9h(Dh/Gh)+2.758 8计算(当D峰高大于G峰时),其余采用RmcRo%=0.053 7d(G-D)-11.21.表 2 样品菲系列、二苯并噻吩系列化合物主要参数
Table 2. Main parameters of phenanthrene series and dibenzothiophene series compounds for samples
样品编号 MPR-1 MPR-2 MPI-1 DMP F1 Rc1 MDR MDR-1 MDR-2,3 MDR-4 24/14 46/14 Rc2 LZ-C1lz-4 2.40 0.67 0.75 0.54 0.62 1.85 5.97 0.28 0.94 1.66 1.36 2.80 1.38 LZ-C1lz-3 3.11 0.83 1.25 0.67 0.69 1.55 13.38 0.18 1.42 2.35 1.19 2.26 1.59 LZ-C1lz-2 3.83 0.74 2.04 0.76 0.72 1.08 19.43 0.32 3.66 6.15 1.55 2.41 1.69 LZ-C1lz-1 4.07 0.70 2.11 0.74 0.73 1.03 19.76 0.30 3.83 5.98 1.68 2.56 1.70 YD1-S1l-2 2.57 0.65 0.82 1.45 0.64 1.81 6.00 0.18 0.61 1.07 1.30 2.26 1.38 YD1-S1l-1 2.77 0.85 1.15 1.64 0.69 1.61 8.05 0.22 1.16 1.78 1.37 2.73 1.46 YD5-∈1sh-2 2.92 0.85 0.80 1.42 0.70 1.82 4.09 0.14 0.50 0.56 1.21 2.35 1.28 YD5-∈1sh-1 3.33 0.86 0.81 1.65 0.72 1.81 3.77 0.11 0.40 0.40 1.45 2.16 1.26 YD2-∈1sh-2 3.94 0.76 0.40 1.73 0.74 2.06 5.83 0.03 0.11 0.19 1.11 2.21 1.37 YD2-∈1sh-1 3.54 0.90 0.75 1.56 0.74 1.85 12.07 0.07 0.46 0.84 1.64 3.18 1.57 YD4-∈1n-1 2.75 0.94 0.39 1.40 0.70 2.06 3.91 0.22 0.40 0.86 0.97 1.91 1.27 YD4-Z2l-1 2.02 0.76 0.50 1.26 0.60 2.00 8.70 0.14 0.63 1.25 1.21 2.65 1.48 XZD1-∈1n-1 2.02 0.62 0.51 1.33 0.58 2.00 18.47 0.08 0.69 1.42 1.76 4.14 1.68 XZD1-Z2dy-1 1.93 0.53 0.23 1.10 0.55 2.16 9.60 0.15 0.63 1.48 2.03 4.56 1.51 YL-Z2l-2 1.58 0.87 0.96 1.28 0.55 1.72 2.48 1.13 1.79 2.80 1.09 2.19 1.15 YL-Z2l-1 1.90 0.86 1.00 1.32 0.59 1.70 6.11 0.71 3.46 4.31 1.58 2.74 1.39 XXD2-∈1n-2 1.32 0.75 0.45 1.25 0.50 2.03 14.22 0.11 0.73 1.62 2.83 6.73 1.61 XXD2-∈1n-1 2.42 0.54 0.47 1.57 0.59 2.02 13.26 0.11 0.63 1.41 2.21 5.18 1.59 XPN-∈1n-2 1.74 0.68 0.32 1.26 0.54 2.11 2.50 0.23 0.30 0.56 / / 1.15 XPN-∈1n-1 / / 1.22 / 0.88 1.57 4.48 0.13 0.35 0.56 / / 1.30 注:MPR-1=1-MP/P; MPR-2=2-MP/P; MPI-1=1.5× (3-MP+2-MP)/(P+1-MP+9-MP); DMP=[(3, 5+2, 6)-DMP+2, 7-DMP]/[(2, 10+1, 3+3, 10+3, 9)-DMP+(1, 6+2, 9+2, 5)]; F1=(3-MP+2-MP)/(3-MP+2-MP+9-MP+1-MP); MDR=4-DBT/1-DBT; Rc1=-0. 6×MPI-1+2.3;Rc2=-0. 266 3×ln(MDR)+0.903 4. -
[1] Bao, F., Li, Z. M., Zhang, M. Z., et al., 2012. Application of Laser Raman Spectrum in Organic Maceral Studies. Petroleum Geology & Experiment, 34(1):104-108 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201201020 [2] Bao, J.P., Wang, T. G., Zhou, Y.Q., et al., 1992.The Relationship between Methyl Phenanthrene Ratios and the Evolution of Organic Matter. Journal of Jianghan Petroleum Institute, 14 (4):8-13 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-jhsx199204001.htm [3] Boreham, C. J., Crick, I. H., Powell, T. G., 1988. Alternative Calibration of the Methylphenanthrene Index against Vitrinite Reflectance: Application to Maturity Measurements on Oils and Sediments. Organic Geochemistry, 12(3):289-294. https://doi.org/10.1016/0146-6380(88)90266-5 [4] Bouloubassi, I., Saliot, A., 1993. Dissolved, Particulate and Sedimentary Naturally Derived Polycyclic Aromatic Hydrocarbons in a Coastal Environment: Geochemical Significance. Marine Chemistry, 42(2):127-143. https://doi.org/10.1016/0304-4203(93)90242-g [5] Chakhmakhchev, A., Suzuki, M., Takayama, K., 1997. Distribution of Alkylated Dibenzothiophenes in Petroleum as a Tool for Maturity Assessments. Organic Geochemistry, 26(7-8):483-489. https://doi.org/10.1016/s0146-6380(97)00022-3 [6] Chalmers, G. R., Bustin, R. M., Power, I. M., 2012. Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units. AAPG Bulletin, 96(6):1099-1119. https://doi.org/10.1306/10171111052 [7] Chanyshev, A. D., Litasov, K. D., Shatskiy, A. F., et al., 2015. Oligomerization and Carbonization of Polycyclic Aromatic Hydrocarbons at High Pressure and Temperature. Carbon, 84:225-235. https://doi.org/10.1016/j.carbon.2014.12.011 [8] Chen, J., Xiao, X. M., 2014. Evolution of Nanoporosity in Organic-Rich Shales during Thermal Maturation. Fuel, 129:173-181. https://doi.org/10.1016/j.fuel.2014.03.058 [9] Feng, G. X., Chen, S. J., 1988. Relationship between the Reflectance of Bitumen and Vitrinite in Rock. Natural Gas Industry, 8(3):20-25 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e619919b0598273b06a12c821d9bd0b1 [10] Ferrari, A.C., Meyer, J. C., Scardaci, V., et al., 2006. Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 97(18):187401. https://doi.org/10.1103/PhysRevLett.97.187401 [11] Henry, D. G., Jarvis, I., Gillmore, G., et al., 2018. Assessing Low-Maturity Organic Matter in Shales Using Raman Spectroscopy: Effects of Sample Preparation and Operating Procedure. International Journal of Coal Geology, 191:135-151. https://doi.org/10.1016/j.coal.2018.03.005 [12] Jawhari, T., Roid, A., Casado, J., 1995. Raman Spectroscopic Characterization of Some Commercially Available Carbon Black Materials. Carbon, 33(11):1561-1565. https://doi.org/10.1016/0008-6223(95)00117-v [13] Keown, D. M., Li, X. J., Hayashi, J. I., et al., 2008. Evolution of Biomass Char Structure during Oxidation in O2 as Revealed with FT-Raman Spectroscopy. Fuel Processing Technology, 89(12):1429-1435. https://doi.org/10.1016/0008-6223(95)00117-v [14] Kruge, M.A., 2000. Determination of Thermal Maturity and Organic Matter Type by Principal Components Analysis of the Distributions of Polycyclic Aromatic Compounds. International Journal of Coal Geology, 43(1-4):27-51. https://doi.org/10.1016/s0166-5162(99)00053-1 [15] Kudryavtsev, A. B., Schopf, J. W., Agresti, D. G., et al., 2001. In Situ Laser-Raman Imagery of Precambrian Microscopic Fossils. Proceedings of the National Academy of Sciences, 98(3):823-826. https://doi.org/10.1073/pnas.98.3.823 [16] Liu, D. H., Xiao, X. M., Tian, H., et al., 2012. Sample Maturation Calculated Using Raman Spectroscopic Parameters for Solid Organics: Methodology and Geological Applications. Chinese Science Bulletin, 58(11):1285-1298. https://doi.org/10.1007/s11434-012-5535-y [17] Liu, Q. F., Yuan, L., Li, K., et al., 2018. Structure Characteristics of Different Metamorphic Grade Coal-Based Graphites. Earth Science, 43(5):305-311 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.419 [18] Luo, J., Cheng, K.M., Fu, L.X., et al., 2001. Alkylated Dibenzothiophene Index—A New Method to Assess Thermal Maturity of Source Rocks. Acta Petrolei Sinica, 22(3):27-31 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB200103008.htm [19] Mastalerz, M., Schimmelmann, A., Drobniak, A., et al., 2013. Porosity of Devonian and Mississippian New Albany Shale across a Maturation Gradient: Insights from Organic Petrology, Gas Adsorption, and Mercury Intrusion. AAPG Bulletin, 97(10): 1621-1643. https://doi.org/10.1306/04011312194 [20] Milner, C. W. D., Rogers, M. A., Evans, C. R., 1977. Petroleum Transformations in Reservoirs. Journal of Geochemical Exploration, 7:101-153. https://doi.org/10.1016/0375-6742(77)90079-6 [21] Mohtar, L. G., Rodríguez, S.A., Nazareno, M. A., 2018. Comparative Analysis of Volatile Compound Profiles of Propolis from Different Provenances. Journal of the Science of Food and Agriculture, 98(9):3409-3415. https://doi.org/10.1002/jsfa.8852 [22] Quirico, E., Rouzaud, J. N., Bonal, L., et al., 2005. Maturation Grade of Coals as Revealed by Raman Spectroscopy: Progress and Problems. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 61(10):2368-2377. https://doi.org/10.1016/j.saa.2005.02.015 [23] Radke, M., 1988. Application of Aromatic Compounds as Maturity Indicators in Source Rocks and Crude Oils. Marine and Petroleum Geology, 5(3):224-236. https://doi.org/10.1016/0264-8172(88)90003-7 [24] Radke, M., Welte, D. H., Willsch, H., 1982. Geochemical Study on a Well in the Western Canada Basin: Relation of the Aromatic Distribution Pattern to Maturity of Organic Matter. Geochimica et Cosmochimica Acta, 46(1):1-10. https://doi.org/10.1016/0016-7037(82)90285-x [25] Roger, M., Li, Y.J., Cao, K.N., et al., 2017. Ediacaran Macrofossils in Shunyang Valley, Sixi, Three Gorges District, Hubei Province, China. Journal of Earth Science, 8(4): 614-621. https://doi.org/10.1007/s12583-017-0773-1 [26] Romero-Sarmiento, M. F., Rouzaud, J. N., Bernard, S., et al., 2014. Evolution of Barnett Shale Organic Carbon Structure and Nanostructure with Increasing Maturation. Organic Geochemistry, 71:7-16. https://doi.org/10.1016/j.orggeochem.2014.03.008 [27] Sadezky, A., Muckenhuber, H., Grothe, H., et al., 2005. Raman Microspectroscopy of Soot and Related Carbonaceous Materials: Spectral Analysis and Structural Information. Carbon, 43(8):1731-1742. https://doi.org/10.1016/j.carbon.2005.02.018 [28] Santamarı́a-Orozco, D., Horsfield, B., Di, P.R., et al., 1998. Influence of Maturity on Distributions of Benzo- and Dibenzothiophenes in Tithonian Source Rocks and Crude Oils, Sonda de Campeche, Mexico. Organic Geochemistry, 28(7-8): 423-439. https://doi.org/10.1016/s0146-6380(98)00009-6 [29] Sauerer, B., Craddock, P. R., Al Johani, M. D., et al., 2017. Fast and Accurate Shale Maturity Determination by Raman Spectroscopy Measurement with Minimal Sample Preparation. International Journal of Coal Geology, 173:150-157. https://doi.org/10.1016/j.coal.2017.02.008 [30] Wakeham, S.G., Schaffner, C., Giger, W., 1980. Poly Cyclic Aromatic Hydrocarbons in Recent Lake Sediments-Ⅱ. Compounds Derived from Biogenic Precursors during Early Diagenesis. Geochimica et Cosmochimica Acta, 44(3):415-429. https://doi.org/10.1016/0016-7037(80)90041-1 [31] Wang, B. Z, Ou, W. J., Wang, C. S., et al., 2018. Geochemical Characteristics of the Earth Carboniferous Shale in Guizhong Depression and Their Contribution to Adjacent Gas Reservoirs. Earth Science, 43(7): 2222-2233 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.226 [32] Wang, T.G., He, F.Q., Li, M.J., et al., 2005. Alkyl Dibenzothiophene Class: Molecular Markers for Tracer Reservoir Filling Pathways. Chinese Science Bulletin, 50(2): 176-182 (in Chinese). doi: 10.1360/csb2005-50-2-176 [33] Wang, X. F., Hoffknecht, A., Xiao, J. X., et al., 2009. Graptolite, Chitinozoan and Scolecodont Reflectances and Their Use as Indicators of Thermal Maturity. Acta Geologica Sinica (English Edition), 6(1):93-105. https://doi.org/10.1111/j.1755-6724.1993.mp6001007.x [34] Wang, Y. M., Li, X. J., Chen, B., et al., 2018. Lower Limit of Thermal Maturity for the Carbonization of Organic Matter in Marine Shale and Its Exploration Risk. Petroleum Exploration and Development, 45(3):385-395 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syktykf201803003 [35] Wilkins, R. W. T., Sherwood, N., Li, Z. S., 2018.RaMM (Raman Maturity Method) Study of Samples Used in an Interlaboratory Exercise on a Standard Test Method for Determination of Vitrinite Reflectance on Dispersed Organic Matter in Rocks. Marine and Petroleum Geology, 91: 236-250. https://doi.org/10.1016/j.marpetgeo.2017.12.030 [36] Wood, D. A., Hazra, B., 2017. Characterization of Organic-Rich Shales for Petroleum Exploration & Exploitation: A Review-Part 2: Geochemistry, Thermal Maturity, Isotopes and Biomarkers. Journal of Earth Science, 28(5): 758-778. https://doi.org/10.1007/s12583-017-0733-9 [37] Xiao, X.M., Liu, D. H., Fu, J. M., 1991. The Significance of Bitumen Reflectance as a Mature Parameter of Source Rocks. Acta Sedimentologica Sinica, 9(Suppl.):138-146 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB1991S1018.htm [38] Yang, P., Xie, Y., Li, X. B., et al., 2012. Hydrocarbon- Generating Potential of the Source Rocks of the Sinian Doushantuo Formation on the Western Side of the Xuefeng Mountain. Geology in China, 39(5):1299-1310 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201205017 [39] Zhang, T., Wang, Z. D., Qian, Y., et al., 2018. Evolutional Characteristics of the Phenanthrene and Anthracene Series in the Liquid Products from the Temperature- Pressure Experiments. Petroleum Geology and Oilfield Development in Daqing, 37(2): 48-55 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqsydzykf201802007 [40] Zhao, W. Z., Li, J. Z., Yang, T., et al., 2016. Geological Difference and Its Significance of Marine Shale Gases in South China. Petroleum Exploration and Development, 43(4):499-510 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201604001 [41] 鲍芳, 李志明, 张美珍, 等, 2012.激光拉曼光谱在有机显微组分研究中的应用.石油实验地质, 34(1):104-108. doi: 10.3969/j.issn.1001-6112.2012.01.020 [42] 包建平, 王铁冠, 周玉琦, 等, 1992.甲基菲比值与有机质热演化的关系.江汉石油学院学报, 14 (4) :8-13. http://www.cnki.com.cn/Article/CJFD1992-JHSX199204001.htm [43] 丰国秀, 陈盛吉, 1988.岩石中沥青反射率与镜质体反射率之间的关系.天然气工业, 8(3):20-25. http://d.old.wanfangdata.com.cn/Conference/55271 [44] 刘钦甫, 袁亮, 李阔, 等, 2018.不同变质程度煤系石墨结构特征.地球科学, 43(5):305-311. doi: 10.3799/dqkx.2018.419 [45] 罗健, 程克明, 付立新, 等, 2001.烷基二苯并噻吩-烃源岩热演化新指标.石油学报, 22(3):27-31. http://www.cnki.com.cn/Article/CJFDTotal-SYXB200103008.htm [46] 王保忠, 欧文佳, 王传尚, 等, 2018.桂中坳陷早石炭世泥页岩地球化学特征及近源气成藏模式.地球科学, 43(7): 2222-2233. doi: 10.3799/dqkx.2018.226 [47] 王铁冠, 何发岐, 李美俊, 等, 2005.烷基二苯并噻吩类:示踪油藏充注途径的分子标志物.科学通报, 50(2):176-182. doi: 10.3321/j.issn:0023-074X.2005.02.013 [48] 王玉满, 李新景, 陈波, 等, 2018.海相页岩有机质炭化的热成熟度下限及勘探风险.石油勘探与开发, 45(3): 385-395. http://d.old.wanfangdata.com.cn/Periodical/syktykf201803003 [49] 肖贤明, 刘德汉, 傅家谟, 1991.沥青反射率作为烃源岩成熟度指标的意义.沉积学报, 9(S1):138-146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000030119 [50] 杨平, 谢渊, 李旭兵, 等, 2012.雪峰山西侧震旦系陡山沱组烃源岩生烃潜力及油气地质意义.中国地质, 39(5):1299-1310. doi: 10.3969/j.issn.1000-3657.2012.05.017 [51] 张婷, 王作栋, 钱宇, 等, 2018.温压实验液态产物中菲和蒽系列的演化特征.大庆石油地质与开发, 37(2): 48-55. http://d.old.wanfangdata.com.cn/Periodical/dqsydzykf201802007 [52] 赵文智, 李建忠, 杨涛, 等, 2016.中国南方海相页岩气成藏差异性比较与意义.石油勘探与开发, 43(4):499-510. doi: 10.11698/PED.2016.04.01