• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    时频分析技术在乐东区水道评价中的应用

    邓勇 刘仕友 李洋森 李芳 周凡 付琛

    邓勇, 刘仕友, 李洋森, 李芳, 周凡, 付琛, 2019. 时频分析技术在乐东区水道评价中的应用. 地球科学, 44(8): 2619-2626. doi: 10.3799/dqkx.2019.141
    引用本文: 邓勇, 刘仕友, 李洋森, 李芳, 周凡, 付琛, 2019. 时频分析技术在乐东区水道评价中的应用. 地球科学, 44(8): 2619-2626. doi: 10.3799/dqkx.2019.141
    Deng Yong, Liu Shiyou, Li Yangsen, Li Fang, Zhou Fan, Fu Chen, 2019. Application of Time-Frequency Analysis Technology in Evaluation of Channel in Ledong Area. Earth Science, 44(8): 2619-2626. doi: 10.3799/dqkx.2019.141
    Citation: Deng Yong, Liu Shiyou, Li Yangsen, Li Fang, Zhou Fan, Fu Chen, 2019. Application of Time-Frequency Analysis Technology in Evaluation of Channel in Ledong Area. Earth Science, 44(8): 2619-2626. doi: 10.3799/dqkx.2019.141

    时频分析技术在乐东区水道评价中的应用

    doi: 10.3799/dqkx.2019.141
    基金项目: 

    十三五重大专项”莺琼盆地高温高压天然气富集规律与勘探开发关键技术” 2016ZX05024-005

    详细信息
      作者简介:

      邓勇(1975-), 男, 高级工程师, 硕士, 主要从事油气田勘探技术方法综合研究

    • 中图分类号: P631.4

    Application of Time-Frequency Analysis Technology in Evaluation of Channel in Ledong Area

    • 摘要: 随着勘探进程的不断推进,在弱振幅反射特征的地层中寻找有利富含油气部位已成为新趋势.从乐东区已钻井岩石物理特征出发,通过对含气砂岩进行变孔隙度模拟发现,随着含气砂岩孔隙度不断增加,砂岩顶面叠后地震反射能量逐渐减弱,证实乐东区弱振幅也有可能为有利储层的表征;结合沉积韵律建立不同地层组合模型并提取其时频谱发现,时频特征方向性与地层组合有关,并且乐东区水道弱振幅与正旋回地层时频特征类似,水道内弱振幅为大套砂岩概率较大,钻井证实推测,说明该技术方法可靠,为乐东区深层油气勘探及钻探目标优选提供了重要指导.

       

    • 图  1  莺歌海盆地区域位置

      Fig.  1.  Regional location map of Yinggehai Basin

      图  2  东方区与乐东区水道地震特征对比

      a.东方区;b.乐东区

      Fig.  2.  Comparison of seismic characteristics between DF and LD channel

      图  3  乐东区S-6井黄流组岩石物理分析

      Fig.  3.  Petrophysical analysis of Huangliu formation of S-6 well in LD area

      图  4  乐东区S-6井变孔隙度正演模拟分析

      Fig.  4.  Forward modeling analysis of variable porosity of S-6 well in LD area

      图  5  不同时频分析方法对比分析

      a.地质模型;b.地震记录;c. S变换;d.小波变换

      Fig.  5.  Comparative analysis of different time-frequency analysis methods

      图  6  不同地质模型时频谱对应关系

      Fig.  6.  Time-frequency spectrum correspondence of different geological models

      图  7  过东方区水道时频谱特征分析

      Fig.  7.  Analysis of the time-frequency spectrum across DF channel

      图  8  过乐东区水道时频谱特征分析

      Fig.  8.  Analysis of the time-frequency spectrum across LD channel

      图  9  乐东区黄流组岩石物理交会分析

      a. Vp/Vs与伽玛交汇;b.纵波阻抗与孔隙度交汇

      Fig.  9.  Rock physical intersection analysis of Huangliu formation in LD area

      图  10  S-X井钻探综合柱状图

      Fig.  10.  The integrated histogram of S-X well

      图  11  乐东区水道叠前反演结果对比分析

      a.纯波地震;b.纵波阻抗;c.纵横波速度比

      Fig.  11.  Comparative analysis of prestack inversion results of waterway in LD area

    • [1] Brown, A. R., 2012. Dim Spots:Opportunity for Future Hydrocarbon Discoveries? The Leading Edge, 31(6):682-683. https://doi.org/10.1190/tle31060682.1
      [2] Castagna, J. P., Sun, S. J., Siegfried, R. W., 2003. Instantaneous Spectral Analysis:Detection of Low-Frequency Shadows Associated with Hydrocarbons. The Leading Edge, 22(2):120-127. https://doi.org/10.1190/1.1559038
      [3] Charvin, K., Hampson, G. J., Gallagher, K. L., et al., 2011. Characterization of Controls on High-Resolution Stratigraphic Architecture in Wave-Dominated Shoreface-Shelf Parasequences Using Inverse Numerical Modeling. Journal of Sedimentary Research, 81(8):562-578. https://doi.org/10.2110/jsr.2011.48
      [4] Deng, Y., Li, Y.S., Liu, S.Y., et al., 2018. Formation and Identification of Dark-Spot Gas Reservoirs in Yinggehai Basin. Progress in Geophysics, 33(6):2535-2540(in Chinese with English abstract).
      [5] Halbouty, M. T., 1982. The Deliberate Search for the Subtle Trap. AAPG Memoir, 32:1-8.
      [6] Levorsen, A. I., 1966. The Obscure and Subtle Trap. AAPG Bulletin, 50(10):2058-2067.
      [7] Li, X.S., Pei, J.X., Li, Y.L., 2013. Gas Play Conditions and Accumulation Patterns of the Ledong Gas Fields, Yinggehai Basin. Natural Gas Industry, 33(11):16-21(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201311003
      [8] Li, X.S., Zhang, Y.Z., Yang, X.B., et al., 2017. New Understandings and Achievements of Natural Gas Exploration in Yinggehai-Qiongdongnan Basin, South China Sea. China Offshore Oil and Gas, 29(06):1-11(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-gc201706001
      [9] Liu, J., Xiong, J., Peng, L.N., et al., 2017. Study on Identification Technology of Fault-Lithologic Reservoir in Dupo Area of Biyang Sag. Petroleum Geology and Engineering, 31(2):41-43(in Chinese with English abstract).
      [10] Ma, L.J., Kong, Q.Y., Liu, K.Y., et al. 2014. Weak Reflection Characteristics and Its Formation Mechanism of Ordovician Reservoir in Tahe Oilfield. Oil Geophysical Prospecting, 49(2):338-343(in Chinese with English abstract).
      [11] Partyka, G., Gridley, J., Lopez, J., 1999. Interpretational Applications of Spectral Decomposition in Reservoir Characterization. The Leading Edge, 18(3):353-360. https://doi.org/10.1190/1.1438295
      [12] Tong, C. X., Xie, Y. H., Huang, Z. L., et al., 2015. Geochemical Behaviors of HPHT Gas Reservoirs in the Yinggehai Basin and the Efficient Gas Accumulation Mode in its Diapir Flanks. Natural Gas Industry B, 2(2/3):144-154(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004076671
      [13] Xie, Y.H., Zhang, Y.Z., Xu, X.D., et al., 2014. Natural Gas Origin and Accumulation Model in Major and Excellent Gas Fields with High Temperature and Overpressure in Yinggehai Basin:A Case of DF13-2 Gasfield. China Offshore Oil and Gas, 26(2):1-5(in Chinese with English abstract).
      [14] Yao, Z.W., Liu, X.D..2013. Seismic Reflection Amplitude Anomaly Factor Analysis and the Prediction of Chanel Sandbody in Block Jiang 55. Journal of Oil Gas Technology, 35(1):73-75(in Chinese with English abstract).
      [15] Zhang, J.K., Wu, J.Z., Xu, W.H., et al., 2017. Pre-Stack Favorable Reservoir Prediction in Tight Sandstone Reservoirs Based on Rock Physics:A Case Study of the 2nd Member of Dongying Formation, Structure 4, Nanpu Sag, Bohai Bay Basin. Acta Petrolei Sinica, 38(7):793-803(in Chinese with English abstract).
      [16] Zhang, L., Han, E.B., Zhu, L.C., et al., 2015. Characteristics of Evaporites Sedimentary Cycles and Its Controlling Factors of Paleocene Aertashi Formation in the Southwestern Tarim Depression. Acta Geologica Sinica, 89(11):2161-2170(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201511027
      [17] 邓勇, 李洋森, 刘仕友, 等, 2018.莺歌海盆地乐东区暗点型气藏形成原因及识别方法.地球物理学进展, 33(6):2535-2540.
      [18] 李绪深, 裴健翔, 李彦丽, 2013.莺歌海盆地乐东气田天然气成藏条件及富集模式.天然气工业, 33(11):16-21. doi: 10.3787/j.issn.1000-0976.2013.11.003
      [19] 李绪深, 张迎朝, 杨希冰, 等, 2017.莺歌海-琼东南盆地天然气勘探新认识与新进展.中国海上油气, 29(6):1-11. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201706001
      [20] 刘娟, 熊健, 彭丽娜, 等, 2017.泌阳凹陷杜坡地区断层-岩性油藏识别技术研究.石油地质与工程, 31(2):41-43. doi: 10.3969/j.issn.1673-8217.2017.02.010
      [21] 马丽娟, 孔庆莹, 刘坤岩, 等, 2014.塔河油田奥陶系油藏弱振幅反射特征及形成机理.石油地球物理勘探, 49(2):338-343. http://d.old.wanfangdata.com.cn/Periodical/sydqwlkt201402018
      [22] 童传新, 谢玉洪, 黄志龙, 等, 2015.莺歌海盆地高温高压天然气地球化学特征及底辟翼部高效成藏模式.天然气工业, 35(2):1-11. doi: 10.3787/j.issn.1000-0976.2015.02.001
      [23] 谢玉洪, 张迎朝, 徐新德, 等, 2014.莺歌海盆地高温超压大型优质气田天然气成因与成藏模式-以东方13-2优质整装大气田为例.中国海上油气, 26(2):1-5.
      [24] 么忠文, 刘兴冬, 2013.江55区块地震反射振幅异常因素分析及河道砂体预测.石油天然气学报, 35(1):73-75. doi: 10.3969/j.issn.1000-9752.2013.01.016
      [25] 张建坤, 吴吉忠, 徐文会, 等, 2017.基于岩石物理的致密砂岩油藏叠前优势储层预测-以渤海湾盆地南堡凹陷4号构造东营组二段为例.石油学报, 38(7):793-803.
      [26] 张亮, 韩二斌, 朱礼春, 等, 2015.塔西南坳陷古新统阿尔塔什组蒸发岩沉积旋回特征及控制因素探讨.地质学报, 89(11):2161-2170. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201511027
    • 加载中
    图(11)
    计量
    • 文章访问数:  3964
    • HTML全文浏览量:  1757
    • PDF下载量:  29
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-01-30
    • 刊出日期:  2019-08-15

    目录

      /

      返回文章
      返回