Urbanization Factors of Groundwater Vulnerability Assessment in Karst Area: A Case Study of Shuicheng Basin
-
摘要: 岩溶地下水是贵州省六盘水市的重要供水水源,但针对该地区的岩溶地下水脆弱性评价,尤其是城镇化区域的岩溶地下水脆弱性评价尚未见报道.运用改进的径流-覆盖层-降雨(COP)模型,利用RS及GIS技术对水城盆地的土壤类型、土地利用/覆盖类型、降水量数据进行处理,研究了岩溶地下水脆弱性评价的城镇化因子.结果显示,2004~2016年间,研究区地下水固有脆弱性整体呈现出由中脆弱性向低脆弱性转变的趋势,脆弱性降低的区域与城镇化过程中增加的不透水地面区域相一致;表明不透水地面有效地阻碍了地表污染物进入地下,降低了地下水固有脆弱性.本结果为水城盆地岩溶水资源管理提供了重要依据.Abstract: Karst groundwater is an important water supply source for Liupanshui City of Guizhou Province. However, vulnerability assessment of karst groundwater in this region, especially in the urbanized areas has not been reported. To characterize urbanization factors of groundwater vulnerability assessment in karst area, we chose Shuicheng Basin as the study area, used and improved the Concentration of Flow-Overlying Layers-Precipitation (COP) model, and processed data of soil types, land use/land cover, and precipitation by RS and GIS technologies. Results show that the inherent vulnerability of groundwater for the study area decreased from medium to low during 2004 to 2016, and the area with decreased vulnerability is consistent with the increased impervious area caused by urbanization. It suggests that impervious grounds hinder inputs of surface pollutants, reducing inherent vulnerability of groundwater. Our results are important for karst water resource management in the study area.
-
Key words:
- urbanization /
- inherent vulnerability assessment /
- COP model /
- karst area /
- hydrogeology
-
表 1 研究区土壤类型、质地及厚度统计
Table 1. Type, texture and thickness of soil in the study area
土壤类型 土壤质地 厚度(cm) 山地灌丛草甸土 重壤土 20~50 山地黄棕壤 中-轻壤土 50~100 黄壤 中壤土 70~120 石灰土 中壤土-重粘土 14~85 紫色土 中/重壤土 20~30 潮土 砂壤土 30 沼泽土 中-重壤土 80 水稻土 壤土 60 注:据贵州省农业厅和中国科学院南京土壤研究所(1980),六盘水市地方志编纂委员会(1980). 表 2 六盘水-安顺-毕节地区1981~2010年降雨统计
Table 2. Annual rainfall of the Liupanshui-Anshun-Bijie region during 1981-2010
区站号 站名 经度 纬度 海拔(m) 累年年平均降水量(mm) 累年年降水天数 降水强度(mm/d) 56598 赫章 104°26' 27°05' 1 535.1 832.9 167.9 5.0 56691 威宁 104°10' 26°31' 2 237.5 859.4 177.8 4.8 56793 盘县 104°17' 25°26' 1 800.0 1 383.4 186.9 7.4 57800 纳雍 105°13' 26°28' 1 457.1 1 203.0 211.0 5.7 57805 织金 105°28' 26°25' 1 319.3 1 355.4 204.2 6.6 57807 六枝 105°17' 26°07' 1 361.9 1 480.0 192.1 7.7 57808 普定 105°27' 26°11' 1 274.5 1 340.6 174.7 7.7 57809 镇宁 105°27' 26°02' 1 251.0 1 347.0 175.6 7.7 57903 关岭 105°22' 25°34' 1 142.0 1 327.7 174.7 7.6 注:数据来自中国气象数据网,http://data.cma.cn/. 表 3 2004~2010年脆弱性面积转移矩阵(km2)
Table 3. Vulnerability area transfer matrix during 2004-2010 (km2)
极高脆弱性 高脆弱性 中脆弱性 低脆弱性 极低脆弱性 2010年合计 极高脆弱性 3.04 0.05 0.00 0.04 0.01 3.13 高脆弱性 0.08 3.96 1.18 0.13 1.93 7.28 中脆弱性 0.00 0.23 66.53 20.73 6.54 94.04 低脆弱性 0.00 0.10 4.63 54.10 3.58 62.41 极低脆弱性 0.00 0.41 9.01 7.80 15.83 33.04 2004年合计 3.12 4.75 81.36 82.79 27.88 表 4 2010~2016年脆弱性面积转移矩阵(km2)
Table 4. Vulnerability area transfer matrix during 2010- 2016 (km2)
极高脆弱性 高脆弱性 中脆弱性 低脆弱性 极低脆弱性 2016年合计 极高脆弱性 2.98 0.07 0.00 0.01 0.01 3.06 高脆弱性 0.10 3.57 0.90 0.07 0.48 5.11 中脆弱性 0.00 0.65 65.91 11.54 6.67 84.78 低脆弱性 0.04 0.23 7.06 37.05 4.13 48.51 极低脆弱性 0.01 2.76 20.14 13.73 21.79 58.44 2010年合计 3.13 7.28 94.01 62.40 33.08 表 5 2004、2010、2016年研究区脆弱性分布面积(%)
Table 5. Fractions (%) of vulnerability levels in 2004、2010、2016 for the study area
脆弱性 面积占比(%) 2004年 2010年 2016年 高脆弱性及以上 3.94 5.21 4.09 中脆弱性 40.70 47.03 42.35 低脆弱性及以下 55.36 47.76 53.56 -
[1] Agricultural Department of Guizhou Province, Institute of Soil Science of Chinese Academy of Sciences, 1980. The Soil of Guizhou. Guizhou People Publishing House, Guiyang (in Chinese). [2] Almasri, M. N., 2008. Assessment of Intrinsic Vulnerability to Contamination for Gaza Coastal Aquifer, Palestine. Journal of Environmental Management, 88(4): 577-593. https://doi.org/10.1016/j.jenvman.2007.01.022 [3] Andreo, B., Goldscheider, N., Vadillo, I., et al., 2006. Karst Groundwater Protection: First Application of a Pan-European Approach to Vulnerability, Hazard and Risk Mapping in the Sierra de Líbar (Southern Spain). Science of the Total Environment, 357(1-3): 54-73. https://doi.org/10.1016/j.scitotenv.2005.05.019 [4] Andreo, B., Ravbar, N., Vías, J. M., 2009. Source Vulnerability Mapping in Carbonate (Karst) Aquifers by Extension of the COP Method: Application to Pilot Sites. Hydrogeology Journal, 17(3): 749-758. https://doi.org/10.1007/s10040-008-0391-1 [5] Bagherzadeh, S., Kalantari, N., Nobandegani, A. F., et al., 2018. Groundwater Vulnerability Assessment in Karstic Aquifers Using COP Method. Environmental Science and Pollution Research, 25(19): 18960-18979. https://doi.org/10.1007/s11356-018-1911-8 [6] Daly, D., Dassargues, A., Drew, D., et al., 2002. Main Concepts of the "European Approach" to Karst-Groundwater-Vulnerability Assessment and Mapping. Hydrogeology Journal, 10(2): 340-345. https://doi.org/10.1007/s10040-001-0185-1 [7] Dimitriou, E., Karaouzas, I., Sarantakos, K., et al., 2008. Groundwater Risk Assessment at a Heavily Industrialised Catchment and the Associated Impacts on a Peri-Urban Wetland. Journal of Environmental Management, 88(3): 526-538. https://doi.org/10.1016/j.jenvman.2007.03.019 [8] Dimitriou, E., Zacharias, I., 2006. Groundwater Vulnerability and Risk Mapping in a Geologically Complex Area by Using Stable Isotopes, Remote Sensing and GIS Techniques. Environmental Geology, 51(2): 309-323. https://doi.org/10.1007/s00254-006-0328-8 [9] Doerfliger, N., Jeannin, P. Y., Zwahlen, F., 1999. Water Vulnerability Assessment in Karst Environments: A New Method of Defining Protection Areas Using a Multi-Attribute Approach and GIS Tools (EPIK Method). Environmental Geology, 39(2): 165-176. https://doi.org/10.1007/s002540050446 [10] Fu, S.R., Wang, Y.X., Cai, H.S., et al., 2000. Vulnerability to Contamination of Groundwater in Urban Regions. Earth Science, 25(5):482-486 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200005007.htm [11] Goldscheider, N., Klute, M., Sturm, S., 2000. The PI Method: A GIS-Based Approach to Mapping Groundwater Vulnerability with Special Consideration of Karst Aquifers. Zeitschrift für Angewandte Geologie, 46(3): 157-166. https://www.researchgate.net/publication/279555580_The_PI_method_-_A_GIS-based_approach_to_mapping_groundwater_vulnerability_with_special_consideration_of_karst_aquifers [12] Hao, H., 2004. Study on the Status and Countermeasures of Urban Groundwater Pollution in China. Water Resources Development Research, 4(3):23-25 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BFHJ200708010.htm [13] He, S.Y., Zhu, L.J., Dong, Z.F., et al., 2010.Study on Geochemical Susceptivity of Groundwater System in Representative Karstic Regions. Environmental Science, 31(5):1176-1182 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/hjkx201005008 [14] Li, H., Wen, Z., Xie, X.J., et al., 2017. Hydrochemical Characteristics and Evolution of Karst Groundwater in Sanqiao District of Guiyang City. Earth Science, 42(5):804-812 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705016 [15] Liu, H.J., Fan, M.Y., Zhang, B.X., et al., 2015.Vulnerability Assessment of Karst Water in Feicheng Basin Based on COP Method. South-to-North Water Transfers and Water Science & Technology, 13(3):538-542 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nsbdyslkj201503031 [16] Liupanshui Local Chronicle Compilation Committee, 1980. The Annals of Liupanshui. Guizhou People Publishing House, Guiyang, 92-98 (in Chinese). [17] Naik, P. K., Tambe, J. A., Dehury, B. N., et al., 2008. Impact of Urbanization on the Groundwater Regime in a Fast Growing City in Central India. Environmental Monitoring and Assessment, 146(1-3): 339-373. https://doi.org/10.1007/s10661-007-0084-6 [18] Polemio, M., Casarano, D., Limoni, P. P., 2009. Karstic Aquifer Vulnerability Assessment Methods and Results at a Test Site (Apulia, Southern Italy). Natural Hazards and Earth System Sciences, 9(4): 1461-1470. https://doi.org/10.5194/nhess-9-1461-2009 [19] Tayer, T. D. C., Velásques, L. N. M., 2017. Assessment of Intrinsic Vulnerability to the Contamination of Karst Aquifer Using the COP Method in the Carste Lagoa Santa Environmental Protection Unit, Brazil. Environmental Earth Sciences, 76(13):445. https://doi.org/10.1007/s12665-017-6760-0 [20] Vías, J., Andreo, B., Ravbar, N., et al., 2010. Mapping the Vulnerability of Groundwater to the Contamination of Four Carbonate Aquifers in Europe. Journal of Environmental Management, 91(7): 1500-1510. https://doi.org/10.1016/j.jenvman.2010.02.025 [21] Vías, J. M., Andreo, B., Perles, M. J., et al., 2006. Proposed Method for Groundwater Vulnerability Mapping in Carbonate (Karstic) Aquifers: The COP Method. Hydrogeology Journal, 14(6): 912-925. https://doi.org/10.1007/s10040-006-0023-6 [22] Wang, S., Zhang, C., Pei, J.G., et al., 2008. Valuation and Study on Vulnerability of Karst Groundwater. Ground Water, 30(6):14-18 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dixs200806005 [23] Wang, Y.X., Li, Y.L., Fu, S.R., et al., 2002. Vulnerability of Groundwater in Quaternary Aquifers to Organic Contaminants: A Case Study in Wuhan City, China. Earth Science, 27(5):616-620 (in Chinese with English abstract). https://www.deepdyve.com/lp/springer-journals/vulnerability-of-groundwater-in-quaternary-aquifers-to-organic-BbqgZWbS32 [24] Xi, R., 2015. Analyzing the Rainfall Change for 50 Years and Its Affect on the Vulnerability of Karst Aquifer in Chongqing (Dissertation). Southwest University, Chongqing (in Chinese with English abstract). [25] Xiao, P., Wan, J.W., Yu, W., et al., 2015. Cause and Counter Measures of Karst Ground Collapse in Shuicheng Basin. Journal of Guilin University of Technology, 35(2):263-268 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GLGX201502007.htm [26] Xing, L.T., Gao, Z.D., Ye, C.H., et al., 2009. The COP Method of Groundwater Vulnerability Evaluation in Karst Areas and Its Improvement. China Rural Water and Hydropower, (7):39-42 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgncslsd200907012 [27] Yu, K.N., Wan, L., Du, Q.J., et al., 2003. Positive and Negative Effects of Urbanization on Groundwater Quality. Earth Science, 28(3):333-336 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200303016 [28] 付素蓉, 王焰新, 蔡鹤生, 等, 2000.城市地下水污染敏感性分析.地球科学, 25(5):482-486. doi: 10.3321/j.issn:1000-2383.2000.05.008 [29] 贵州省农业厅, 中国科学院南京土壤研究所, 1980.贵州土壤.贵阳:贵州人民出版社. [30] 郝华, 2004.我国城市地下水污染状况与对策研究.水利发展研究, 4(3):23-25. doi: 10.3969/j.issn.1671-1408.2004.03.004 [31] 何守阳, 朱立军, 董志芬, 等, 2010.典型岩溶地下水系统地球化学敏感性研究.环境科学, 31(5):1176-1182. http://d.old.wanfangdata.com.cn/Periodical/hjkx201005008 [32] 李华, 文章, 谢先军, 等, 2017.贵阳市三桥地区岩溶地下水水化学特征及其演化规律.地球科学, 42(5):804-812. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201705015.htm [33] 刘海娇, 范明元, 张保祥, 等, 2015.基于COP方法的肥城盆地岩溶水脆弱性评价.南水北调与水利科技, 13(3):538-542. http://d.old.wanfangdata.com.cn/Periodical/nsbdyslkj201503031 [34] 六盘水市地方志编纂委员会, 1980.六盘水市志.贵阳:贵州人民出版社, 92-98. [35] 王松, 章程, 裴建国, 等, 2008.岩溶地下水脆弱性评价研究.地下水, 30(6):14-18. doi: 10.3969/j.issn.1004-1184.2008.06.005 [36] 王焰新, 李义连, 付素蓉, 等, 2002.武汉市区第四系含水层地下水有机污染敏感性研究.地球科学, 27(5):616-620. doi: 10.3321/j.issn:1000-2383.2002.05.023 [37] 葸瑞, 2015.基于GIS的近50年降雨量时空变化及其对岩溶含水层脆弱性影响——以重庆市为例(硕士学位论文).重庆: 西南大学. [38] 肖攀, 万军伟, 喻望, 等, 2015.贵州水城盆地岩溶地面塌陷成因分析及防治对策.桂林理工大学学报, 35(2): 263-268. doi: 10.3969/j.issn.1674-9057.2015.02.007 [39] 邢立亭, 高赞东, 叶春和, 等, 2009.岩溶含水层脆弱性评价的COP模型及其改进.中国农村水利水电, (7):39-42. http://d.old.wanfangdata.com.cn/Periodical/zgncslsd200907012 [40] 于开宁, 万力, 都沁军, 等, 2003.城市化影响地下水水质的正负效应.地球科学, 28(3):333-336. doi: 10.3321/j.issn:1000-2383.2003.03.016