Zircon U-Pb Chronology, Geochemistry of Jiangjunmu Ore-Bearing Pluton, Eastern Part of East Kunlun and Their Geological Significance
-
摘要: 将军墓含矿花岗闪长斑岩位于东昆仑造山带东段.通过岩石地球化学、锆石U-Pb年代学、Lu-Hf同位素研究,结果表明,含矿花岗闪长斑岩LA-ICP-MS锆石U-Pb年龄为218.8±1.3 Ma,形成于晚三叠世.含矿花岗闪长斑岩SiO2含量为65.23%~67.25%,MgO含量1.50%~1.59%,Al2O3含量15.30%~15.75%,K2O/Na2O比值1.00~1.20,Mg#值43~44.表现富硅、富铝、富钾特征,显示高钾钙碱性系列;岩石具有轻重稀土分馏和轻稀土富集及负Eu异常特征,富集大离子亲石元素(LILE),如Th、U、Rb、K;亏损高场强元素(HFSE),如Nb、P、Zr等;锆石εHf(t)=-1.7~+1.01,TDM2=1 064~1 214 Ma,反映源区主体为中元古代下地壳.综合年代学、岩石学和地球化学证据,显示将军墓含矿花岗闪长斑岩源于中元古代下地壳重熔,并有少量地幔岩浆加入而发生不完全混合,含少量暗色微粒包体的含矿岩石.将军墓含矿花岗闪长斑岩形成于东昆仑晚三叠世碰撞后伸展环境,是东昆仑晚三叠世壳幔相互作用成岩-成矿的体现.该岩体不仅仅是东昆仑古特提斯构造岩浆事件的产物,同时具备良好的成矿条件,为东昆仑晚三叠世岩浆作用研究和寻找与之有关的斑岩型或热液型多金属矿床提供重要的证据.
-
关键词:
- 东昆仑东段 /
- 将军墓含矿花岗闪长斑岩 /
- 锆石U-Pb年龄 /
- 暗色微粒包体 /
- 岩石学
Abstract: Jiangjunmu ore-bearing granodiorite porphyry is located in the eastern part of East Kunlun orogenic belt. In this paper,zircon U-Pb dating and Lu-Hf isotopes,whole-rock major and trace elements of ore-bearing granodiorite porphyry are presented to discuss their geochronology and genesis. The results show that the ore-bearing granodiorite porphyry was formed at the Late Triassic with the age of 218.8±1.3 Ma. It has contents of SiO2(65.23%-67.25%),MgO(1.50%-1.59%),Al2O3(15.30%-15.75%) with K2O/Na2O ratios ranging from 1.00 to 1.20 and Mg# values ranging from 43 to 44. The ore-bearing granodiorite porphyries are characterized by high silicon,aluminum and high-potassium,belonging to the high-potassium rock. Meanwhile,they are enriched in large ion lithophile elements (LILEs) such as Th,U,Rb and K,and depleted in high field strength elements (HFSE) such as Nb,P and Zr. Hf isotopic compositions of the ore-bearing granodiorite porphyry (εHf(t)=-1.7-+1.01,TDM2=1 064-1 214 Ma),indicating that their parental magmas were derived from the Middle Proterozoic lower crust. Coupled with the petrography of a small number of mafic microgranular enclaves,geochronology,petrology and geochemistry data indicate that ore-bearing granodiorite porphyry originated from the mixing of dominating re-melting of Middle Proterozoic lower crust and a small amount of mantle-derived materials. The ore-bearing granodiorite porphyry was formed in the post-collisional orogenic extensional setting,indicative of the crust-mantle diagenesis and mineralization at Late Triassic in the East Kunlun. It is not only the product of the Paleo-Tethys tectonic and magmatic event in the East Kunlun,but also has good metallogenic conditions,which provides important evidence for the study of the Late Triassic magmatism in the East Kunlun and search for porphyry or hydrothermal polymetallic deposits. -
图 1 中国大地构造格架示意图(a);东昆仑造山带示意图(b);东昆仑三叠纪矿花岗岩类年龄统计直方图(c);东昆仑地区岩浆岩分布简图(d)
图a底图基于国家测绘地理信息局标准地图服务网站下载的审图号为GS(2019)1675号的标准地图制作,底图无修改;,图b,d底图引自Hu et al.(2016);图c数据张炜等(2016)、丰成友等(2012)、张明东等(2018)
Fig. 1. Outline of the geological framework of China(a); schematic geological map of the East Kunlun orogenic belt (EKB) (b); age histogram of granitoids at the Triassic in the East Kunlun(c); Simplified distribution map of magmatic rocks along the East Kunlu(d)
图 5 将军墓花岗闪长斑岩SiO2-(Na2O+K2O)图解(a)、SiO2-K2O图解(b)和A/CNK-A/NK图解(c)
图a据Middlemost(1994);图b据Peccerillo and Taylor(1976);图c据Maniar and Piccolio(1989)
Fig. 5. Diagrams of SiO2-(Na2O+K2O)(a), SiO2-K2O(b) and A/CNK-A/NK(c) of Jiangjunmu granodiorite porphyry
图 6 将军墓花岗闪长斑岩及暗色微粒包体稀土球粒陨石标准化配分曲线和原始地幔标准化蛛网图解
球粒陨石和原始地幔数据引自Sun and McDonough(1989)
Fig. 6. Chondrite-normalized rare earth elements pattern and primitive mantle-normalized elements spider diagram of Jiangjunmu granodiorite porphyry and MME
图 7 将军墓花岗闪长斑岩MgO-FeOT图解(a)和SiO2-A/CNK图解(b)
图a底图据朱玉娣等(2014);图b底图据Zorpi et al. (1989)
Fig. 7. MgO-FeOT diagram (a) and SiO2-A/CNK diagram (b) of Jiangjunmu granodiorite porphyry
图 9 将军墓花岗闪长斑岩YbN-(La/Yb)N图解
底图据Defant and Drummond(1990),球粒陨石标准化数据引自Sun and McDonough (1989)
Fig. 9. YbN-(La/Yb)N diagram of Jiangjunmu granodiorite porphyry
图 10 将军墓花岗闪长斑岩Cr- Ni图解(a)和(La/Yb)N -Sr/Y图解(b)
图a据Wang et al.(2006);图b据Liu et al.(2010)和Ling et al.(2013). (La/Yb)N球粒陨石标准化数据根据Sun and McDonough (1989)
Fig. 10. Cr- Ni diagram (a) and (La/Yb)N -Sr/Y diagram (b) of Jiangjunmu granodiorite porphyry
图 11 将军墓花岗闪长斑岩La/Yb-La (a)和CaO-Sr (b)图解
图a据Furman and Graham(1999);图b底图据He et al.(2011)
Fig. 11. La/Yb-La (a) and CaO-Sr (b) diagram of Jiangjunmu granodiorite porphyry
图 12 将军墓花岗闪长斑岩R1-R2图解
Fig. 12. R1-R2 diagram of Jiangjunmu granodiorite porphyry
表 1 将军墓花岗闪长斑岩和暗色微粒包体主微量元素地球化学分析数据
Table 1. Whole rock major and trace element contents of Jiangjunmu granodiorite porphyry and MME
样品编号 Jjm-01 Jjm-02 Jjm-03 Jjm01-1 Jjm01-2 Jjm01-3 Jjm01-4 Jjm01-5 Jjm01-6 Jjm01-7 Jjm01-8 Jjm01-9 岩石类型 暗色微粒包体(MME) 花岗闪长斑岩 SiO2 57.19 57.29 54.98 65.50 65.84 65.58 65.82 65.23 65.25 66.31 66.54 67.25 TiO2 0.76 0.77 1.20 0.67 0.65 0.68 0.66 0.68 0.69 0.63 0.60 0.63 Al2O3 17.33 17.75 17.51 15.35 15.31 15.47 15.42 15.3 15.45 15.44 15.47 15.75 TFeO 6.82 7.36 8.39 4.07 4.04 4.07 4.06 4.13 4.14 3.93 3.82 3.95 MnO 0.13 0.14 0.17 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.07 MgO 2.93 3.09 3.42 1.59 1.56 1.58 1.56 1.58 1.55 1.54 1.50 1.55 CaO 2.77 2.09 2.99 2.29 2.54 2.31 2.37 2.26 2.31 2.36 2.29 2.32 Na2O 4.63 4.72 5.43 3.69 3.40 3.58 3.60 3.67 3.72 4.03 4.07 4.04 K2O 4.58 4.47 4.27 4.17 4.06 4.10 4.12 4.19 4.22 4.04 4.10 4.12 P2O5 0.16 0.16 0.23 0.14 0.14 0.14 0.14 0.15 0.15 0.15 0.14 0.15 LOI 3.31 2.74 2.10 2.46 2.43 2.30 2.24 2.47 2.39 2.14 2.11 2.45 SUM 100.61 100.58 100.69 99.99 100.04 99.88 100.06 99.73 99.94 100.64 100.70 102.28 Mg# 46 46 45 44 44 44 43 43 43 44 44 44 Li 69.17 77.09 86.69 56.40 60.80 58.94 60.31 51.84 53.51 53.49 51.48 52.67 Be 2.15 2.33 2.51 2.24 2.63 2.39 2.53 2.21 2.3 2.35 2.22 2.32 Sc 22.11 22.79 17.59 6.98 7.93 7.65 7.70 7.72 7.61 7.70 7.55 8.45 V 94.39 97.65 74.04 39.33 39.03 41.15 41.37 40.86 40.60 41.66 39.20 40.84 Cr 58.98 63.65 23.61 7.15 8.24 7.34 7.59 8.87 7.95 11.56 8.90 8.76 Co 30.45 23.30 24.32 32.38 23.80 26.73 23.22 32.31 29.01 24.57 25.43 26.24 Ni 3.75 3.83 3.65 2.53 2.34 2.47 2.39 2.78 2.62 2.16 2.38 2.42 Cu 25.21 35.72 6.31 11.07 12.79 6.42 6.48 3.91 5.41 5.17 6.52 5.50 Zn 319.50 429.55 197.43 82.53 72.50 72.52 73.99 73.39 74.76 72.15 68.70 73.99 Ga 24.92 26.71 28.60 20.06 20.67 21.48 21.77 20.6 20.69 20.20 19.79 19.80 Rb 173.22 172.37 51.64 204.71 202.81 204.94 210.74 190.16 200.27 183.69 182.36 183.20 Sr 354.6 341 567.98 482.62 463.59 482.34 483.65 457.85 500.44 319.02 326.65 331.47 Y 45.95 50.08 16.43 19.93 21.93 20.82 20.07 20.39 21.20 19.47 18.93 19.16 Zr 141.91 142.99 240.02 207.83 215.00 207.26 224.70 194.62 217.88 196.44 195.99 208.52 Nb 15.24 15.39 18.97 14.77 14.78 15.30 15.51 14.98 15.02 13.90 13.56 13.91 Sn 2.17 2.22 1.25 2.69 1.86 2.31 2.70 2.19 2.34 2.18 2.23 2.22 Cs 6.05 6.49 13.11 7.78 12.77 10.49 9.89 7.04 7.70 4.26 4.31 4.40 Ba 676.39 632.45 233.36 773.58 728.22 741.27 765.04 819.96 785.65 607.64 640.9 624.33 Lu 0.53 0.58 0.23 0.21 0.23 0.21 0.21 0.21 0.21 0.23 0.24 0.25 Hf 4.87 4.73 6.46 5.74 5.89 5.68 6.09 5.34 5.91 5.87 6.08 6.48 Ta 1.32 1.27 1.48 1.07 1.05 1.08 1.09 1.07 1.04 1.23 1.32 1.29 Tl 0.90 0.88 0.26 1.08 1.06 1.04 1.15 1.11 1.12 0.82 0.90 0.91 Pb 33.84 43.6 18.75 24.90 24.35 25.67 25.37 23.9 23.99 18.59 20.04 19.89 Th 15.26 14.21 8.23 25.83 27.30 28.69 28.99 26.03 26.51 25.05 27.12 24.88 U 2.64 2.48 2.33 3.19 3.44 3.40 3.50 3.37 3.35 2.76 2.92 2.84 La 42.37 41.99 32.14 54.50 54.60 62.70 59.50 54.50 56.70 51.70 53.57 48.58 Ce 108.18 110.14 65.43 105.00 104.00 119.00 113.00 104.00 108.00 107.24 109.82 98.97 Pr 15.38 16.13 8.07 11.60 11.90 13.20 12.50 11.80 12.10 11.97 12.21 11.18 Nd 68.94 71.47 31.88 42.30 43.30 46.8 44.70 43.00 43.80 44.01 44.98 42.30 Sm 16.32 17.16 6.29 7.90 8.08 8.61 8.22 8.00 8.07 8.30 8.35 7.95 Eu 1.86 1.90 1.15 1.21 1.16 1.20 1.20 1.25 1.19 1.18 1.25 1.25 Gd 13.25 13.51 4.85 5.62 5.85 6.05 5.87 5.84 5.72 5.96 5.75 5.68 Tb 1.88 1.97 0.67 0.76 0.83 0.82 0.77 0.77 0.77 0.79 0.80 0.79 Dy 10.77 11.05 3.55 4.11 4.33 4.17 3.97 4.18 4.19 4.20 4.32 4.24 Ho 1.86 1.95 0.63 0.68 0.74 0.72 0.66 0.68 0.70 0.71 0.73 0.74 Er 4.92 5.05 1.72 1.87 2.07 1.91 1.88 1.93 2.02 1.90 1.90 1.89 Tm 0.64 0.68 0.24 0.24 0.25 0.25 0.23 0.23 0.23 0.26 0.26 0.26 Yb 3.90 4.17 1.54 1.54 1.61 1.52 1.56 1.63 1.60 1.65 1.71 1.71 ΣREE 290.79 297.76 158.39 237.54 238.95 267.16 254.27 238.02 245.3 240.11 245.90 225.77 LREE 253.05 258.79 144.97 222.51 223.04 251.51 239.12 222.55 229.86 224.40 230.19 210.22 HREE 37.75 38.97 13.42 15.03 15.91 15.65 15.15 15.47 15.44 15.71 15.71 15.55 LREE/HREE 6.70 6.64 10.80 14.80 14.02 16.07 15.78 14.39 14.89 14.29 14.65 13.52 (La/Yb)N 7.80 7.22 14.96 25.38 24.33 29.59 27.36 23.98 25.42 22.48 22.51 20.42 δEu 0.38 0.37 0.61 0.53 0.49 0.48 0.50 0.53 0.51 0.49 0.52 0.54 δCe 1.04 1.04 0.97 0.97 0.96 0.96 0.97 0.96 0.96 1.02 1.01 1.00 注:主量元素单位为%;微量和稀土元素单位为10-6;Mg#=Mg2+/(Mg2++Fe2+);(La/Yb)N标准化数据引自Sun and McDonough (1989). -
[1] Barbarin, B., 2005. Mafic Magmatic Enclaves and Mafic Rocks Associated with Some Granitoids of the Central Sierra Nevada Batholith, California: Nature, Origin, and Relations with the Hosts. Lithos, 80(1-4): 155-177.https://doi.org/10.1016/j.lithos.2004.05.010 [2] Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1-4): 43-55. https://doi.org/10.1016/0009-2541(85)90034-8 [3] Chen, G.C., Pei, X.Z., Li, R.B., et al., 2013.Late Triassic Magma Mixing in the East Kunlun Orogenic Belt:A Case Study of Helegang Xilikete Granodiorites.Geology in China, 40(4):1044-1065(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201304006.htm [4] Chen, G.C., Pei, X.Z., Li, R.B., et al., 2017.Age and Petrogenesis of Jialuhe Basic-Intermediate Pluton in Xiangjia'nanshan Granite Batholith in the Eastern Part of East Kunlun Orogenic Belt, and Its Geological Significance. Geotectonica et Metallogenia, 41(6):1097-1115(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201706008 [5] Chen, H.W., Luo, Z.H., Mo, X.X., et al., 2005.Underplating Mechanism of Triassic Granite of Magma Mixing Origin in the East Kunlun Orogenic Belt.Geology in China, 32(3):386-395(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200503006 [6] Davidson, J., Turner, S., Handley, H., et al., 2007. Amphibole "Sponge" in Arc Crust?. Geology, 35(9): 787.https://doi.org/10.1130/g23637a.1 [7] Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0 [8] Donaire, T., Pascual, E., Pin, C., et al., 2005. Microgranular Enclaves as Evidence of Rapid Cooling in Granitoid Rocks: The Case of the Los Pedroches Granodiorite, Iberian Massif, Spain. Contributions to Mineralogy and Petrology, 149(3): 247-265. https://doi.org/10.1007/s00410-005-0652-0 [9] Feng, C.Y., Li, D.S., Wu, Z.S., et al., 2010.Major Types, Time-Space Distribution and Metallogeneses of Polymetallic Deposits in the Qimantage Metallogenic Belt, Eastern Kunlun Area.Northwestern Geology, 43(4):10-17(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz201004002 [10] Feng, C.Y., Wang, S., Li, G.C., et al., 2012.Middle to Late Triassic Granitoids in the Qimantage Area, Qinghai Province, China:Chronology, Geochemistry and Metallogenic Significances.Acta Petrologica Sinica, 28(2):665-678(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202024 [11] Furman, T., Graham, D., 1999. Erosion of Lithospheric Mantle beneath the East African Rift System: Geochemical Evidence from the Kivu Volcanic Province. Lithos, 48(1-4): 237-262. https://doi.org/10.1016/s0024-4937(99)00031-6 [12] Gao, Y.B., 2013. The Intermediate-Acid Intrusive Magmatism and Mineralization in Qimantag, East Kunlun Mountains(Dissertation). Chang'an University, Xi'an (in Chinese with English abstract). [13] Gao, Y.B., Li, K., Qian, B., et al., 2015.The Genesis of Granodiorites and Dark Enclaves from the Kaerqueka Deposit in East Kunlun Belt:Evidence from Zircon U-Pb Dating, Geochemistry and Sr-Nd-Hf Isotopic Compositions.Geology in China, 42(3):646-662(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0024493715002686 [14] Gao, Y.B., Li, W.Y., Ma, X.G., et al., 2012.Genesis, Geochronology and Hf Isotopic Compositions of the Magmatic Rocks in Galinge Iron Deposit, Eastern Kunlun.Journal of Lanzhou University(Natural Sciences), 48(2):36-47(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lzdxxb201202006 [15] Green, T. H., 1994. Experimental Studies of Trace-Element Partitioning Applicable to Igneous Petrogenesis-Sedona 16 Years Later. Chemical Geology, 117(1-4): 1-36.https://doi.org/10.1016/0009-2541(94)90119-8 [16] He, Y. S., Li, S. G., Hoefs, J., et al., 2011. Post-Collisional Granitoids from the Dabie Orogen: New Evidence for Partial Melting of a Thickened Continental Crust. Geochimica et Cosmochimica Acta, 186: 351-356. https://doi.org/10.1016/j.gca.2011.04.011 [17] Hofmann, A. W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297-314. https://doi.org/10.1016/0012-821x(88)90132-x [18] Hou, Z. Q., Zhang, H. R., Pan, X. F., et al., 2011. Porphyry Cu (-Mo-Au) Deposits Related to Melting of Thickened Mafic Lower Crust: Examples from the Eastern Tethyan Metallogenic Domain. Ore Geology Reviews, 39(1-2): 21-45.https://doi.org/10.1016/j.oregeorev.2010.09.002 [19] Hu, Y., Niu, Y. L., Li, J. Y., et al., 2016. Petrogenesis and Tectonic Significance of the Late Triassic Mafic Dikes and Felsic Volcanic Rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos, 245: 205-222.https://doi.org/10.1016/j.lithos.2015.05.004 [20] Hu, Z.C., Zhang, W., Liu, Y. S., et al., 2015. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Analytical Chemistry, 87(2): 1152-1157. https://doi.org/10.1021/ac503749k [21] Huang, X. L., Xu, Y. G., Lan, J. B., et al., 2009. Neoproterozoic Adakitic Rocks from Mopanshan in the Western Yangtze Craton: Partial Melts of a Thickened Lower Crust. Lithos, 112(3-4): 367-381. https://doi.org/10.1016/j.lithos.2009.03.028 [22] Ling, M. X., Li, Y., Ding, X., et al., 2013. Destruction of the North China Craton Induced by Ridge Subductions. The Journal of Geology, 121(2): 197-213. https://doi.org/10.1086/669248 [23] Liu, C. D., Mom, X. X., Luo, Z. H., 2004. The Crust-Ceramic Magmatic Mixing in East Kunlun:Evidence from Zircon SHRIMP Geochronology. Chinese Science Bulletin, 49(6):596-602(in Chinese). doi: 10.1360/csb2004-47-6-596 [24] Liu, L., Qiu, J. S., Li, Z., 2013. Origin of Mafic Microgranular Enclaves (MMEs) and Their Host Quartz Monzonites from the Muchen Pluton in Zhejiang Province, Southeast China: Implications for Magma Mixing and Crust-Mantle Interaction. Lithos, 160-161: 145-163. https://doi.org/10.1016/j.lithos.2012.12.005 [25] Liu, S. A., Li, S. G., He, Y. S., et al., 2010. Geochemical Contrasts between Early Cretaceous Ore-Bearing and Ore-Barren High-Mg Adakites in Central-Eastern China: Implications for Petrogenesis and Cu-Au Mineralization. Geochimica et Cosmochimica Acta, 74(24): 7160-7178.https://doi.org/10.1016/j.gca.2010.09.003 [26] Ludwig, K. R., 2003. ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California, Berkeley, 39. doi: 10.1016-j.immuni.2011.10.010/ [27] Luo, M. F., M, X. X., Yu, X. H., et al., 2014. Zircon LA-ICP-MS U-Pb Age Dating, Petrogenesis and Tectonic Implications of the Late Triassic Granites from the Xiangride Area, East Kunlun. Acta Petrologica Sinica, 30(11):3229-3241(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201411010 [28] Luo, Z.H., Ke, S., Cao, Y.Q., et al., 2002.Late Indosinian Mantle-Derived Magmatism in the East Kunlun.Regional Geology of China, 21(6):292-297(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200206003 [29] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635: tdog>2.3.co; 2 [30] Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [31] Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007.Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt.Geological Journal of China Universities, 13(3):403-414(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=fc5ea73d95680f7cf00988cb80fbb1da&encoded=0&v=paper_preview&mkt=zh-cn [32] Mungall, J. E., 2002. Roasting the Mantle: Slab Melting and the Genesis of Major Au and Au-Rich Cu Deposits. Geology, 30(10): 915.https://doi.org/10.1130/0091-7613(2002)030<0915: rtmsma>2.0.co; 2 [33] Neves, S. P., Vauchez, A., 1995. Successive Mixing and Mingling of Magmas in a Plutonic Complex of Northeast Brazil. Lithos, 34(4): 275-299. https://doi.org/10.1016/0024-4937(94)00012-q [34] Pearce, J., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005 [35] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81.https://doi.org/10.1007/bf00384745 [36] Pitcher, W.S., 1997. The Nature and Origin of Granite. Blackie Academic & Professional, Glasgow.https://doi.org/10.1007/978-94-011-5832-9 [37] Qin, J. F., Lai, S. C., Grapes, R., et al., 2010. Origin of LateTriassic High-Mg Adakitic Granitoid Rocks from the Dongjiangkou Area, Qinling Orogen, Central China: Implications for Subduction of Continental Crust. Lithos, 120(3-4): 347-367. https://doi.org/10.1016/j.lithos.2010.08.022 [38] Qin, Z.W., Ma, C.Q., Fu, J.M., et al., 2018.The Origin of Mafic Enclaves in Xiangjia Granitic Pluton of East Kunlun Orogenic Belt:Evidence from Petrography and Geochemistry.Earth Science, 43(7):2420-2437(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201807015 [39] Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge:Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4):335-356. https://doi.org/10.1016/s0009-2541(99)00106-0 doi: 10.1016/S0009-2541(99)00106-0 [40] Richards, J. P., Kerrich, R., 2007. Special Paper: Adakite-Like Rocks: Their Diverse Origins and Questionable Role in Metallogenesis. Economic Geology, 102(4): 537-576.https://doi.org/10.2113/gsecongeo.102.4.537 [41] Rollinson, H., 2003. Metamorphic History Suggested by Garnet-Growth Chronologies in the Isua Greenstone Belt, West Greenland. Precambrian Research, 126(3-4): 181-196. https://doi.org/10.1016/s0301-9268(03)00094-9 [42] Rudnick, R. L., Gao, S., 2003. The Composition of the Continental Crust. In: Rudnick, R.L., Holland, H.D., Turekian, K.K.L., eds., The Crust Treatise on Geochemistry vol. 3. Elsevier, Oxford. https://doi.org/10.1016/0016-7037(95)00038-2 [43] Shellnutt, J. G., Jahn, B. M., Dostal, J., 2010. Elemental and Sr-Nd Isotope Geochemistry of Microgranular Enclaves from Peralkaline A-Type Granitic Plutons of the Emeishan Large Igneous Province, SW China. Lithos, 119(1-2): 34-46. https://doi.org/10.1016/j.lithos.2010.07.011 [44] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345.https://doi.org/10.1144/gsl.sp.1989.042.01.19 [45] Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241.https://doi.org/10.1029/95rg00262 [46] Wang, Q., Wyman, D. A., Xu, J. F., et al., 2006. Petrogenesis of Cretaceous Adakitic and Shoshonitic Igneous Rocks in the Luzong Area, Anhui Province (Eastern China): Implications for Geodynamics and Cu-Au Mineralization. Lithos, 89(3-4): 424-446. https://doi.org/10.1016/j.lithos.2005.12.010 [47] Wang, D.Z., Xie, L., 2008.Magma Mingling:Evidence from Enclaves.Geological Journal of China Universities, 14(1):16-21(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200801002 [48] Wu, F. Y., LI, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2):185-220(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 [49] Wu, X. K., Meng, F. C., Xu, H., et al., 2011. Zircon U-Pb Dating, Geochemistry and Nd-Hf Isotopic Compositions of the Maxingdaban Late Triassic Granitic Pluton from Qimantag in the Eastern Kunlun. Acta Petrologica Sinica, 27(11):3380-3394(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201111018 [50] Wu, Y.B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15):1554-1569(in Chinese). doi: 10.1007/BF03184122 [51] Xia, R., Deng, J., Qing, M., et al., 2017. Petrogenesis of ca. 240 Ma Intermediate and Felsic Intrusions in the Nan'getan: Implications for Crust-Mantle Interaction and Geodynamic Process of the East Kunlun Orogen. Ore Geology Reviews, 90: 1099-1117. https://doi.org/10.1016/j.oregeorev.2017.04.002 [52] Xia, R., Wang, C. M., Qing, M., et al., 2015. Molybdenite Re-Os, Zircon U-Pb Dating and Hf Isotopic Analysis of the Shuangqing Fe-Pb-Zn-Cu Skarn Deposit, East Kunlun Mountains, Qinghai Province, China. Ore Geology Reviews, 66: 114-131. https://doi.org/10.1016/j.oregeorev.2014.10.024 [53] Xiong, F.H., 2014. Temporal and Spatial Distribution, Petrology and Geological Significance of Paleo-Tethys Granites in the Eastern Part of Eastern Kunlun Orogenic Belt (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1367912015000498 [54] Xu, Q.L., Sun, F.Y., Li, B.L., et al., 2014.Geochronological Dating, Geochemical Characteristics and Tectonic Setting of the Granite-Porphyry in the Mohexiala Silver Polymetallic Deposit, Eastern Kunlun Orogenic Belt.Geotectonica et Metallogenia, 38(2):421-433(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201402021 [55] Xu, Z.Q., C, J.W., Z, J.X., 1996. Structural Dynamics of Continental Mountain Chain Deformation. Metallurgical Industry Press, Beijing, 204-225(in Chinese). https://pubs.geoscienceworld.org/books/book/561/chapter/3802672/Thick-skinned-and-thin-skinned-styles-of [56] Xu, Z.Q., Jiang, M., Yang, J.S., et al., 2004.Mantle Structure of Qinghai-Tibet Plateau:Mantle Plume, Mantle Shear Zone and Delamination of Lithospheric Slab.Earth Science Frontiers, 11(4):329-343(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200404000.htm [57] Yang, T.L., Jiang, S.Y., 2015.Petrogenesis of Intermediate-Felsic Intrusive Rocks and Mafic Microgranular Enclaves(MMEs)from Dongleiwan Deposit in Jiurui Ore District, Jiangxi Province:Evidence from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Pb-Hf Isotopes.Earth Science, 40(12):2002-2020(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201512006.htm [58] Zhang, M.D., Ma, C.Q., Wang, L.X., et al., 2018.Subduction-Type Magmatic Rocks in Post-Collision Stage:Evidence from Late Triassic Diorite-Porphyrite of Naomuhungou Area, East Kunlun Orogen.Earth Science, 43(4):1183-1206(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201804016 [59] Zhang, W., Zhou, H.W., Zhu, Y.H., et al., 2016.The Evolution of Triassic Granites Associated with Mineralization within East Kunlun Orogenic Belt:Evidence from the Petrology, Geochemistry and Zircon U-Pb Geochronology of the Mohexiala Pluton.Earth Science, 41(8):1334-1348(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201608006.htm [60] Zhu, Y. T., Ye, X., Zhang, D., 2014. The Origion of the Porphyry Mo(Cu) Deposit in Tongcun, Western Zhejiang Provinice:Evidence from Geochemistry, SHRIMP Zircon U-Pb Geochronology and Sr-Nd Isotopics. Earth Science Frontiers, 21(4):221-234(in Chinese with English abstract). [61] Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48. https://doi.org/10.1016/j.precamres.2016.12.010 [62] Zorpi, M. J., Coulon, C., Orsini, J. B., et al., 1989. Magma Mingling, Zoning and Emplacement in Calc-Alkaline Granitoid Plutons. Tectonophysics, 157(4): 315-329. https://doi.org/10.1016/0040-1951(89)90147-9 [63] 陈国超, 裴先治, 李瑞保, 等, 2013.东昆仑造山带晚三叠世岩浆混合作用:以和勒冈希里克特花岗闪长岩体为例.中国地质, 40(4):1044-1065. doi: 10.3969/j.issn.1000-3657.2013.04.005 [64] 陈国超, 裴先治, 李瑞保, 等, 2017.东昆仑东段香加南山花岗岩基中加鲁河中基性岩体形成时代、成因及其地质意义.大地构造与成矿学, 41(6):1097-1115. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201706008 [65] 谌宏伟, 罗照华, 莫宣学, 等, 2005.东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制.中国地质, 32(3):386-395. doi: 10.3969/j.issn.1000-3657.2005.03.006 [66] 丰成友, 李东生, 吴正寿, 等, 2010.东昆仑祁漫塔格成矿带矿床类型、时空分布及多金属成矿作用.西北地质, 43(4):10-17. doi: 10.3969/j.issn.1009-6248.2010.04.002 [67] 丰成友, 王松, 李国臣, 等, 2012.青海祁漫塔格中晚三叠世花岗岩:年代学、地球化学及成矿意义.岩石学报, 28(2):665-678. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202024 [68] 高永宝, 2013.东昆仑祁漫塔格地区中酸性侵入岩浆活动与成矿作用(博士学位论文).西安:长安大学. http://cdmd.cnki.com.cn/ResetPage.aspx?u=/Article/CDMD-11941-1014032422.htm&t=cdmd&i=x&d=2020-05-13%2011:33:04 [69] 高永宝, 李侃, 钱兵, 等, 2015.东昆仑卡而却卡铜矿区花岗闪长岩及其暗色微粒包体成因:锆石U-Pb年龄、岩石地球化学及Sr-Nd-Hf同位素证据.中国地质, 42(3):646-662. doi: 10.3969/j.issn.1000-3657.2015.03.018 [70] 高永宝, 李文渊, 马晓光, 等, 2012.东昆仑尕林格铁矿床成因年代学及Hf同位素制约.兰州大学学报(自然科学版), 48(2):36-47. doi: 10.3969/j.issn.0455-2059.2012.02.007 [71] 刘成东, 莫宣学, 罗照华, 等, 2004.东昆仑壳-幔岩浆混合作用:来自锆石SHRIMP年代学的证据.科学通报, 49(6):596-600. doi: 10.3321/j.issn:0023-074X.2004.06.018 [72] 罗明非, 莫宣学, 喻学惠, 等, 2014.东昆仑香日德地区晚三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因和构造意义.岩石学报, 30(11):3229-3241. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411010 [73] 罗照华, 柯珊, 曹永清, 等, 2002.东昆仑印支晚期幔源岩浆活动.地质通报, 21(6):292-297. doi: 10.3969/j.issn.1671-2552.2002.06.003 [74] 莫宣学, 罗照华, 邓晋福, 等, 2007.东昆仑造山带花岗岩及地壳生长.高校地质学报, 13(3):403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010 [75] 秦拯纬, 马昌前, 付建明, 等, 2018.东昆仑香加花岗质岩体中镁铁质包体成因:岩相学及地球化学证据.地球科学, 43(7):2420-2437. http://d.old.wanfangdata.com.cn/Periodical/dqkx201807015 [76] 王德滋, 谢磊, 2008.岩浆混合作用:来自岩石包体的证据.高校地质学报, 14(1):16-21. doi: 10.3969/j.issn.1006-7493.2008.01.002 [77] 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001 [78] 吴祥珂, 孟繁聪, 许虹, 等, 2011.青海祁漫塔格玛兴大坂晚三叠世花岗岩年代学、地球化学及Nd-Hf同位素组成.岩石学报, 27(11):3380-3394. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201111018 [79] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [80] 熊富浩, 2014.东昆仑造山带东段古特提斯域花岗岩类时空分布、岩石成因及其地质意义(博士学位论文).武汉:中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-10491-1014340842.htm [81] 许庆林, 孙丰月, 李碧乐, 等, 2014.东昆仑莫河下拉银多金属矿床花岗斑岩年代学、地球化学特征及其构造背景.大地构造与成矿学, 38(2):421-433. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201402021 [82] 许志琴, 崔军文, 张建新, 1996, 大陆山链变形构造动力学.北京:冶金工业出版社, 204-225. http://book.ixueshu.com/book/695ca3a64a0e97de.html [83] 许志琴, 姜枚, 杨经绥, 等, 2004.青藏高原的地幔结构:地幔羽、地幔剪切带及岩石圈俯冲板片的拆沉.地学前缘, 11(4):329-343. doi: 10.3321/j.issn:1005-2321.2004.04.001 [84] 杨堂礼, 蒋少涌, 2015.江西九瑞矿集区东雷湾矿区中酸性侵入岩及其铁镁质包体的成因:锆石U-Pb年代学、地球化学与Sr-Nd-Pb-Hf同位素制约.地球科学, 40(12):2002-2020. http://d.old.wanfangdata.com.cn/Periodical/dqkx201512005 [85] 张明东, 马昌前, 王连训, 等, 2018.后碰撞阶段的"俯冲型"岩浆岩:来自东昆仑瑙木浑沟晚三叠世闪长玢岩的证据.地球科学, 43(4):1183-1206. doi: 10.3799/dqkx.2018.715?viewType=HTML [86] 张炜, 周汉文, 朱云海, 等, 2016.东昆仑与成矿有关的三叠纪花岗岩演化:基于莫河下拉岩体岩石学、地球化学和锆石U-Pb年代学的证据.地球科学, 41(8):1334-1348. http://d.old.wanfangdata.com.cn/Periodical/dqkx201608007 [87] 朱玉娣, 叶锡芳, 张德会, 等, 2014.浙西开化桐村斑岩型Mo(Cu)矿床含矿斑岩岩石化学、SHRIMP锆石U-Pb年代学及Sr-Nd同位素研究.地学前缘, 21(4):221-234. http://d.old.wanfangdata.com.cn/Periodical/dxqy201404024 -
dqkx-45-4-1151.xml-Table1-2.pdf