• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    青藏高原北部全吉地块白垩纪煌斑岩脉群的发现及意义

    王秉璋 陈静 张金明 李积清 白建海

    王秉璋, 陈静, 张金明, 李积清, 白建海, 2020. 青藏高原北部全吉地块白垩纪煌斑岩脉群的发现及意义. 地球科学, 45(4): 1136-1150. doi: 10.3799/dqkx.2019.139
    引用本文: 王秉璋, 陈静, 张金明, 李积清, 白建海, 2020. 青藏高原北部全吉地块白垩纪煌斑岩脉群的发现及意义. 地球科学, 45(4): 1136-1150. doi: 10.3799/dqkx.2019.139
    Wang Bingzhang, Chen Jing, Zhang Jinming, Li Jiqing, Bai Jianhai, 2020. Discovery and Significance of Cretaceous Lamprophyre Dike Group in Quanji Block of Northern Tibetan Plateau. Earth Science, 45(4): 1136-1150. doi: 10.3799/dqkx.2019.139
    Citation: Wang Bingzhang, Chen Jing, Zhang Jinming, Li Jiqing, Bai Jianhai, 2020. Discovery and Significance of Cretaceous Lamprophyre Dike Group in Quanji Block of Northern Tibetan Plateau. Earth Science, 45(4): 1136-1150. doi: 10.3799/dqkx.2019.139

    青藏高原北部全吉地块白垩纪煌斑岩脉群的发现及意义

    doi: 10.3799/dqkx.2019.139
    基金项目: 

    第二次青藏高原综合科学考察研究(STEP)项目 2019QZKK0702

    国家自然科学基金项目 41762006

    青海省重大科技专项 2016-SF-A3

    详细信息
      作者简介:

      王秉璋(1969-), 男, 正高级工程师, 博士, 从事区域地质矿产调查工作

    • 中图分类号: P581

    Discovery and Significance of Cretaceous Lamprophyre Dike Group in Quanji Block of Northern Tibetan Plateau

    • 摘要: 除陆相沉积盆地外,青藏高原北部白垩纪建造记录稀少,岩浆活动的研究极少,幔源岩浆活动十分罕见,在青藏高原北部全吉地块首次发现了白垩纪煌斑岩脉群,深入研究可深化认识高原北部中生代晚期地质过程.对分布在全吉地块东部沙柳泉地区的煌斑岩进行了大比例尺填图,主微量元素、Sr-Nd-Pb同位测定、锆石SHRIMP和LA-ICP-MS U-Pb年代学研究.煌斑岩中获得锆石U-Pb年龄分别为135.2±1.8 Ma和132.9±1.3 Ma.岩石具高钾(K2O=4.53%~5.25%)、镁(MgO=7.23%~12.27%)和低钛(0.85%~1.29%)的特点,为钾质钙碱性煌斑岩,Rb、Ba、Th、U和Pb等大离子亲石元素(LILE)富集,Nb、Ta和Ti等高场元素(HFSE)亏损,(87Sr/86Sr)i介于0.718 0~0.718 6.εNdt)=-14.2~-14.4,208Pb/204Pb变化于38.414~39.334,207Pb/204Pb在15.632~15.681,206Pb/204Pb介于18.568~19.203,显示岩浆源于与洋陆俯冲作用影响有关的EMⅡ型地幔源,形成于南北拉张背景下沿深大断裂引起的岩石圈地幔局部部分熔融.岩石具有较高Au(平均值为6.8×10-9)和F(平均值2 450×10-6)浓度,对全吉地块东部金矿成矿作用十分有利.

       

    • 图  1  全吉地块及邻区区域构造分区略图

      潘桂棠等(2009)修改

      Fig.  1.  Outline of regional tectonic zoning of the Quanji block and adjacent areas

      图  2  沙柳泉地区地质简图

      1.达肯大坂岩群片麻岩组;2.达肯大坂岩群大理岩组;3.大煤沟组;4.干柴沟组;5.油砂山组;6.第四系;7.晚三叠世石英正长岩;8.晚三叠世二长花岗岩;9.二叠纪闪长岩;10.煌斑岩脉;11.辉绿岩脉;12.闪长玢岩脉;13.伟晶岩脉;14.地质界线;15.角度不整合界线;16.断层;17.采样点及编号

      Fig.  2.  Geological sketch of Shaliuquan area

      图  3  沙柳泉煌斑岩野外露头(a~d)和镜下特征(e~g)

      Fig.  3.  Outcrop (a-d) and microscopic characteristics (e-g) of the Shaliuquan lamprophyre

      图  4  沙柳泉煌斑岩的锆石CL图像

      Fig.  4.  Zircon CL images of the Shaliuquan lamprophyre

      图  5  沙柳泉煌斑岩锆石U-Pb年龄谐和图

      图 5a~5c为SHRIMP测年结果;图 5d~5f为LA-ICP-MS测年结果

      Fig.  5.  Zircon U-Pb concordia diagrams of the Shaliuquan lamprophyre

      图  6  沙柳泉煌斑岩的TAS图解(a)和n(K)-n(K+Na)图解(b)

      图a据Rock(1987)Middlemost(1994);图b据路凤香等(1991)

      Fig.  6.  TAS(a) and n(K) vs. n(K+Na) diagrams(b) of the Shaliuquan lamprophyre

      图  7  沙柳泉煌斑岩球粒陨石标准化REE模式图(a)和原始地幔标准化微量元素蛛网图(b)

      标准化值据Sun and McDonough(1989)

      Fig.  7.  Chondrite-normalized REE patterns(a) and primitive mantle-normalized spidergrams of the Shaliuquan lamprophyre (b)

      图  8  沙柳泉煌斑岩La/Yb-Nb/Ta图解(a)和Nb/U-Nb图解(b)

      图b据姜耀辉等(2006)

      Fig.  8.  La /Yb vs. Nb/Ta (a) and Nb/U vs. Nb diagrams of the Shaliuquan lamprophyre (b)

      图  9  沙柳泉煌斑岩εNd(t)-(87Sr/86Sr)i相关图解(a)和207Pb/204Pb-206Pb/204Pb相关图解(b)

      图a地幔分区据Zindler and Hart(1986);图b据Rollison(2000)

      Fig.  9.  εNd(t) vs. (87Sr /86Sr)i (a) and 207Pb/ 204Pb vs. 206Pb /204Pb for the lamprophyres (b)

      表  1  沙柳泉煌斑岩LA-ICP-MS锆石U-Pb同位素测定结果

      Table  1.   LA-ICP-MS U-Pb isotopic compositions of zircons for the lamprophyre from Shaliuquan area

      Spot
      No.
      Th U Th/U 同位素比值 年龄(Ma)
      (10-6 207Pb/
      206Pb
      207Pb/
      235U
      206Pb/
      238U
      207Pb/206Pb 207Pb/235U 206Pb/238U
      1 441 333 1.32 0.049 6 0.002 3 0.138 7 0.005 9 0.020 3 0.000 3 177.6 106.0 131.8 5.3 129.8 1.9
      2 497 388 1.28 0.048 1 0.002 4 0.133 6 0.006 1 0.020 5 0.000 3 103.8 116.5 127.3 5.4 130.6 2.1
      3 60 318 0.19 0.049 8 0.003 0 0.140 3 0.008 2 0.020 5 0.000 4 183.4 138.2 133.3 7.3 131.0 2.6
      4 56 278 0.20 0.049 0 0.002 0 0.138 8 0.005 7 0.020 8 0.000 3 147.7 97.3 132.0 5.1 132.6 2.2
      5 46 291 0.16 0.049 1 0.002 4 0.140 1 0.006 5 0.020 9 0.000 3 153.6 114.6 133.2 5.8 133.1 2.1
      6 287 381 0.75 0.049 6 0.001 9 0.142 0 0.005 4 0.020 9 0.000 3 174.6 91.4 134.8 4.8 133.3 1.6
      7 65 573 0.11 0.048 1 0.002 9 0.139 8 0.008 8 0.021 0 0.000 4 104.7 143.7 132.8 7.8 134.0 2.7
      8 46 255 0.18 0.051 2 0.003 3 0.147 5 0.009 7 0.021 0 0.000 5 252.0 149.9 139.7 8.6 134.2 3.0
      9 85 2 289 0.04 0.049 5 0.001 7 0.144 0 0.005 2 0.021 1 0.000 3 171.6 79.9 136.6 4.6 134.6 1.8
      10 300 381 0.79 0.048 8 0.001 9 0.141 4 0.005 5 0.021 1 0.000 3 140.3 89.5 134.3 4.9 134.6 1.7
      11 495 1 123 0.44 0.049 7 0.000 8 0.155 7 0.002 6 0.022 9 0.000 2 178.9 37.9 147.0 2.3 146.0 1.5
      12 545 1 238 0.44 0.049 3 0.001 1 0.157 3 0.002 9 0.023 1 0.000 3 162.2 50.1 148.3 2.5 147.1 1.8
      13 180 657 0.27 0.050 1 0.001 2 0.159 2 0.003 9 0.023 1 0.000 2 198.6 57.5 150.0 3.4 147.3 1.5
      14 643 1 063 0.60 0.049 9 0.001 3 0.160 5 0.004 9 0.023 3 0.000 4 191.0 61.2 151.2 4.3 148.5 2.8
      15 308 989 0.31 0.048 3 0.001 0 0.156 3 0.003 4 0.023 4 0.000 3 113.0 50.7 147.4 3.0 148.9 1.9
      16 172 932 0.18 0.050 3 0.001 5 0.239 9 0.007 0 0.034 7 0.000 5 210.8 70.8 218.4 5.7 219.8 3.0
      17 116 829 0.14 0.053 6 0.001 6 0.272 0 0.010 2 0.036 7 0.000 8 356.1 69.3 244.3 8.1 232.4 5.2
      18 1 256 899 1.40 0.051 1 0.001 4 0.259 6 0.007 7 0.036 8 0.000 4 243.2 63.0 234.4 6.2 233.2 2.5
      19 449 388 1.16 0.051 5 0.001 4 0.265 4 0.006 8 0.037 5 0.000 4 261.1 61.5 239.0 5.4 237.3 2.3
      20 0 5 655 0.00 0.050 9 0.000 5 0.264 0 0.003 1 0.037 7 0.000 4 237.5 21.2 237.9 2.5 238.3 2.4
      21 2 150 1 586 1.36 0.055 4 0.000 8 0.290 6 0.004 9 0.038 2 0.000 4 426.6 30.6 259.0 3.8 241.7 2.5
      22 568 528 1.08 0.053 3 0.001 3 0.305 9 0.007 6 0.041 7 0.000 5 341.4 56.0 271.0 5.9 263.3 3.0
      23 63 158 0.40 0.052 0 0.002 4 0.312 9 0.013 3 0.044 1 0.000 6 287.2 104.3 276.4 10.3 278.2 4.0
      24 137 149 0.92 0.055 0 0.001 3 0.514 8 0.012 4 0.068 2 0.000 7 410.4 54.5 421.7 8.3 425.1 4.1
      25 394 331 1.19 0.055 4 0.001 2 0.521 0 0.010 8 0.068 3 0.000 7 426.9 48.9 425.8 7.2 425.8 4.5
      26 2 597 1872 1.39 0.056 2 0.000 4 0.532 8 0.007 0 0.068 5 0.000 6 460.4 17.5 433.7 4.7 427.2 3.8
      27 360 465 0.77 0.056 4 0.001 1 0.541 2 0.010 5 0.069 7 0.000 6 466.8 44.8 439.2 6.9 434.1 3.7
      28 602 913 0.66 0.056 3 0.000 8 0.543 6 0.008 4 0.069 9 0.000 8 464.8 30.2 440.8 5.5 435.7 4.8
      29 258 339 0.76 0.055 4 0.001 1 0.536 7 0.009 8 0.070 2 0.000 7 430.3 43.1 436.2 6.5 437.1 4.0
      30 526 577 0.91 0.056 6 0.001 4 0.548 4 0.013 7 0.070 2 0.000 8 476.0 54.0 444.0 9.0 437.3 5.0
      31 448 399 1.12 0.054 8 0.001 7 0.532 1 0.017 5 0.070 2 0.001 1 405.7 67.7 433.2 11.6 437.3 6.4
      32 320 386 0.83 0.055 8 0.001 3 0.539 0 0.015 4 0.070 2 0.001 1 442.4 53.5 437.8 10.2 437.5 6.4
      33 258 282 0.91 0.055 8 0.001 3 0.540 2 0.012 0 0.070 3 0.000 7 445.9 50.1 438.5 7.9 438.0 4.3
      34 337 406 0.83 0.055 2 0.001 0 0.537 3 0.010 6 0.070 4 0.000 8 419.6 40.4 436.6 7.0 438.7 4.5
      35 1 204 963 1.25 0.055 9 0.001 4 0.542 5 0.014 1 0.070 4 0.001 0 450.0 56.4 440.1 9.3 438.8 6.2
      36 178 157 1.14 0.056 6 0.002 5 0.548 3 0.025 4 0.070 5 0.001 4 475.4 96.7 443.9 16.7 439.4 8.5
      37 498 630 0.79 0.055 9 0.001 4 0.550 0 0.020 0 0.070 9 0.001 3 448.5 55.8 445.0 13.1 441.5 7.6
      38 486 650 0.75 0.055 9 0.000 9 0.547 5 0.009 2 0.070 9 0.000 6 446.5 36.2 443.3 6.0 441.7 3.8
      39 21 955 0.02 0.058 0 0.001 6 0.568 8 0.022 9 0.070 9 0.001 6 530.7 58.9 457.3 14.8 441.8 9.5
      40 305 470 0.65 0.055 3 0.000 9 0.542 7 0.010 4 0.071 0 0.000 7 424.5 36.9 440.2 6.9 442.2 4.0
      41 137 93 1.48 0.056 6 0.001 7 0.548 9 0.015 5 0.071 1 0.000 9 477.6 66.7 444.3 10.2 443.0 5.6
      42 292 351 0.83 0.055 1 0.001 5 0.543 1 0.017 9 0.071 2 0.001 1 416.9 60.9 440.5 11.7 443.6 6.8
      43 94 207 0.46 0.058 5 0.002 3 0.698 3 0.030 1 0.086 4 0.001 6 550.2 86.7 537.8 18.0 534.4 9.8
      44 251 348 0.72 0.069 5 0.000 8 1.442 3 0.017 9 0.150 3 0.001 2 913.6 24.4 906.7 7.4 902.5 6.9
      45 41 296 0.14 0.070 4 0.001 1 1.527 5 0.021 6 0.157 0 0.001 6 939.9 30.7 941.5 8.7 940.2 8.8
      46 85 519 0.16 0.070 2 0.001 6 1.530 3 0.039 2 0.157 5 0.001 9 933.2 47.4 942.6 15.7 942.6 10.8
      47 93 555 0.17 0.080 8 0.001 3 2.329 4 0.036 1 0.208 7 0.001 9 1 216.9 31.6 1 221.3 11.0 1 221.9 9.9
      48 90 444 0.20 0.080 7 0.001 4 2.368 6 0.049 9 0.212 5 0.003 0 1 213.7 34.4 1 233.2 15.0 1 242.1 15.9
      49 203 494 0.41 0.082 2 0.001 1 2.421 2 0.058 3 0.212 6 0.003 1 1 251.1 26.1 1 248.9 17.3 1 242.7 16.3
      50 366 393 0.93 0.087 7 0.000 8 2.847 2 0.026 6 0.235 3 0.002 3 1 375.6 17.4 1 368.1 7.0 1 362.0 11.8
      51 39 545 0.07 0.113 2 0.001 1 5.327 2 0.056 6 0.340 5 0.003 0 1 851.8 17.7 1 873.2 9.1 1 888.9 14.6
      52 132 266 0.50 0.113 9 0.001 8 5.370 4 0.098 8 0.340 8 0.003 5 1 861.9 29.3 1 880.1 15.8 1 890.3 16.9
      53 65 138 0.47 0.157 3 0.001 6 9.668 7 0.137 7 0.445 8 0.005 0 2 426.5 17.3 2 403.7 13.1 2 376.4 22.2
      54 337 730 0.46 0.157 0 0.002 0 9.743 9 0.166 6 0.447 4 0.006 1 2 423.2 21.1 2 410.9 15.7 2 383.5 27.3
      55 297 144 2.06 0.158 6 0.001 4 10.203 9 0.138 1 0.466 8 0.005 1 2 441.2 15.3 2 453.4 12.5 2 469.5 22.4
      56 96 171 0.56 0.161 5 0.001 3 10.469 6 0.096 7 0.469 4 0.003 1 2 471.8 13.4 2 477.2 8.6 2 480.8 13.8
      下载: 导出CSV

      表  2  沙柳泉煌斑岩主量元素(%)、微量和稀土元素(10-6)化学成分分析结果

      Table  2.   Major (%) and trace and REE element (10-6) abundances of the Shaliuquan lamprophyre

      送样号 AMNG

      GS2-1
      AMNG
      GS2-2
      AMNG
      GS2-3
      AMNG
      GS4-1
      AMNG
      GS4-2
      AMNG
      GS4-3
      SLQ
      GS1-1
      SLQ
      GS1-2
      SLQ
      GS1-3
      SLQ
      GS1-4
      SiO2 51.22 51.65 52.10 51.54 46.73 52.18 48.53 48.83 48.71 48.77
      TiO2 0.90 0.96 1.02 0.93 1.29 0.89 0.87 0.90 0.85 0.90
      Al2O3 10.37 11.05 11.48 10.68 11.80 10.33 11.36 11.54 11.29 11.40
      Fe2O3 1.51 1.62 1.24 1.61 2.07 1.55 1.86 2.03 1.97 2.38
      FeO 5.00 5.05 5.00 5.30 6.00 5.20 5.40 5.20 5.20 5.00
      MnO 0.11 0.10 0.10 0.11 0.27 0.11 0.13 0.13 0.13 0.13
      MgO 11.39 11.50 10.79 12.27 7.23 11.82 9.82 9.02 9.64 9.52
      CaO 7.49 6.36 6.41 6.42 8.53 6.76 7.37 7.35 7.48 7.27
      Na2O 1.17 1.33 1.50 1.13 1.04 1.08 2.11 2.27 2.17 2.15
      K2O 4.64 5.01 5.25 4.78 4.53 4.72 4.96 5.08 4.91 5.02
      P2O5 0.55 0.57 0.65 0.57 0.78 0.53 0.57 0.58 0.55 0.57
      H2O+ 2.67 2.78 2.33 2.96 3.84 2.80 1.99 2.06 1.99 1.98
      CO2 2.36 1.39 0.87 1.03 3.29 1.39 2.98 2.47 2.98 4.32
      LOST 4.94 3.76 3.41 3.70 8.60 4.19 5.74 5.79 5.87 5.85
      H2O- 0.92 0.86 0.76 0.89 0.79 0.95 0.51 0.47 0.45 0.47
      Sc 19.57 20.08 19.68 19.74 26.84 19.53 20.92 22.54 21.95 22.74
      Li 48.90 45.90 41.68 50.83 52.29 49.63 13.41 11.96 12.11 12.58
      Be 6.49 6.78 6.84 6.59 5.46 6.63 5.86 8.24 5.66 6.24
      Co 34.74 35.27 34.55 37.22 32.84 37.04 34.46 31.70 32.95 33.76
      Rb 177.0 208.7 257.4 138.5 207.2 179.5 128.2 214.5 108.7 160.8
      Zr 354.0 382.5 378.1 369.3 444.9 354.3 350.1 341.7 341.1 348.2
      Nb 11.14 21.66 20.99 10.29 7.01 7.64 13.45 9.80 6.69 10.62
      Hf 8.0 8.4 8.5 8.2 9.6 7.9 7.5 7.3 7.3 7.5
      Ta 0.80 1.87 1.62 0.74 0.55 0.65 0.82 0.65 0.36 0.66
      Th 65.03 86.81 85.68 77.65 86.82 78.12 80.05 63.17 51.73 61.87
      U 12.62 12.97 13.77 12.83 19.32 13.70 15.81 15.66 15.13 14.45
      Ba 1 469 1 484 1 634 1 421 1 280 1 449 3 287 3 447 3 078 3 417
      Cr 554.3 593.4 513.7 686.3 377.7 644.6 425.9 424.5 447.3 408.1
      Ni 186.3 186.1 169.9 208.6 78.96 197.4 193.9 161.9 188.3 182.7
      Sr 366.6 395.8 448.0 352.5 560.0 347.7 834.7 897.2 833.8 844.4
      V 99.10 103.5 111.0 104.5 146.9 98.69 143.1 144.1 138.2 140.9
      F 2542 2629 2476 2735 4134 2855 1737 1847 1761 1789
      Sn 6.94 7.79 10.77 5.72 6.36 5.46 4.81 4.93 4.83 7.19
      Au 12.5 17.2 13.8 9.4 2.2 5.6 2.2 2.7 1.4 1.3
      La 64.40 64.16 64.43 62.17 76.06 62.44 104.9 113.2 110.9 117.1
      Ce 151.0 139.9 105.1 146.9 81.15 135.8 223.9 246.2 234.7 250.5
      Pr 21.29 21.33 22.92 20.76 26.23 20.56 28.08 31.24 29.75 31.68
      Nd 91.05 93.22 101.4 88.94 118.3 88.86 109.8 119.7 115.1 122.4
      Sm 18.03 18.69 20.32 17.63 23.19 17.66 17.20 18.88 18.14 19.04
      Eu 3.07 3.27 3.72 2.91 3.81 2.90 3.29 3.60 3.47 3.67
      Gd 10.99 11.46 11.93 10.68 13.34 10.48 10.96 12.01 11.46 12.22
      Tb 1.37 1.37 1.50 1.32 1.66 1.30 1.39 1.52 1.45 1.54
      Dy 6.15 6.35 6.68 6.12 7.72 5.95 6.51 7.13 6.78 7.21
      Ho 0.98 1.02 1.08 0.98 1.29 0.97 1.10 1.21 1.14 1.21
      Er 2.32 2.37 2.50 2.30 3.15 2.26 2.61 2.91 2.72 2.90
      Tm 0.33 0.34 0.36 0.33 0.44 0.32 0.38 0.41 0.39 0.42
      Yb 2.03 2.04 2.08 2.01 2.77 1.94 2.35 2.60 2.52 2.63
      Lu 0.30 0.30 0.32 0.30 0.43 0.29 0.38 0.41 0.39 0.42
      Y 27.37 27.72 29.31 26.73 34.89 26.23 29.05 32.00 30.40 32.19
      ∑REE 373.3 365.8 344.4 363.3 359.6 351.7 512.9 561.0 538.9 572.95
      (La/Yb)n 21.44 21.18 20.86 20.84 18.50 21.74 30.11 29.39 29.66 30.01
      δEu 0.62 0.63 0.67 0.60 0.61 0.60 0.69 0.68 0.69 0.69
      Mg# 76.3 76.1 76.0 76.6 62.3 76.3 71.4 69.8 71.3 70.6
      注:样品AMNG GS2 1、2、3岩性为斜闪煌斑岩;AMNG GS4 1、2、3为云煌斑岩;SLQ GS1 1、2、3、4为球颗状云母角闪煌斑岩.
      下载: 导出CSV

      表  3  沙柳泉煌斑岩全岩Sr-Nd-Pb同位素组成

      Table  3.   Sr-Nd-Pb isotopic compositions of the Shaliuquan lamprophyre

      样品号 87Rb/86Sr 87Sr/86Sr (87Sr/86Sr)i 147Sm/144Nd 143Nd/144Nd (143Nd/144Nd)i t(Ma) εNd(t) tDM1 tDM2 206 Pb/204Pb 207 Pb /204 Pb 208Pb/204 Pb
      SLQ GS1-1 0.444 8 0.719 31 0.000 004 0.718 5 0.094 62 0.511 81 0.000 002 0.511 73 133 -14.4 1 716 2 101 19.203 15.67 39.215
      SLQ GS1-2 0.692 4 0.719 33 0.000 003 0.718 0 0.095 34 0.511 82 0.000 002 0.511 74 133 -14.2 1 709 2 079 18.568 15.632 38.414
      SLQ GS1-3 0.377 6 0.719 36 0.000 003 0.718 6 0.095 23 0.511 82 0.000 002 0.511 74 133 -14.2 1 709 2 082 19.193 15.672 39.217
      SLQ GS1-4 0.551 5 0.719 58 0.000 003 0.718 5 0.093 97 0.511 82 0.000 003 0.511 74 133 -14.2 1 690 2 079 19.312 15.681 39.334
      下载: 导出CSV
    • [1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
      [2] Ayers, J., 1998. Trace Element Modeling of Aqueous Fluid -Peridotite Interaction in the Mantle Wedge of Subduction Zones. Contributions to Mineralogy and Petrology, 132(4):390-404. https://doi.org/10.1007/s004100050431
      [3] Cai, P.J., Xu, R.K., Zheng, Y.Y., et al., 2018.From Oceanic Subduction to Continental Collision in North Qaidam:Evidence from Kaipinggou Orogenic M-Type Peridotite. Earth Science, 43(8):2875-2892(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201808024
      [4] Compston, W., Williams, I. S., Kirschvink, J. L., et al., 1992. Zircon U-Pb Ages for the Early Cambrian Time-Scale. Journal of the Geological Society, 149(2):171-184. https://doi.org/10.1144/gsjgs.149.2.0171
      [5] Crofu, F., Hanchar, J.M., Hoskin, P.W.O., et al., 2003.Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53:469-495. doi: 10.2113-0530469/
      [6] Feng, Q., Fu, S.T., Zhang, X.L., et al., 2019.Jurassic Prototype Basin Restoration and Hydrocarbon Exploration Prospect in the Qaidam Basin and Its Adjacent Area. Earth Science Frontiers, 26(1):44-58(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201901006
      [7] Gong, S. L., Chen, N. S., Wang, Q. Y., et al., 2012. Early Paleoproterozoic Magmatism in the Quanji Massif, Northeastern Margin of the Qinghai-Tibet Plateau and Its Tectonic Significance:LA-ICPMS U-Pb Zircon Geochronology and Geochemistry. Gondwana Research, 21(1):152-166. https://doi.org/10.1016/j.gr.2011.07.011
      [8] Guo, A.L., Zhang, G.W., Qiang, J., et al., 2009.Indosinian Zongwulong Orogenic Belt on the Northeastern Margin of the Qinghai-Tibet Plateau. Acta Petrologica Sinica, 25(1):1-12(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200901001
      [9] Guo, X.Z., Jia, Q.Z., Li, J.C., et al., 2018.Zircon U-Pb Geochronology and Geochemistry and Their Geological Significances of Eclogites from East Kunlun High-Pressure Metamorphic Belt. Earth Science, 43(12):4300-4318(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201812003
      [10] He, J., Wang, Q.Y., Yan, G.C., et al., 2018.Genesis and Geodynamic Settings of the Eocene Lamprophyres from Jinshajiang-Red River Tectonic Belt, Ludian, Western Yunnan Province. Earth Science, 43(8):2586-2599(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201808004
      [11] He, W.Y., Mo, X.X., Yu, X.H., et al., 2014.Genesis and Geodynamic Settings of Lamprophyres from Beiya, Western Yunnan:Constraints from Geochemistry, Geochronology and Sr-Nd-Pb-Hf Isotopes. Acta Petrologica Sinica, 30(11):3287-3300 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411014
      [12] Hoskin, P. W. O., Schaltegge, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1):27-62. https://doi.org/10.2113/0530027
      [13] Hu, X.J., Guo, A.L., Zong, C.L., et al., 2012. 40Ar/39Ar Isotopic Dating, Geochemistry and Their Tectonic Implications of Duofutun Na-Rich Mafic Volcanic Rocks, the Northeastern Margin of the Qinghai-Tibet Plateau. Journal of Northwest University (Natural Science Edition), 42(3):443-452(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdxxb201203021
      [14] Jerram, D. A., Martin, V. M., 2008. Understanding Crystal Populations and their Significance through the Magma Plumbing System. Geological Society, London, Special Publications, 304(1):133-148. https://doi.org/10.1144/sp304.7
      [15] Jiang, Y.H., Jiang, S.Y., Ling, H.F., et al., 2006.Petrogenesis of Cu-Bearing Porphyry Associated with Continent-Continent Collisional Setting:Evidence from the Yulong Porphyry Cu Ore-Belt, East Tibet. Acta Petrologica Sinica, 22(3):697-706(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=c5536d305af23f981c01955d717d8c44&encoded=0&v=paper_preview&mkt=zh-cn
      [16] Li, H.B., Yang, J.S., 2004.Evidence for Cretaceous Uplift of the Northern Qinghai-Tibetan Plateau. Earth Science Frontiers, 11(4):345-359(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200404002
      [17] Li, M., Wang, C., Li, R.S., et al., 2018.Detrital Zircon Geochronology and Geological Significance of Zhoujieshan Formation, Quanji Group in North Margin of Qaidam Basin. Earth Science, 43(12):4390-4398(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201812009
      [18] Li, X.Y., Chen, N.S., Xia, X.P., et al., 2007.Constraints on Timing of the Early-Paleoproterozoic Magmatism and Crustal Evolution of the Oulongbuluke Microcontinent:U-Pb and Lu-Hf Isotope Systematics of Zircons from Mohe Granitic Pluton. Acta Petrologica Sinica, 23(2):513-522(in Chinese with English abstract). doi: 10.1016/j.sedgeo.2006.03.028
      [19] Lu, F.X., Shu, X.X., Zhao, C.H., et al., 1991.A Suggestion on Classification of Lamprophyres. Geological Science and Technology Information, 10(S1):55-62(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzkq1991s1006.htm
      [20] Lu, X.X., Sun, Y.G., Zhang, X.T., et al., 2007.The SHRIMP Age of Tatalin Rapakivi Granite at the North Margin of Qiaidam Basin. Acta Geologica Sinica, 81(5):626-634 (in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60044-X
      [21] Luo, M.S., Lu, L.Q., Jia, J., et al., 2014.Evolution of Sedimentary Basins in China during Mesozoic. Earth Science, 39(8):954-976(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx-e201204003
      [22] Luo, Z.H., Lu, X.X., Wang, B.Z., et al., 2008.Post-Orogenic Dike Complexes and Implications for Metallogenesis. Earth Science Frontiers, 15(4):1-12(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200804001
      [23] Luo, Z.H., Wei, Y., Xin, H.T., et al., 2006.Petrogenesis of the Post-Orogenic Dike Complex Constraints to Lithosphere Delamination. Acta Petrologica Sinica, 22(6):1672-1684(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200606024
      [24] Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      [25] Münker, C., 1998. Nb/Ta Fractionation in a Cambrian Arc/back Arc System, New Zealand:Source Constraints and Application of Refined ICPMS Techniques. Chemical Geology, 144(1-2):23-45. https://doi.org/10.1016/s0009-2541(97)00105-8
      [26] Pan, G.T., Xiao, Q.H., Lu, S.N., et al., 2009.Subdivision of Tectonic Units in China. Geology in China, 36(1):1-16, 255, 17-28(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201804003
      [27] Rayner, N., Stern, R. A., Carr, S. D., 2005. Grain-Scale Variations in Trace Element Composition of Fluid-Altered Zircon, Acasta Gneiss Complex, Northwestern Canada. Contributions to Mineralogy and Petrology, 148(6):721-734. https://doi.org/10.1007/s00410-004-0633-8 doi: 10.1007-s00410-004-0633-8/
      [28] Rock, N.M.S., 1987.The Nature and Origin of Lamprophyres:An Overview. Geological Society, London, Special Publications, 30(1):191-226. https://doi.org/10.144/gsl.sp.1987.030.01.09
      [29] Rock, N.M.S., Bowes, D.R., Wright, A.E., 1991. Lamporphyres. Blackie, Glasgow, 285. http://d.old.wanfangdata.com.cn/Periodical/dzzklc200502002
      [30] Rollison, H.R., 2000.Petro-Geochemistry(Yang, X.M., Yang, X.Y., Chen, S.X., Translated). Press of University of Science and Technology of China, Hefei, 186-187(in Chinese).
      [31] Song, S. G., Su, L., Niu, Y. L., et al., 2009. Two Types of Peridotite in North Qaidam UHPM Belt and Their Tectonic Implications for Oceanic and Continental Subduction:A Review. Journal of Asian Earth Sciences, 35(3-4):285-297. https://doi.org/10.1016/j.jseaes.2008.11.009
      [32] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [33] Taylor, S.R., McLennan, S.M., 1985. The Continental Crust:Its Composition and Evolution. Wiley-Blackwell, Oxford.
      [34] Wang, Q.Y., Chen, N.S., Li, X.Y., et al., 2008.LA-ICPMS U-Pb Dating for the Basement Dakendaban Group and Thermal Event in Quanji Block. Chinese Science Bulletin, 53(14):1693-1701(in Chinese). https://www.researchgate.net/publication/285030674_LA-ICPMS_U-Pb_dating_for_the_basement_Dakendaban_group_and_thermal_event_in_Quanji_Block
      [35] Williams, I.S., 1998.U-Th-Pb Geochronology by Ion Microprobe.In: Mickibben, M.A., Shanks Ⅲ, W.C., Ridley, W.I., eds., Applications of Microanalytical Techniques to Understanding Mineralizing Processes.Reviews in Economic Geology, 7: 1-35.
      [36] Zhang, J.X., Yu, S.Y., Li, Y.S., et al., 2015.Subduction, Accretion and Closure of Proto-Tethyan Ocean:Early Paleozoic Accretion/Collision Orogeny in the Altun-Qilian-North Qaidam Orogenic System. Acta Petrologica Sinica, 31(12):3531-3554(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201512003.htm
      [37] Zhu, X.H., Wang, H.L., Yang, M., et al., 2016.Zircon U-Pb Age of the Monzogranite from the Middle Segment of the Qaidam Mountain Composite Granite on the South Margin of the Qilian Mountain. Geology in China, 43(3):751-767(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201603005
      [38] Zindler.A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14(1):493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425
      [39] 蔡鹏捷, 许荣科, 郑有业, 等, 2018.柴北缘从大洋俯冲到陆陆碰撞:来自开屏沟造山带M型橄榄岩的证据.地球科学, 43(8):2875-2892. doi: 10.3799/dqkx.2018.112
      [40] 冯乔, 付锁堂, 张小莉, 等, 2019.柴达木盆地及邻区侏罗纪原型盆地恢复及油气勘探前景.地学前缘, 26(1):44-58. http://d.old.wanfangdata.com.cn/Periodical/dxqy201901006
      [41] 郭安林, 张国伟, 强娟, 等, 2009.青藏高原东北缘印支期宗务隆造山带.岩石学报, 25(1):1-12. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200901001
      [42] 国显正, 贾群子, 李金超, 等, 2018.东昆仑高压变质带榴辉岩年代学、地球化学及其地质意义.地球科学, 43(12):4300-4318. doi: 10.3799/dqkx.2018.142
      [43] 和文言, 莫宣学, 喻学惠, 等, 2014.滇西北衙煌斑岩的岩石成因及动力学背景:年代学、地球化学及Sr-Nd-Pb-Hf同位素约束.岩石学报, 30(11):3287-3300. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411014
      [44] 贺娟, 王启宇, 闫国川, 等, 2018.滇西金沙江-红河构造带鲁甸始新世煌斑岩成因及动力学背景.地球科学, 43(8):2586-2599. doi: 10.3799/dqkx.2018.105
      [45] 胡晓佳, 郭安林, 宗春蕾, 等, 2012.青藏高原东北缘多福屯陆内基性火山岩的40Ar/39Ar同位素定年和地球化学特征及其构造启示.西北大学学报(自然科学版), 42(3):443-452. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdxxb201203021
      [46] 姜耀辉, 蒋少涌, 凌洪飞, 等, 2006.陆-陆碰撞造山环境下含铜斑岩岩石成因——以藏东玉龙斑岩铜矿带为例.岩石学报, 22(3):697-706. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603019
      [47] 李海兵, 杨经绥, 2004.青藏高原北部白垩纪隆升的证据.地学前缘, 11(4):345-359. http://d.old.wanfangdata.com.cn/Periodical/dxqy200404002
      [48] 李猛, 王超, 李荣社, 等, 2018.柴达木盆地北缘全吉群皱节山组碎屑锆石年代学特征及其地质意义.地球科学, 43(12):4390-4398. doi: 10.3799/dqkx.2018.106
      [49] 李晓彦, 陈能松, 夏小平, 等, 2007.莫河花岗岩的锆石U-Pb和Lu-Hf同位素研究:柴北欧龙布鲁克微陆块始古元古代岩浆作用年龄和地壳演化约束.岩石学报, 23(2):513-522. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702027
      [50] 卢欣祥, 孙延贵, 张雪亭, 等, 2007.柴达木盆地北缘塔塔楞环斑花岗岩的SHRIMP年龄.地质学报, 81(5):626-634. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200705006
      [51] 路凤香, 舒小辛, 赵崇贺, 等, 1991.有关煌斑岩分类的建议.地质科技情报, 10(S1):55-62. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ1991S1006.htm
      [52] 骆满生, 卢隆桥, 贾建, 等, 2014.中国中生代沉积盆地演化.地球科学, 39(8):954-976. doi: 10.3799/dqkx.2014.088
      [53] 罗照华, 卢欣祥, 王秉璋, 等, 2008.造山后脉岩组合与内生成矿作用.地学前缘, 15(4):1-12. http://d.old.wanfangdata.com.cn/Periodical/dxqy200804001
      [54] 罗照华, 魏阳, 辛后田, 等, 2006.造山后脉岩组合的岩石成因——对岩石圈拆沉作用的约束.岩石学报, 22(6):1672-1684. doi: 10.3321/j.issn:1000-0569.2006.06.024
      [55] 潘桂棠, 肖庆辉, 陆松年, 等, 2009.中国大地构造单元划分.中国地质, 36(1):1-16, 255, 17-28. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200901001
      [56] 王勤燕, 陈能松, 李晓彦, 等, 2008.全吉地块基底达肯大坂岩群和热事件的LA-ICPMS锆石U-Pb定年.科学通报, 53(14):1693-1701. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200814010
      [57] 张建新, 于胜尧, 李云帅, 等, 2015.原特提斯洋的俯冲、增生及闭合:阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用.岩石学报, 31(12):3531-3554. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201512003
      [58] 朱小辉, 王洪亮, 杨猛, 等, 2016.祁连南缘柴达木山复式花岗岩体中部二长花岗岩锆石U-Pb定年及其地质意义.中国地质, 43(3):751-767. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201603005
    • dqkx-45-4-1136-Table1.pdf
    • 加载中
    图(9) / 表(3)
    计量
    • 文章访问数:  2647
    • HTML全文浏览量:  428
    • PDF下载量:  72
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-06-09
    • 刊出日期:  2020-04-15

    目录

      /

      返回文章
      返回