Diagenetic Environment Evolution of Fracture Veins of Shale Core in Second Member of Niutitang Formation in Southern Limb of Huangling Anticline and Its Connection with Shale Gas Preservation
-
摘要: 岩心观察鄂西黄陵背斜南翼下寒武统牛蹄塘组二段黑色页岩中发育构造挤压成因的高角度裂缝和顺层裂缝.选取不同产状的典型裂缝脉体样品,薄片镜下观察发现高角度裂缝中充填方解石脉,顺层裂缝中充填方解石-白云石复合脉.通过阴极发光、流体包裹体分析以及微区原位元素测定,开展了裂缝脉体成岩环境演化研究,分析了不同产状裂缝对页岩气层局部封闭性的影响.阴极发光结果表明,高角度方解石脉和顺层方解石-白云石复合脉均为2期流体活动形成.根据流体包裹体分析,高角度方解石脉早期成脉流体主要为变质较深的地层卤水,晚期成脉流体混入了低矿化度流体,而顺层方解石-白云石复合脉2期成脉流体均未受低矿化度流体的改造.利用不同阴极发光的裂缝脉体碳酸盐矿物的微区原位微量元素测定结果,对铁锰含量、稀土元素(REE)和氧化还原判别参数分析显示,高角度方解石脉成岩环境经历了由还原环境向氧化环境转化,而顺层方解石-白云石复合脉的成岩环境长期保持了较为还原的环境.因此认为,高角度裂缝对页岩气层的局部封闭条件可能产生破坏作用,从而造成页岩气一定程度的散失,而顺层裂缝对局部封闭条件的破坏作用相对有限,裂缝发育特征及其经历的成岩演化过程研究可为页岩气层自封闭和页岩气微观保存条件的评价提供依据.Abstract: Core observation shows that high-angle and bed-parallel fractures of tectonic compression origin develop in the black shale of the second member of the Lower Cambrian Niutitang Formation in the southern limb of Huangling anticline,West Hubei. Typical fracture veins with different occurrences were selected,calcite vein was filled in high-angle fractures and calcite-dolomite composite vein was filled in bedding fractures under thin section microscopy. Through cathodic luminescence,fluid inclusion analysis and in-situ element determination,the evolutions of diagenetic environment of fractured veins were studied,and the effects of different occurrence fractures on local sealing of shale gas reservoirs were analyzed. The cathodic luminescence observation indicates that the high-angle calcite vein and bed-parallel calcite-dolomite composite vein were both formed by two phases of fluid activity. According to fluid inclusion analysis,the early vein-forming fluids of high-angle calcite vein were mainly deep-metamorphic stratum brine while the late vein-forming fluids were mixed with low-salinity fluids,however the two-stage vein-forming fluids of bed-parallel calcite-dolomite composite vein were not modified by low salinity fluids. The in-situ element determination results of carbonate minerals with different cathodoluminescence characteristics in fracture veins,and analyses of iron and manganese content,rare earth elements(REE) and redox discriminant parameters,show that the diagenetic environment of high-angle calcite vein has undergone a transformation from reductive environment to oxidative environment,while the diagenetic environment of bed-parallel calcite-dolomite composite vein has maintained a relatively reductive environment for a long time. Therefore,it is considered that high-angle fractures may have destructive effect on the local sealing conditions of shale gas reservoirs,resulting in the loss of shale gas to a certain extent. While bed-parallel fractures may have relatively limited destructive effect on the local sealing conditions. The study of fracture development characteristics and diagenetic evolution process can provide basis for the evaluation of self-sealing conditions of shale gas reservoirs and micro-preservation conditions of shale gas.
-
图 5 黄陵背斜南翼ZD1井裂缝脉体盐水包裹体和甲烷包裹体形态与产出特征
a.高角度方解石脉早期形成的方解石中的盐水包裹体,Tm≈-20 ℃,ZD1井272.25 m,单偏光;b.高角度方解石脉早期形成的方解石中的甲烷包裹体,ZD1井272.25 m,单偏光;c.高角度方解石脉晚期形成的方解石中的盐水包裹体,Tm≈-0.5 ℃,ZD1井272.25 m,单偏光;d.顺层方解石-白云石复合脉早期形成的方解石中的盐水包裹体,Tm≈-21.5 ℃,ZD1井314.76 m,单偏光;e.顺层方解石-白云石复合脉早期形成的方解石中的甲烷包裹体,ZD1井314.76 m,单偏光;f.顺层方解石-白云石复合脉晚期形成的白云石中的盐水包裹体,Tm≈-20.1 ℃,ZD1井314.76 m,单偏光
Fig. 5. Shapes and occurrences of saline inclusions and methane inclusions in fracture veins from Well ZD1 in southern limb of Huangling anticline
图 7 黄陵背斜南翼ZD1井裂缝脉体盐水包裹体均一温度与盐度分布特征
a.高角度方解石脉盐水包裹体均一温度与盐度分布散点图;b.高角度方解石脉盐水包裹体均一温度统计直方图;c.顺层方解石-白云石复合脉盐水包裹体均一温度与盐度分布散点图;d.顺层方解石-白云石复合脉盐水包裹体均一温度统计直方图
Fig. 7. Homogenization temperature and salinity distribution characteristics of brine inclusions in fracture veins from Well ZD1 in southern limb of Huangling anticline
图 9 黄陵背斜南翼ZD1井裂缝脉体氧化还原环境判别参数分布特征
a.高角度方解石脉样品,其中ZD1-3-1、ZD1-3-2测点代表早期形成的方解石,ZD1-3-3、ZD1-3-4测点代表晚期形成的方解石;b.顺层方解石-白云石复合脉样品,其中ZD1-5-1、ZD1-5-4测点代表早期形成的方解石,ZD1-5-2、ZD1-5-3测点代表晚期形成的白云石
Fig. 9. Distribution characteristic of discriminant parameters of reductive environment of fracture veins from Well ZD1 in southern limb of Huangling anticline
表 1 黄陵背斜南翼ZD1井裂缝脉体样品信息
Table 1. Sample information of fracture veins from Well ZD1 in southern limb of Huangling anticline
样品编号 采样层位 深度(m) 脉体类型 脉体产状 ZD1-3 牛蹄塘组二段 272.25 方解石脉 高角度 ZD1-5 牛蹄塘组二段 314.76 方解石-白云石复合脉 顺层 表 2 黄陵背斜南翼ZD1井裂缝脉体Fe2+、Mn2+含量(10-6)
Table 2. Contents of Fe2+ and Mn2+ in fracture veins from Well ZD1 in southern limb of Huangling anticline(10-6)
样品编号 ZD1-3 ZD1-5 测试点编号 ZD1-3-1 ZD1-3-2 ZD1-3-3 ZD1-3-4 ZD1-5-1 ZD1-5-2 ZD1-5-3 ZD1-5-4 Mn2+ 332.733 2 271.246 0 150.856 2 161.001 4 462.024 7 1 438.253 4 1 543.967 6 510.752 2 Fe2+ 4 956.668 3 2 635.823 0 2 147.313 6 2 381.884 9 3 535.675 7 64 135.281 5 57 772.807 7 3 478.833 0 Fe2+/Mn2+ 15 10 14 15 8 / / 7 阴极发光强度 强度较弱 中等强度 强度较弱 强度较弱 中等强度 不发光 不发光 中等强度 表 3 黄陵背斜南翼ZD1井裂缝脉体微量元素含量(10-6)
Table 3. Contents of trace elements in fractured veins from Well ZD1 in southern limb of Huangling anticline
样品编号 ZD1-3 ZD1-5 测试点编号 ZD1-3-1 ZD1-3-2 ZD1-3-3 ZD1-3-4 ZD1-5-1 ZD1-5-2 ZD1-5-3 ZD1-5-4 La 13.342 6 6.667 9 0.035 8 0.020 0 2.384 6 4.180 0 6.208 1 3.974 6 Ce 37.525 9 11.761 1 0.056 8 0.063 9 5.474 9 11.960 3 17.965 7 9.644 7 Pr 5.086 2 1.327 1 0.006 0 0.013 5 0.862 9 1.970 0 2.947 1 1.525 2 Nd 25.444 8 5.171 1 0 0 3.836 9 9.739 3 14.307 6 7.484 2 Sm 5.988 0 1.056 8 0.037 4 0 0.968 6 2.086 3 3.088 9 1.760 1 Eu 2.038 5 0.279 9 0.000 9 0 0.804 9 1.365 2 1.861 7 2.182 2 Gd 6.727 5 0.727 6 0 0.012 5 1.077 5 1.926 5 2.731 4 1.526 4 Tb 1.077 3 0.125 2 0.002 9 0 0.262 5 0.210 3 0.286 8 0.186 8 Dy 7.374 4 0.689 6 0.029 4 0.005 9 1.849 6 0.882 1 1.116 9 1.110 2 Ho 1.484 7 0.118 1 0 0.005 1 0.381 7 0.122 0 0.136 3 0.227 4 Er 3.282 3 0.424 1 0.006 8 0.021 4 1.026 0 0.242 0 0.212 2 0.552 3 Tm 0.397 6 0.042 9 0 0.003 7 0.145 7 0.028 5 0.012 8 0.096 6 Yb 2.333 1 0.204 4 0.023 5 0.011 4 1.206 5 0.036 3 0.014 0 0.422 0 Lu 0.304 4 0.039 5 0.007 0 0 0.147 5 0.003 4 0.002 2 0.074 4 V 12.621 1 2.240 8 0.082 7 0.098 6 1.643 8 1.874 0 2.565 9 1.203 5 Cr 1.609 7 1.697 4 0.535 2 0.560 9 0.725 8 0.208 5 0.526 7 0.563 4 Co 0.006 3 0.011 4 0.079 7 0.046 5 0.014 6 0.014 5 0.029 8 0.026 1 Ni 0.325 5 0.745 8 0.131 1 0.116 6 0.466 6 6.940 5 6.635 8 0.822 0 Th 0.006 9 0.005 2 0.000 5 0.003 2 2.546 5 0.001 5 0.008 8 1.648 2 U 0.021 2 0.013 1 0 0.002 0 8.287 3 0.029 0 0.088 0 4.195 1 注:0值表示该元素含量低于微区原位分析仪器检测下限. 表 4 黄陵背斜南翼ZD1井裂缝脉体微量元素特征参数(10-6)
Table 4. Characteristic parameters of trace elements in fracture veins from Well ZD1 in southern limb of Huangling anticline
样品编号 ZD1-3 ZD1-5 测试点编号 ZD1-3-1 ZD1-3-2 ZD1-3-3 ZD1-3-4 ZD1-5-1 ZD1-5-2 ZD1-5-3 ZD1-5-4 V/Cr 7.840 5 1.320 1 0.154 5 0.175 7 2.264 8 8.986 9 4.871 5 2.136 0 Ni/Co 51.339 8 65.272 8 1.645 9 2.506 3 31.971 5 477.442 2 222.963 3 31.461 3 U/Th 3.078 1 2.550 0 / 0.625 8 3.254 4 19.894 6 9.961 0 2.545 3 V /(V+Ni) 0.974 9 0.750 3 0.386 8 0.458 1 0.778 9 0.212 6 0.278 8 0.594 2 ∑REE 112.407 2 28.635 3 0.206 5 0.157 5 20.429 8 34.752 2 50.891 8 30.767 0 ∑LREE 89.425 9 26.264 0 0.136 9 0.097 4 14.332 7 31.301 0 46.379 2 26.570 9 ∑HREE 22.981 3 2.371 3 0.069 6 0.060 0 6.097 1 3.451 2 4.512 7 4.196 0 ∑LREE/∑HREE 3.891 2 11.075 7 1.966 4 1.622 9 2.350 8 9.069 5 10.277 5 6.332 4 δCe 0.992 2 0.861 1 0.844 7 0.848 2 0.831 3 0.907 8 0.914 8 0.853 2 δEu 1.410 1 1.401 6 / / 3.459 2 2.989 7 2.814 0 5.845 2 注:δCe=CeN/(LaN·PrN)1/2,CeN、LaN、PrN分别为该元素实测值的NASC标准化值;δEu=EuN/(SmN·GdN)1/2,EuN、SmN、GdN分别为该元素实测值的NASC标准化值. -
[1] Gao, J., He, S., He, Z.L., et al., 2014. Genesis of Calcite Vein and Its Implication to Petroleum Preservation in Jingshan Region, Mid-Yangtze. Oil & Gas Geology, 35(1):33-41 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201401005 [2] Gao, J., He, S., Yi, J.Z., 2015. Discovery of High Density Methane Inclusions in Jiaoshiba Shale Gas Field and Its Significance. Oil & Gas Geology, 36(3):472-480 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201503016 [3] Gao, J., He, S., Zhao, J.X., et al., 2017. Geothermometry and Geobarometry of Overpressured Lower Paleozoic Gas Shales in the Jiaoshiba Field, Central China:Insight from Fluid Inclusions in Fracture Cements. Marine and Petroleum Geology, 83:124-139. https://doi.org/10.1016/j.marpetgeo.2017.02.018 [4] Hall, D. L., Sterner, S. M., Bodnar, R. J., 1988. Freezing Point Depression of NaCl-KCl-H2O Solutions. Economic Geology, 83(1):197-202. https://doi.org/10.2113/gsecongeo.83.1.197 [5] Hao, L.B., Qi, C. M., 2004. Geochemical Principle. Geological Publishing House, Beijing (in Chinese). [6] Henderson, P., 1989. REE Geochemistry. Geological Publishing House, Beijing (in Chinese). [7] Hu, D.F., Zhang, H.R., Ni, K., et al., 2014.Main Controlling Factors for Gas Preservation Conditions of Marine Shales in Southeastern Margins of the Sichuan Basin. Natural Gas Industry, 34(6):17-23 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201406003 [8] Hu, X. M., Wang, C.S., 2001. Summarization on the Studying Methods of the Paleo-Ocean Dissolved Oxygen. Advance in Earth Sciences, 16(1):65-71 (in Chinese with English abstract). [9] Hu, Z.C., Zhang, W., Liu, Y.S., et al., 2015. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis:Application to Lead Isotope Analysis. Analytical Chemistry, 87(2):1152-1157. doi: 10.1021/ac503749k [10] Huang, S.J., 1992. Relationship between Cathodoluminescence and Concentration of Iron and Manganese in Carbonate Minerals. Mineralogy and Petrology, 12(4):74-79 (in Chinese with English abstract). [11] Jiang, L., Deng, B., Liu, S.G., et al., 2019. Paleo-Fluid Migration and Conservation Conditions of Shale Gas in Jiaoshiba-Wulong Area. Earth Science, 44(2):524-538 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.515 [12] Lee, S. G., Lee, D. H., Kim, Y., et al., 2003. Rare Earth Elements as Indicators of Groundwater Environment Changes in a Fractured Rock System:Evidence from Fracture-Filling Calcite. Applied Geochemistry, 18(1):135-143. https://doi.org/10.1016/s0883-2927(02)00071-9 [13] Li, W., He, S., Zhang, B.Q., et al., 2018. Characteristics of Paleo-Temperature and Paleo-Pressure of Fluid Inclusions in Shale Composite Veins of Longmaxi Formation at the Western Margin of Jiaoshiba Anticline. Acta Petrolei Sinica, 39(4):402-415 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syxb201804004 [14] Liang, C., Jiang, Z. X., Cao, Y. C., et al., 2017. Sedimentary Characteristics and Paleoenvironment of Shale in the Wufeng-Longmaxi Formation, North Guizhou Province, and Its Shale Gas Potential. Journal of Earth Science, 28(6):1020-1031. https://doi.org/10.1007/s12583-016-0932-x [15] Lin, Z.J., Chen, D.F., Liu, Q., 2008. Geochemical Indices for Redox Conditions of Marine Sediments. Bulletin of Mineralogy, Petrology and Geochemistry, 27(1):72-80 (in Chinese with English abstract). [16] Liu, B., Shen, K., 1999. The Thermodynamic Simulation of Fluid Inclusions. Geological Publishing House, Beijing (in Chinese). [17] Liu, D.H., Lu, H.Z., Xiao, X.M., 2007. Hydrocarbon Inclusions and Its Application in Petroleum Exploration and Development. Guangdong Science and Technology Press, Guangzhou (in Chinese). [18] Liu, Y., 2017. Geochemical Genesis Model and Its Applications of Natural Gas in High-over Matured Shale (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [19] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [20] Lu, H.Z., Fan, H.R., Ni, P., et al., 2004. Fluid Inclusions. Science Press, Beijing (in Chinese). [21] Moore, C.H., 1989. Carbonate Diagenesis and Porosity. Elsevier, New York. [22] Nothdurft, L.D., Webb, G.E., Kamber, B. S., 2004. Rare Earth Element Geochemistry of Late Devonian Reefal Carbonates, Canning Basin, Western Australia:Confirmation of a Seawater REE Proxy in Ancient Limestones. Geochimica et Cosmochimica Acta, 68(2):263-283. https://doi.org/10.1016/s0016-7037(03)00422-8 [23] Shen, C.B., Mei, L.F., Liu, Z.Q., et al., 2009. Apatite and Zircon Fission Track Date, Evidences for the Mesozoic-Cenozoic Uplift of Huangling Dome, Central China. Journal of Mineralogy and Petrology, 29(2):54-60 (in Chinese with English abstract). [24] Wang, J., Chu, Y., Lin, W., et al., 2010. Structural Geometry and the Origin of the Huangling Anticline. Chinese Journal of Geology, 45(3):615-625 (in Chinese with English abstract). [25] Wang, W., 2009. Study on the Fluids Characteristics of the Marine Strata in the Middle Yangtze Region and Its Connection with Hydrocarbon Preservation (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract). [26] Wang, X., Gao, J., He, S., et al., 2017. Fluid Inclusion and Geochemistry Studies of Calcite Veins in Shizhu Synclinorium, Central China:Record of Origin of Fluids and Diagenetic Conditions. Journal of Earth Science, 28(2):315-332. https://doi.org/10.1007/s12583-016-0921-7 [27] Wei, D.X., Shen, A.J., Wang, Y., et al., 2015. Cathodoluminescence Features of the Calcite Filling in the Ordovician Carbonate Fractured-Vuggy Reservoir and Its Significance to Instructions of Diagenetic Environment in Northern Tarim Basin. Petroleum Geology and Recovery Efficiency, 22(4):54-58 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqdzycsl201504010 [28] Xu, D.L., Peng, L.H., Liu, H., et al., 2013. Meso-Cenozoic Tectono-Sedimentary Response of Multi-Phased Uplifts of Huangling Anticline, Central China. Geology and Mineral Resources of South China, 29(2):90-99 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hndzykc201302002 [29] Yang, X., 2017. Preservative Conditions of Shale Gas from Wufeng Formation to Longmaxi Formation in Northeast of Chongqing (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract). [30] Yang, X.Y., He, S., He, Z.L., et al., 2013. Characteristics and Paleo-Fluid Activity Implications of Fluid-Inclusion and Isotope of Calcite Veins in Jingshan Area. Journal of China University of Petroleum (Edition of Natural Science), 37(1):19-26 (in Chinese with English abstract). [31] Zhai, G.Y., Wang, Y.F., Bao, S.J., et al., 2017. Major Factors Controlling the Accumulation and High Productivity of Marine Shale Gas and Prospect Forecast in Southern China. Earth Science, 42(7):1057-1068 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.085 [32] Zhang, H.F., Gao, S., 2012. Geochemistry. Geological Publishing House, Beijing (in Chinese). [33] Zhang, J.K., He, S., Yi, J.Z., et al., 2014. Rock Thermo-Acoustic Emission and Basin Modeling Technologies Applied to the Study of Maximum Paleotemperatures and Thermal Maturity Histories of Lower Paleozoic Marine Shales in the Western Middle Yangtze Area. Acta Petrolei Sinica, 35(1):58-67 (in Chinese with English abstract). doi: 10.1038/aps.2013.122 [34] Zhang, J.L., Qiao, S. H., Lu, W.J., et al., 2015. An Equation for Determining Methane Densities in Fluid Inclusions with Raman Shifts. Journal of Geochemical Exploration, 171:20-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3eb9deb275033217debf9a20a4bf1200 [35] 高键, 何生, 何治亮, 等, 2014.中扬子京山地区方解石脉成因及其对油气保存的指示意义.石油与天然气地质, 35(1):33-41. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201401005 [36] 高键, 何生, 易积正, 2015.焦石坝页岩气田中高密度甲烷包裹体的发现及其意义.石油与天然气地质, 36(3):472-480. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201503016 [37] 郝立波, 戚长谋, 2004.地球化学原理.北京:地质出版社. [38] Henderson, P., 1989.稀土元素地球化学.北京:地质出版社. [39] 胡东风, 张汉荣, 倪楷, 等, 2014.四川盆地东南缘海相页岩气保存条件及其主控因素.天然气工业, 34(6):17-23. doi: 10.3787/j.issn.1000-0976.2014.06.003 [40] 胡修棉, 王成善, 2001.古海洋溶解氧研究方法综述.地球科学进展, 16(1):65-71. doi: 10.3321/j.issn:1001-8166.2001.01.013 [41] 黄思静, 1992.碳酸盐矿物的阴极发光性与其Fe, Mn含量的关系.矿物岩石, 12(4):74-79. [42] 姜磊, 邓宾, 刘树根, 等, 2019.焦石坝-武隆构造带古流体活动差异及对页岩气保存条件的影响.地球科学, 44(2):524-538. doi: 10.3799/dqkx.2018.515 [43] 李文, 何生, 张柏桥, 等, 2018.焦石坝背斜西缘龙马溪组页岩复合脉体中流体包裹体的古温度及古压力特征.石油学报, 39(4):402-415. http://d.old.wanfangdata.com.cn/Periodical/syxb201804004 [44] 林治家, 陈多福, 刘芊, 2008.海相沉积氧化还原环境的地球化学识别指标.矿物岩石地球化学通报, 27(1):72-80. doi: 10.3969/j.issn.1007-2802.2008.01.012 [45] 刘斌, 沈昆, 1999.流体包裹体热力学.北京:地质出版社. [46] 刘德汉, 卢焕章, 肖贤明, 2007.油气包裹体及其在石油勘探和开发中的应用.广州:广东科技出版社. [47] 刘飏, 2017.高-过成熟页岩中天然气地球化学成因模式与应用(博士学位论文).北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1017136496.htm [48] 卢焕章, 范宏瑞, 倪培, 等, 2004.流体包裹体.北京:科学出版社. [49] 沈传波, 梅廉夫, 刘昭茜, 等, 2009.黄陵隆起中-新生代隆升作用的裂变径迹证据.矿物岩石, 29(2):54-60. doi: 10.3969/j.issn.1001-6872.2009.02.009 [50] 王军, 褚杨, 林伟, 等, 2010.黄陵背斜的构造几何形态及其成因探讨.地质科学, 45(3):615-625. doi: 10.3969/j.issn.0563-5020.2010.03.001 [51] 王威, 2009.中扬子区海相地层流体特征及其与油气保存关系研究(博士学位论文).成都: 成都理工大学. http://cdmd.cnki.com.cn/article/cdmd-10616-2009220915.htm [52] 韦东晓, 沈安江, 王莹, 等, 2015.塔北地区奥陶系碳酸盐岩缝洞充填方解石的阴极发光特征及对成岩环境的指示意义.油气地质与采收率, 22(4):54-58. doi: 10.3969/j.issn.1009-9603.2015.04.010 [53] 徐大良, 彭练红, 刘浩, 等, 2013.黄陵背斜中新生代多期次隆升的构造-沉积响应.华南地质与矿产, 29(2):90-99. http://d.old.wanfangdata.com.cn/Periodical/hndzykc201302002 [54] 杨潇, 2017.渝东北地区五峰组-龙马溪组页岩气保存条件分析(硕士学位论文).成都: 成都理工大学. http://cdmd.cnki.com.cn/Article/CDMD-10616-1017218951.htm [55] 杨兴业, 何生, 何治亮, 等, 2013.京山地区方解石脉包裹体、同位素特征及古流体指示意义.中国石油大学学报(自然科学版), 37(1):19-26. doi: 10.3969/j.issn.1673-5005.2013.01.004 [56] 翟刚毅, 王玉芳, 包书景, 等, 2017.我国南方海相页岩气富集高产主控因素及前景预测.地球科学, 42(7):1057-1068. doi: 10.3799/dqkx.2017.085 [57] 张宏飞, 高山, 2012.地球化学.北京:地质出版社. [58] 张建坤, 何生, 易积正, 等, 2014.岩石热声发射和盆模技术研究中扬子区西部下古生界海相页岩最高古地温和热成熟史.石油学报, 35(1):58-67. http://d.old.wanfangdata.com.cn/Periodical/syxb201401006