• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    黄陵背斜南翼牛蹄塘组二段页岩岩心裂缝脉体成岩环境演化与页岩气保存

    刘力 何生 翟刚毅 陈科 刘早学 王亿 韩元佳 董田

    刘力, 何生, 翟刚毅, 陈科, 刘早学, 王亿, 韩元佳, 董田, 2019. 黄陵背斜南翼牛蹄塘组二段页岩岩心裂缝脉体成岩环境演化与页岩气保存. 地球科学, 44(11): 3583-3597. doi: 10.3799/dqkx.2019.142
    引用本文: 刘力, 何生, 翟刚毅, 陈科, 刘早学, 王亿, 韩元佳, 董田, 2019. 黄陵背斜南翼牛蹄塘组二段页岩岩心裂缝脉体成岩环境演化与页岩气保存. 地球科学, 44(11): 3583-3597. doi: 10.3799/dqkx.2019.142
    Liu Li, He Sheng, Zhai Gangyi, Chen Ke, Liu Zaoxue, Wang Yi, Han Yuanjia, Dong Tian, 2019. Diagenetic Environment Evolution of Fracture Veins of Shale Core in Second Member of Niutitang Formation in Southern Limb of Huangling Anticline and Its Connection with Shale Gas Preservation. Earth Science, 44(11): 3583-3597. doi: 10.3799/dqkx.2019.142
    Citation: Liu Li, He Sheng, Zhai Gangyi, Chen Ke, Liu Zaoxue, Wang Yi, Han Yuanjia, Dong Tian, 2019. Diagenetic Environment Evolution of Fracture Veins of Shale Core in Second Member of Niutitang Formation in Southern Limb of Huangling Anticline and Its Connection with Shale Gas Preservation. Earth Science, 44(11): 3583-3597. doi: 10.3799/dqkx.2019.142

    黄陵背斜南翼牛蹄塘组二段页岩岩心裂缝脉体成岩环境演化与页岩气保存

    doi: 10.3799/dqkx.2019.142
    基金项目: 

    国家自然科学基金面上项目 41672139

    国家"十三五"科技重大专项 2016ZX05034-002-003

    国家基础地质调查项目 DD20160185

    详细信息
      作者简介:

      刘力(1995-), 男, 硕士研究生, 专业方向为非常规页岩气地质

      通讯作者:

      何生

    • 中图分类号: P618

    Diagenetic Environment Evolution of Fracture Veins of Shale Core in Second Member of Niutitang Formation in Southern Limb of Huangling Anticline and Its Connection with Shale Gas Preservation

    • 摘要: 岩心观察鄂西黄陵背斜南翼下寒武统牛蹄塘组二段黑色页岩中发育构造挤压成因的高角度裂缝和顺层裂缝.选取不同产状的典型裂缝脉体样品,薄片镜下观察发现高角度裂缝中充填方解石脉,顺层裂缝中充填方解石-白云石复合脉.通过阴极发光、流体包裹体分析以及微区原位元素测定,开展了裂缝脉体成岩环境演化研究,分析了不同产状裂缝对页岩气层局部封闭性的影响.阴极发光结果表明,高角度方解石脉和顺层方解石-白云石复合脉均为2期流体活动形成.根据流体包裹体分析,高角度方解石脉早期成脉流体主要为变质较深的地层卤水,晚期成脉流体混入了低矿化度流体,而顺层方解石-白云石复合脉2期成脉流体均未受低矿化度流体的改造.利用不同阴极发光的裂缝脉体碳酸盐矿物的微区原位微量元素测定结果,对铁锰含量、稀土元素(REE)和氧化还原判别参数分析显示,高角度方解石脉成岩环境经历了由还原环境向氧化环境转化,而顺层方解石-白云石复合脉的成岩环境长期保持了较为还原的环境.因此认为,高角度裂缝对页岩气层的局部封闭条件可能产生破坏作用,从而造成页岩气一定程度的散失,而顺层裂缝对局部封闭条件的破坏作用相对有限,裂缝发育特征及其经历的成岩演化过程研究可为页岩气层自封闭和页岩气微观保存条件的评价提供依据.

       

    • 图  1  黄陵背斜构造位置及采样井位

      Fig.  1.  Structure location and the location of sampling well of Huangling anticline

      图  2  黄陵背斜南翼ZD1井牛蹄塘组地层综合柱状图及页岩段裂缝发育特征

      Fig.  2.  Stratigraphic columnar section and shale fracture development of Niutitang Formation of Well ZD1 in southern limb of Huangling anticline

      图  3  黄陵背斜南翼ZD1井高角度方解石脉岩相学及阴极发光特征

      Fig.  3.  Characteristics of petrography and cathodoluminescence of high-angle calcite vein from Well ZD1 in southern limb of Huangling anticline

      图  4  黄陵背斜南翼ZD1井顺层方解石-白云石复合脉岩相学及阴极发光特征

      Fig.  4.  Characteristics of petrography and cathodoluminescence of bed-parallel calcite-dolomite composite vein from Well ZD1 in southern limb of Huangling anticline

      图  5  黄陵背斜南翼ZD1井裂缝脉体盐水包裹体和甲烷包裹体形态与产出特征

      a.高角度方解石脉早期形成的方解石中的盐水包裹体,Tm≈-20 ℃,ZD1井272.25 m,单偏光;b.高角度方解石脉早期形成的方解石中的甲烷包裹体,ZD1井272.25 m,单偏光;c.高角度方解石脉晚期形成的方解石中的盐水包裹体,Tm≈-0.5 ℃,ZD1井272.25 m,单偏光;d.顺层方解石-白云石复合脉早期形成的方解石中的盐水包裹体,Tm≈-21.5 ℃,ZD1井314.76 m,单偏光;e.顺层方解石-白云石复合脉早期形成的方解石中的甲烷包裹体,ZD1井314.76 m,单偏光;f.顺层方解石-白云石复合脉晚期形成的白云石中的盐水包裹体,Tm≈-20.1 ℃,ZD1井314.76 m,单偏光

      Fig.  5.  Shapes and occurrences of saline inclusions and methane inclusions in fracture veins from Well ZD1 in southern limb of Huangling anticline

      图  6  黄陵背斜南翼ZD1井裂缝脉体甲烷包裹体激光拉曼谱图

      Fig.  6.  Laser Raman spectra of methane inclusions in fracture veins from Well ZD1 in southern limb of Huangling anticline

      图  7  黄陵背斜南翼ZD1井裂缝脉体盐水包裹体均一温度与盐度分布特征

      a.高角度方解石脉盐水包裹体均一温度与盐度分布散点图;b.高角度方解石脉盐水包裹体均一温度统计直方图;c.顺层方解石-白云石复合脉盐水包裹体均一温度与盐度分布散点图;d.顺层方解石-白云石复合脉盐水包裹体均一温度统计直方图

      Fig.  7.  Homogenization temperature and salinity distribution characteristics of brine inclusions in fracture veins from Well ZD1 in southern limb of Huangling anticline

      图  8  黄陵背斜南翼ZD1井裂缝脉体稀土配分模式

      a.高角度方解石脉样品,其中ZD1-3-1、ZD1-3-2测点代表早期形成的方解石,ZD1-3-3、ZD1-3-4测点代表晚期形成的方解石;b.顺层方解石-白云石复合脉样品,其中ZD1-5-1、ZD1-5-4测点代表早期形成的方解石,ZD1-5-2、ZD1-5-3测点代表晚期形成的白云石

      Fig.  8.  REE distribution patterns of fracture veins from Well ZD1 in southern limb of Huangling anticline

      图  9  黄陵背斜南翼ZD1井裂缝脉体氧化还原环境判别参数分布特征

      a.高角度方解石脉样品,其中ZD1-3-1、ZD1-3-2测点代表早期形成的方解石,ZD1-3-3、ZD1-3-4测点代表晚期形成的方解石;b.顺层方解石-白云石复合脉样品,其中ZD1-5-1、ZD1-5-4测点代表早期形成的方解石,ZD1-5-2、ZD1-5-3测点代表晚期形成的白云石

      Fig.  9.  Distribution characteristic of discriminant parameters of reductive environment of fracture veins from Well ZD1 in southern limb of Huangling anticline

      图  10  黄陵背斜南翼ZD1井埋藏史-抬升-热演化史图及成脉古流体活动时间与深度

      a.高角度裂缝方解石脉样品;b.顺层裂缝方解石-白云石复合脉样品

      Fig.  10.  History of burial-uplifting-thermal evolution and the activity time and depth of vein forming paleo fluid of Well ZD1 in southern limb of Huangling anticline

      表  1  黄陵背斜南翼ZD1井裂缝脉体样品信息

      Table  1.   Sample information of fracture veins from Well ZD1 in southern limb of Huangling anticline

      样品编号 采样层位 深度(m) 脉体类型 脉体产状
      ZD1-3 牛蹄塘组二段 272.25 方解石脉 高角度
      ZD1-5 牛蹄塘组二段 314.76 方解石-白云石复合脉 顺层
      下载: 导出CSV

      表  2  黄陵背斜南翼ZD1井裂缝脉体Fe2+、Mn2+含量(10-6)

      Table  2.   Contents of Fe2+ and Mn2+ in fracture veins from Well ZD1 in southern limb of Huangling anticline(10-6)

      样品编号 ZD1-3 ZD1-5
      测试点编号 ZD1-3-1 ZD1-3-2 ZD1-3-3 ZD1-3-4 ZD1-5-1 ZD1-5-2 ZD1-5-3 ZD1-5-4
      Mn2+ 332.733 2 271.246 0 150.856 2 161.001 4 462.024 7 1 438.253 4 1 543.967 6 510.752 2
      Fe2+ 4 956.668 3 2 635.823 0 2 147.313 6 2 381.884 9 3 535.675 7 64 135.281 5 57 772.807 7 3 478.833 0
      Fe2+/Mn2+ 15 10 14 15 8 / / 7
      阴极发光强度 强度较弱 中等强度 强度较弱 强度较弱 中等强度 不发光 不发光 中等强度
      下载: 导出CSV

      表  3  黄陵背斜南翼ZD1井裂缝脉体微量元素含量(10-6)

      Table  3.   Contents of trace elements in fractured veins from Well ZD1 in southern limb of Huangling anticline

      样品编号 ZD1-3 ZD1-5
      测试点编号 ZD1-3-1 ZD1-3-2 ZD1-3-3 ZD1-3-4 ZD1-5-1 ZD1-5-2 ZD1-5-3 ZD1-5-4
      La 13.342 6 6.667 9 0.035 8 0.020 0 2.384 6 4.180 0 6.208 1 3.974 6
      Ce 37.525 9 11.761 1 0.056 8 0.063 9 5.474 9 11.960 3 17.965 7 9.644 7
      Pr 5.086 2 1.327 1 0.006 0 0.013 5 0.862 9 1.970 0 2.947 1 1.525 2
      Nd 25.444 8 5.171 1 0 0 3.836 9 9.739 3 14.307 6 7.484 2
      Sm 5.988 0 1.056 8 0.037 4 0 0.968 6 2.086 3 3.088 9 1.760 1
      Eu 2.038 5 0.279 9 0.000 9 0 0.804 9 1.365 2 1.861 7 2.182 2
      Gd 6.727 5 0.727 6 0 0.012 5 1.077 5 1.926 5 2.731 4 1.526 4
      Tb 1.077 3 0.125 2 0.002 9 0 0.262 5 0.210 3 0.286 8 0.186 8
      Dy 7.374 4 0.689 6 0.029 4 0.005 9 1.849 6 0.882 1 1.116 9 1.110 2
      Ho 1.484 7 0.118 1 0 0.005 1 0.381 7 0.122 0 0.136 3 0.227 4
      Er 3.282 3 0.424 1 0.006 8 0.021 4 1.026 0 0.242 0 0.212 2 0.552 3
      Tm 0.397 6 0.042 9 0 0.003 7 0.145 7 0.028 5 0.012 8 0.096 6
      Yb 2.333 1 0.204 4 0.023 5 0.011 4 1.206 5 0.036 3 0.014 0 0.422 0
      Lu 0.304 4 0.039 5 0.007 0 0 0.147 5 0.003 4 0.002 2 0.074 4
      V 12.621 1 2.240 8 0.082 7 0.098 6 1.643 8 1.874 0 2.565 9 1.203 5
      Cr 1.609 7 1.697 4 0.535 2 0.560 9 0.725 8 0.208 5 0.526 7 0.563 4
      Co 0.006 3 0.011 4 0.079 7 0.046 5 0.014 6 0.014 5 0.029 8 0.026 1
      Ni 0.325 5 0.745 8 0.131 1 0.116 6 0.466 6 6.940 5 6.635 8 0.822 0
      Th 0.006 9 0.005 2 0.000 5 0.003 2 2.546 5 0.001 5 0.008 8 1.648 2
      U 0.021 2 0.013 1 0 0.002 0 8.287 3 0.029 0 0.088 0 4.195 1
      注:0值表示该元素含量低于微区原位分析仪器检测下限.
      下载: 导出CSV

      表  4  黄陵背斜南翼ZD1井裂缝脉体微量元素特征参数(10-6)

      Table  4.   Characteristic parameters of trace elements in fracture veins from Well ZD1 in southern limb of Huangling anticline

      样品编号 ZD1-3 ZD1-5
      测试点编号 ZD1-3-1 ZD1-3-2 ZD1-3-3 ZD1-3-4 ZD1-5-1 ZD1-5-2 ZD1-5-3 ZD1-5-4
      V/Cr 7.840 5 1.320 1 0.154 5 0.175 7 2.264 8 8.986 9 4.871 5 2.136 0
      Ni/Co 51.339 8 65.272 8 1.645 9 2.506 3 31.971 5 477.442 2 222.963 3 31.461 3
      U/Th 3.078 1 2.550 0 / 0.625 8 3.254 4 19.894 6 9.961 0 2.545 3
      V /(V+Ni) 0.974 9 0.750 3 0.386 8 0.458 1 0.778 9 0.212 6 0.278 8 0.594 2
      ∑REE 112.407 2 28.635 3 0.206 5 0.157 5 20.429 8 34.752 2 50.891 8 30.767 0
      ∑LREE 89.425 9 26.264 0 0.136 9 0.097 4 14.332 7 31.301 0 46.379 2 26.570 9
      ∑HREE 22.981 3 2.371 3 0.069 6 0.060 0 6.097 1 3.451 2 4.512 7 4.196 0
      ∑LREE/∑HREE 3.891 2 11.075 7 1.966 4 1.622 9 2.350 8 9.069 5 10.277 5 6.332 4
      δCe 0.992 2 0.861 1 0.844 7 0.848 2 0.831 3 0.907 8 0.914 8 0.853 2
      δEu 1.410 1 1.401 6 / / 3.459 2 2.989 7 2.814 0 5.845 2
      注:δCe=CeN/(LaN·PrN)1/2,CeN、LaN、PrN分别为该元素实测值的NASC标准化值;δEu=EuN/(SmN·GdN)1/2,EuN、SmN、GdN分别为该元素实测值的NASC标准化值.
      下载: 导出CSV
    • [1] Gao, J., He, S., He, Z.L., et al., 2014. Genesis of Calcite Vein and Its Implication to Petroleum Preservation in Jingshan Region, Mid-Yangtze. Oil & Gas Geology, 35(1):33-41 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201401005
      [2] Gao, J., He, S., Yi, J.Z., 2015. Discovery of High Density Methane Inclusions in Jiaoshiba Shale Gas Field and Its Significance. Oil & Gas Geology, 36(3):472-480 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201503016
      [3] Gao, J., He, S., Zhao, J.X., et al., 2017. Geothermometry and Geobarometry of Overpressured Lower Paleozoic Gas Shales in the Jiaoshiba Field, Central China:Insight from Fluid Inclusions in Fracture Cements. Marine and Petroleum Geology, 83:124-139. https://doi.org/10.1016/j.marpetgeo.2017.02.018
      [4] Hall, D. L., Sterner, S. M., Bodnar, R. J., 1988. Freezing Point Depression of NaCl-KCl-H2O Solutions. Economic Geology, 83(1):197-202. https://doi.org/10.2113/gsecongeo.83.1.197
      [5] Hao, L.B., Qi, C. M., 2004. Geochemical Principle. Geological Publishing House, Beijing (in Chinese).
      [6] Henderson, P., 1989. REE Geochemistry. Geological Publishing House, Beijing (in Chinese).
      [7] Hu, D.F., Zhang, H.R., Ni, K., et al., 2014.Main Controlling Factors for Gas Preservation Conditions of Marine Shales in Southeastern Margins of the Sichuan Basin. Natural Gas Industry, 34(6):17-23 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201406003
      [8] Hu, X. M., Wang, C.S., 2001. Summarization on the Studying Methods of the Paleo-Ocean Dissolved Oxygen. Advance in Earth Sciences, 16(1):65-71 (in Chinese with English abstract).
      [9] Hu, Z.C., Zhang, W., Liu, Y.S., et al., 2015. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis:Application to Lead Isotope Analysis. Analytical Chemistry, 87(2):1152-1157. doi: 10.1021/ac503749k
      [10] Huang, S.J., 1992. Relationship between Cathodoluminescence and Concentration of Iron and Manganese in Carbonate Minerals. Mineralogy and Petrology, 12(4):74-79 (in Chinese with English abstract).
      [11] Jiang, L., Deng, B., Liu, S.G., et al., 2019. Paleo-Fluid Migration and Conservation Conditions of Shale Gas in Jiaoshiba-Wulong Area. Earth Science, 44(2):524-538 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.515
      [12] Lee, S. G., Lee, D. H., Kim, Y., et al., 2003. Rare Earth Elements as Indicators of Groundwater Environment Changes in a Fractured Rock System:Evidence from Fracture-Filling Calcite. Applied Geochemistry, 18(1):135-143. https://doi.org/10.1016/s0883-2927(02)00071-9
      [13] Li, W., He, S., Zhang, B.Q., et al., 2018. Characteristics of Paleo-Temperature and Paleo-Pressure of Fluid Inclusions in Shale Composite Veins of Longmaxi Formation at the Western Margin of Jiaoshiba Anticline. Acta Petrolei Sinica, 39(4):402-415 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syxb201804004
      [14] Liang, C., Jiang, Z. X., Cao, Y. C., et al., 2017. Sedimentary Characteristics and Paleoenvironment of Shale in the Wufeng-Longmaxi Formation, North Guizhou Province, and Its Shale Gas Potential. Journal of Earth Science, 28(6):1020-1031. https://doi.org/10.1007/s12583-016-0932-x
      [15] Lin, Z.J., Chen, D.F., Liu, Q., 2008. Geochemical Indices for Redox Conditions of Marine Sediments. Bulletin of Mineralogy, Petrology and Geochemistry, 27(1):72-80 (in Chinese with English abstract).
      [16] Liu, B., Shen, K., 1999. The Thermodynamic Simulation of Fluid Inclusions. Geological Publishing House, Beijing (in Chinese).
      [17] Liu, D.H., Lu, H.Z., Xiao, X.M., 2007. Hydrocarbon Inclusions and Its Application in Petroleum Exploration and Development. Guangdong Science and Technology Press, Guangzhou (in Chinese).
      [18] Liu, Y., 2017. Geochemical Genesis Model and Its Applications of Natural Gas in High-over Matured Shale (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      [19] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      [20] Lu, H.Z., Fan, H.R., Ni, P., et al., 2004. Fluid Inclusions. Science Press, Beijing (in Chinese).
      [21] Moore, C.H., 1989. Carbonate Diagenesis and Porosity. Elsevier, New York.
      [22] Nothdurft, L.D., Webb, G.E., Kamber, B. S., 2004. Rare Earth Element Geochemistry of Late Devonian Reefal Carbonates, Canning Basin, Western Australia:Confirmation of a Seawater REE Proxy in Ancient Limestones. Geochimica et Cosmochimica Acta, 68(2):263-283. https://doi.org/10.1016/s0016-7037(03)00422-8
      [23] Shen, C.B., Mei, L.F., Liu, Z.Q., et al., 2009. Apatite and Zircon Fission Track Date, Evidences for the Mesozoic-Cenozoic Uplift of Huangling Dome, Central China. Journal of Mineralogy and Petrology, 29(2):54-60 (in Chinese with English abstract).
      [24] Wang, J., Chu, Y., Lin, W., et al., 2010. Structural Geometry and the Origin of the Huangling Anticline. Chinese Journal of Geology, 45(3):615-625 (in Chinese with English abstract).
      [25] Wang, W., 2009. Study on the Fluids Characteristics of the Marine Strata in the Middle Yangtze Region and Its Connection with Hydrocarbon Preservation (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      [26] Wang, X., Gao, J., He, S., et al., 2017. Fluid Inclusion and Geochemistry Studies of Calcite Veins in Shizhu Synclinorium, Central China:Record of Origin of Fluids and Diagenetic Conditions. Journal of Earth Science, 28(2):315-332. https://doi.org/10.1007/s12583-016-0921-7
      [27] Wei, D.X., Shen, A.J., Wang, Y., et al., 2015. Cathodoluminescence Features of the Calcite Filling in the Ordovician Carbonate Fractured-Vuggy Reservoir and Its Significance to Instructions of Diagenetic Environment in Northern Tarim Basin. Petroleum Geology and Recovery Efficiency, 22(4):54-58 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqdzycsl201504010
      [28] Xu, D.L., Peng, L.H., Liu, H., et al., 2013. Meso-Cenozoic Tectono-Sedimentary Response of Multi-Phased Uplifts of Huangling Anticline, Central China. Geology and Mineral Resources of South China, 29(2):90-99 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hndzykc201302002
      [29] Yang, X., 2017. Preservative Conditions of Shale Gas from Wufeng Formation to Longmaxi Formation in Northeast of Chongqing (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      [30] Yang, X.Y., He, S., He, Z.L., et al., 2013. Characteristics and Paleo-Fluid Activity Implications of Fluid-Inclusion and Isotope of Calcite Veins in Jingshan Area. Journal of China University of Petroleum (Edition of Natural Science), 37(1):19-26 (in Chinese with English abstract).
      [31] Zhai, G.Y., Wang, Y.F., Bao, S.J., et al., 2017. Major Factors Controlling the Accumulation and High Productivity of Marine Shale Gas and Prospect Forecast in Southern China. Earth Science, 42(7):1057-1068 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.085
      [32] Zhang, H.F., Gao, S., 2012. Geochemistry. Geological Publishing House, Beijing (in Chinese).
      [33] Zhang, J.K., He, S., Yi, J.Z., et al., 2014. Rock Thermo-Acoustic Emission and Basin Modeling Technologies Applied to the Study of Maximum Paleotemperatures and Thermal Maturity Histories of Lower Paleozoic Marine Shales in the Western Middle Yangtze Area. Acta Petrolei Sinica, 35(1):58-67 (in Chinese with English abstract). doi: 10.1038/aps.2013.122
      [34] Zhang, J.L., Qiao, S. H., Lu, W.J., et al., 2015. An Equation for Determining Methane Densities in Fluid Inclusions with Raman Shifts. Journal of Geochemical Exploration, 171:20-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3eb9deb275033217debf9a20a4bf1200
      [35] 高键, 何生, 何治亮, 等, 2014.中扬子京山地区方解石脉成因及其对油气保存的指示意义.石油与天然气地质, 35(1):33-41. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201401005
      [36] 高键, 何生, 易积正, 2015.焦石坝页岩气田中高密度甲烷包裹体的发现及其意义.石油与天然气地质, 36(3):472-480. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201503016
      [37] 郝立波, 戚长谋, 2004.地球化学原理.北京:地质出版社.
      [38] Henderson, P., 1989.稀土元素地球化学.北京:地质出版社.
      [39] 胡东风, 张汉荣, 倪楷, 等, 2014.四川盆地东南缘海相页岩气保存条件及其主控因素.天然气工业, 34(6):17-23. doi: 10.3787/j.issn.1000-0976.2014.06.003
      [40] 胡修棉, 王成善, 2001.古海洋溶解氧研究方法综述.地球科学进展, 16(1):65-71. doi: 10.3321/j.issn:1001-8166.2001.01.013
      [41] 黄思静, 1992.碳酸盐矿物的阴极发光性与其Fe, Mn含量的关系.矿物岩石, 12(4):74-79.
      [42] 姜磊, 邓宾, 刘树根, 等, 2019.焦石坝-武隆构造带古流体活动差异及对页岩气保存条件的影响.地球科学, 44(2):524-538. doi: 10.3799/dqkx.2018.515
      [43] 李文, 何生, 张柏桥, 等, 2018.焦石坝背斜西缘龙马溪组页岩复合脉体中流体包裹体的古温度及古压力特征.石油学报, 39(4):402-415. http://d.old.wanfangdata.com.cn/Periodical/syxb201804004
      [44] 林治家, 陈多福, 刘芊, 2008.海相沉积氧化还原环境的地球化学识别指标.矿物岩石地球化学通报, 27(1):72-80. doi: 10.3969/j.issn.1007-2802.2008.01.012
      [45] 刘斌, 沈昆, 1999.流体包裹体热力学.北京:地质出版社.
      [46] 刘德汉, 卢焕章, 肖贤明, 2007.油气包裹体及其在石油勘探和开发中的应用.广州:广东科技出版社.
      [47] 刘飏, 2017.高-过成熟页岩中天然气地球化学成因模式与应用(博士学位论文).北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1017136496.htm
      [48] 卢焕章, 范宏瑞, 倪培, 等, 2004.流体包裹体.北京:科学出版社.
      [49] 沈传波, 梅廉夫, 刘昭茜, 等, 2009.黄陵隆起中-新生代隆升作用的裂变径迹证据.矿物岩石, 29(2):54-60. doi: 10.3969/j.issn.1001-6872.2009.02.009
      [50] 王军, 褚杨, 林伟, 等, 2010.黄陵背斜的构造几何形态及其成因探讨.地质科学, 45(3):615-625. doi: 10.3969/j.issn.0563-5020.2010.03.001
      [51] 王威, 2009.中扬子区海相地层流体特征及其与油气保存关系研究(博士学位论文).成都: 成都理工大学. http://cdmd.cnki.com.cn/article/cdmd-10616-2009220915.htm
      [52] 韦东晓, 沈安江, 王莹, 等, 2015.塔北地区奥陶系碳酸盐岩缝洞充填方解石的阴极发光特征及对成岩环境的指示意义.油气地质与采收率, 22(4):54-58. doi: 10.3969/j.issn.1009-9603.2015.04.010
      [53] 徐大良, 彭练红, 刘浩, 等, 2013.黄陵背斜中新生代多期次隆升的构造-沉积响应.华南地质与矿产, 29(2):90-99. http://d.old.wanfangdata.com.cn/Periodical/hndzykc201302002
      [54] 杨潇, 2017.渝东北地区五峰组-龙马溪组页岩气保存条件分析(硕士学位论文).成都: 成都理工大学. http://cdmd.cnki.com.cn/Article/CDMD-10616-1017218951.htm
      [55] 杨兴业, 何生, 何治亮, 等, 2013.京山地区方解石脉包裹体、同位素特征及古流体指示意义.中国石油大学学报(自然科学版), 37(1):19-26. doi: 10.3969/j.issn.1673-5005.2013.01.004
      [56] 翟刚毅, 王玉芳, 包书景, 等, 2017.我国南方海相页岩气富集高产主控因素及前景预测.地球科学, 42(7):1057-1068. doi: 10.3799/dqkx.2017.085
      [57] 张宏飞, 高山, 2012.地球化学.北京:地质出版社.
      [58] 张建坤, 何生, 易积正, 等, 2014.岩石热声发射和盆模技术研究中扬子区西部下古生界海相页岩最高古地温和热成熟史.石油学报, 35(1):58-67. http://d.old.wanfangdata.com.cn/Periodical/syxb201401006
    • 加载中
    图(10) / 表(4)
    计量
    • 文章访问数:  4607
    • HTML全文浏览量:  1043
    • PDF下载量:  112
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-06-17
    • 刊出日期:  2019-11-15

    目录

      /

      返回文章
      返回