A New Interpretation of Carbon Isotope Series Reverse of Highly-Over Mature Alkane Gases: Demethylation of Aromatic Hydrocarbons
-
摘要: 天然气成因机理复杂,鉴于在高-过成熟阶段烷烃气碳同位素系列倒转普遍存在,而高-过成熟阶段有机质中常富含芳环结构,利用芳香烃(甲苯)热裂解实验探讨高-过成熟阶段烷烃气碳同位素系列倒转成因.甲苯热裂解实验表明随着模拟温度的增加,烷烃气产率逐渐增大;模拟产物中H2产率也随着模拟温度的增加而增加.甲苯裂解产物中δ13C1、δ13C2和δ13C3分布区间分别为-31.8‰~-27.7‰,-31.0‰~-20.4‰和-31.0‰~-20.4‰.在甲苯热模拟实验450℃时,出现了烷烃气碳同位素系列的部分倒转(δ13C1>δ13C2 < δ13C3).发现无论是煤成气还是油型气,在高-过成熟阶段都会出现烷烃气碳同位素系列的倒转,结合本次模拟实验结果,认为芳香烃脱甲基作用可能是烷烃气高-过成熟阶段出现碳同位素系列倒转的一个重要原因.Abstract: The genetic mechanism of natural gas is complex. In view of the fact that carbon isotope series reverse of alkane gas exists generally in the highly-over mature stage, and the organic matter in the highly-over mature stage is often rich in aromatic ring structure, the carbon isotope series reverse of alkane gas in the highly-over mature stage is discussed by means of pyrolysis experiments of aromatic hydrocarbons (toluene). The pyrolysis of toluene shows that the yield of alkane gas increases with the increase of simulated temperature, and the yield of H2 in the product increases with the increase of simulated temperature. The distribution ranges of δ13C1, δ13C2 and δ13C3 in toluene pyrolysis products are -31.8‰ to -27.7‰, -31.0‰ to -20.4‰ and -31.0‰ to -20.4‰, respectively. In the toluene thermal simulation experiment at 450℃, partial reversal of carbon isotope series of alkanes occurred (δ13C1>δ13C2 < δ13C3). It is found that carbon isotope series reversal occurs in both coal type gas and oil type gas at highly-over mature stage. Combining with the simulation results, it is considered that aromatic hydrocarbon demethylation may be an important reason for carbon isotope series reversal in highly-over mature stage of alkane gas.
-
Key words:
- thermal simulation experiment /
- natural gas /
- carbon isotope /
- aromatic hydrocarbon pyrolysis /
- toluene /
- hydrocarbons
-
表 1 甲苯裂解主要产物产率特征
Table 1. Yield characteristics of main products from toluene pyrolysis
温度(℃) 样品量(mg) 主要组分产率(mL/g) 烃类气产率(mL/g) CH4 C2H6 C3H8 iC4 nC4 H2 450 72.9 13.23 0.25 0.07 0.01 0.01 1.16 13.56 475 69.7 55.12 0.70 0.18 0.01 n.d. 1.36 56.02 500 61.1 193.99 6.19 0.99 0.04 n.d. 3.61 201.22 525 60.2 260.85 11.23 0.60 0.02 n.d. 5.08 272.70 550 52.9 294.55 8.48 0.18 n.d. n.d. 6.26 303.21 注:"n.d."表示没有检测到数据, 下同. 表 2 甲苯裂解主要产物相对含量及碳同位素组成
Table 2. Relative content and carbon isotope composition of main products from toluene pyrolysis
温度(℃) 主要化学组成(%) C1/C1-4 δ13C(‰, VPDB) CH4 C2H6 C3H8 iC4 nC4 H2 C1 C2 C3 450 12.42 0.24 0.06 0.01 0.01 1.09 0.975 -27.7 -28.1 -23.5 475 64.61 0.82 0.21 0.02 n.d. 1.59 0.984 -31.8 -31.0 -23.1 500 89.34 2.85 0.46 0.02 n.d. 1.66 0.964 -30.5 -28.8 -19.3 525 91.17 3.93 0.21 0.01 n.d. 1.78 0.957 -29.9 -24.4 -15.1 550 91.37 2.63 0.06 n.d. n.d. 1.94 0.971 -29.5 -20.4 -16.9 -
[1] Cai, Y.W., Zhang, S.C., He, K., et al., 2017.The Effect of Magnetite on the Products and Isotopic Fractions of Gaseous Hydrocarbons. Natural Gas Geoscience, 28(2):331-340 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201702017 [2] Dai, J.X., 1992. Identification of Alkane Gas. Science China Earth Sciences, 2:185-193 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/sp201803018 [3] Dai, J. X., Ni, Y. Y., Huang, S. P., et al., 2016a. Secondary Origin of Negative Carbon Isotopic Series in Natural Gas. Journal of Natural Gas Geoscience, 1(1):1-7. https://doi.org/10.1016/j.jnggs.2016.02.002 [4] Dai, J. X., Xia, X. Y., Qin, S. F., et al., 2004. Origins of Partially Reversed Alkane δ13C Values for Biogenic Gases in China. Organic Geochemistry, 35(4):405-411. https://doi.org/10.1016/j.orggeochem.2004.01.006 [5] Dai, J. X., Zou, C. N., Dong, D. Z., et al., 2016b. Geochemical Characteristics of Marine and Terrestrial Shale Gas in China. Marine and Petroleum Geology, 76:444-463. https://doi.org/10.1016/j.marpetgeo.2016.04.027 [6] Dai, J. X., Zou, C. N., Liao, S. M., et al., 2014. Geochemistry of the Extremely High Thermal Maturity Longmaxi Shale Gas, Southern Sichuan Basin. Organic Geochemistry, 74:3-12. https://doi.org/10.1016/j.orggeochem.2014.01.018 [7] Dai, J.X., Pei, X.G., Qi, H.F., 1992. Natural Gas Geology in China (Vol.1). Petroleum Industry Press, Beijing, 116-129 (in Chinese). [8] Feng, Z.Q., Dong, D.Z., Tian, J. Q., et al., 2018. Geochemical Characteristics of Longmaxi Formation Shale Gas in the Weiyuan Area, Sichuan Basin, China. Journal of Petroleum Science and Engineering, 167:538-548. https://doi.org/10.1016/j.petrol.2018.04.030 [9] Galimov, E. M., 2006. Isotope Organic Geochemistry. Organic Geochemistry, 37(10):1200-1262. https://doi.org/10.1016/j.orggeochem.2006.04.009 [10] Gao, B., 2015.Geochemical Characteristics of Shale Gas from Lower Silurian Longmaxi Formation in the Sichuan Basin and Its Geological Significance. Natural Gas Geoscience, 26(6):1173-1182 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201506019 [11] Hill, R. J., Jarvie, D. M., Zumberge, J., et al., 2007. Oil and Gas Geochemistry and Petroleum Systems of the Fort Worth Basin. AAPG Bulletin, 91(4):445-473. https://doi.org/10.1306/11030606014 [12] Hill, R. J., Tang, Y. C., Kaplan, I. R., 2003. Insights into Oil Cracking Based on Laboratory Experiments. Organic Geochemistry, 34(12):1651-1672. https://doi.org/10.1016/s0146-6380(03)00173-6 [13] Hu, G.Y., Li, J., Li, Z.S., et al., 2010.Composition and Carbon Isotopic Distribution Characteristics of Light Hydrocarbon in Coal-Derived Gas and Natural Gas Exploration. Acta Petrolei Sinica, 31(1):42-48(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201001007 [14] Hunt, J., 1979. Petroleum Geochemistry and Geology. Freeman and Company, New York. [15] Li, J., Li, J., Li, Z. S., et al., 2014. The Hydrogen Isotopic Characteristics of the Upper Paleozoic Natural Gas in Ordos Basin. Organic Geochemistry, 74:66-75. https://doi.org/10.1016/j.orggeochem.2014.01.020 [16] Liu, Q. Y., Jin, Z. J., Li, H. L., et al., 2018. Geochemistry Characteristics and Genetic Types of Natural Gas in Central Part of the Tarim Basin, NW China. Marine and Petroleum Geology, 89:91-105. https://doi.org/10.1016/j.marpetgeo.2017.05.002 [17] Liu, Q. Y., Worden, R. H., Jin, Z. J., et al., 2013. TSR versus Non-TSR Processes and Their Impact on Gas Geochemistry and Carbon Stable Isotopes in Carboniferous, Permian and Lower Triassic Marine Carbonate Gas Reservoirs in the Eastern Sichuan Basin, China. Geochimica et Cosmochimica Acta, 100:96-115. https://doi.org/10.1016/j.gca.2012.09.039 [18] Liu, Q. Y., Worden, R. H., Jin, Z. J., et al., 2014. Thermochemical Sulphate Reduction (TSR) versus Maturation and Their Effects on Hydrogen Stable Isotopes of very Dry Alkane Gases. Geochimica et Cosmochimica Acta, 137:208-220. https://doi.org/10.1016/j.gca.2014.03.013 [19] Liu, Q. Y., Wu, X. Q., Wang, X. F., et al., 2019. Carbon and Hydrogen Isotopes of Methane, Ethane, and Propane:A Review of Genetic Identification of Natural Gas. Earth-Science Reviews, 190:247-272. https://doi.org/10.1016/j.earscirev.2018.11.017 [20] Mi, J. K., Zhang, S. C., He, K., 2014. Experimental Investigations about the Effect of Pressure on Gas Generation from Coal. Organic Geochemistry, 74:116-122. https://doi.org/10.1016/j.orggeochem.2014.05.012 [21] Mi, J. K., Zhang, S. C., Su, J., et al., 2018. The Upper Thermal Maturity Limit of Primary Gas Generated from Marine Organic Matters. Marine and Petroleum Geology, 89:120-129. https://doi.org/10.1016/j.marpetgeo.2017.06.045 [22] Peng, W. L., Hu, G. Y., Liu, Q. Y., et al., 2018. Research Status on Thermal Simulation Experiment and Several Issues of Concern. Journal of Natural Gas Geoscience, 3(5):283-293. https://doi.org/10.1016/j.jnggs.2018.11.006 [23] Qin, S.F., 2012.Carbon Isotopic Composition of Water-Soluble Gases and Its Geological Significance in the Sichuan Basin. Petroleum Exploration and Development, 39(3):313-319(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201203007 [24] Schoell, M., 1980. The Hydrogen and Carbon Isotopic Composition of Methane from Natural Gases of Various Origins. Geochimica et Cosmochimica Acta, 44(5):649-661. https://doi.org/10.1016/0016-7037(80)90155-6 [25] Schoell, M., 1983. Genetic Characterization of Natural Gas. AAPG Bulletin, 67:2225-2238. http://d.old.wanfangdata.com.cn/Periodical/ycxb201308008 [26] Song, Z.X., Gu, Y., Lu, Q.H., et al., 2016.Genetic Types of Natural Gas and Its Exploration Direction in Lishu Fault Sag, Songliao Basin. Acta Petrolei Sinica, 37(5):622-630(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201605006 [27] Sun, M.L., Liu, G.D., 2013.Genesis Type and Source Analysis in Lower Cretaceous of Changling Depression in Songliao Basin.Geoscience, 27(5):1186-1192(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201305022 [28] Tang, Y., Perry, J. K., Jenden, P. D., et al., 2000. Mathematical Modeling of Stable Carbon Isotope Ratios in Natural Gases. Geochimica et Cosmochimica Acta, 64(15):2673-2687. https://doi.org/10.1016/s0016-7037(00)00377-x [29] Tang, G.M., Luo, Q., Pang, X.Q., et al., 2014.Natural Gas Genetic Type and Accumulation Characteristics in Erboliang Ⅲ Structure in North Margin of Qaidam Basin. Xinjiang Petroleum Geology, 35(1):17-22(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjsydz201401005 [30] Tissot, B.P., Welte, D.H., 1984. Petroleum Formation and Occurrence(Second Edition). Springer-Verlag, Berlin, Heidelberg, New York, Tokyo. [31] Wang, D.L., Zhang, Y., Lu, S.F., et al., 2012.The Simulation Experiment on Gas-Generating Potential of Over Mature Source Rocks. Acta Sedimentologica Sinica, 30(6):1172-1179(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201206022 [32] Wang, J., Chen, J.F., Wang, T.G., et al., 2006.Gas Source Rocks and Gas Genetic Type in Shuangcheng-Taipingchuan Area of Songliao Basin. Acta Petrolei Sinica, 27(3):16-21(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb200603004 [33] Wei, X.F., Guo, T.L., Liu, R.B., et al., 2016.Geochemical Features of Shale Gas and Their Genesis in Jiaoshiba Block of Fuling Shale Gasfield, Chongqing. Natural Gas Geoscience, 27(3):539-548(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201603017 [34] Yu, C., Gong, D.Y., Huang, S.P., et al., 2014.Geochemical Characteristics of Carbon and Hydrogen Isotopes for the Xujiahe Formation Natural Gas in Sichuan Basin. Natural Gas Geoscience, 25(1):87-97(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201401010 [35] Zhai, L.N., Ni, Y.Y., Wu, C.D., et al., 2017.Geochemical Characteristics of the Natural Gas from the Xujiahe Formation in the Central Sichuan Basin, China. Natural Gas Geoscience, 28(4):539-549(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201704008.htm [36] Zhang, J., Zhao, H.J., Zhang, M., et al., 2012.Geochemical Characteristics and Origin of Natural Gas in Lishu Fault Depression, Songliao Basin. Petroleum Geology & Experiment, 34(4):417-421(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201204013 [37] Zhao, L.B., Huang, Z.L., Ma, Y.J., et al., 2006.A Study on Geochemical Character and Origin of Deep Natural Gas in Dehui Fault Depression of the Southern Songliao Basin. Natural Gas Geoscience, 17(2):177-182(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx200602009 [38] 蔡郁文, 张水昌, 何坤, 等, 2017.磁铁矿对有机质生烃及同位素分馏的影响.天然气地球科学, 28(2):331-340. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201702017 [39] 戴金星, 1992.各类烷烃气的鉴别.中国科学:地球科学, 2:185-193. http://www.cqvip.com/qk/88064X/199202/985597.html [40] 戴金星, 裴锡古, 戚厚发, 1992.中国天然气地质学(卷一).北京: 石油工业出版社, 116-129. [41] 高波, 2015.四川盆地龙马溪组页岩气地球化学特征及其地质意义.天然气地球科学, 26(6):1173-1182. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201506019 [42] 胡国艺, 李谨, 李志生, 等, 2010.煤成气轻烃组分和碳同位素分布特征与天然气勘探.石油学报, 31(1):42-48. http://d.old.wanfangdata.com.cn/Periodical/syxb201001007 [43] 秦胜飞, 2012.四川盆地水溶气碳同位素组成特征及地质意义.石油勘探与开发, 39(3):313-319. http://d.old.wanfangdata.com.cn/Periodical/syktykf201203007 [44] 宋振响, 顾忆, 路清华, 等, 2016.松辽盆地梨树断陷天然气成因类型及勘探方向.石油学报, 37(5):622-630. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201605006 [45] 孙明亮, 柳广弟, 2013.松辽盆地长岭断陷下白垩统天然气成因及气源分析.现代地质, 27(5):1186-1192. doi: 10.3969/j.issn.1000-8527.2013.05.022 [46] 汤国民, 罗群, 庞雄奇, 等, 2014.柴北缘鄂博梁Ⅲ号构造天然气成因类型及其成藏特征.新疆石油地质, 35(1):17-22. http://d.old.wanfangdata.com.cn/Periodical/xjsydz201401005 [47] 王东良, 张英, 卢双舫, 等, 2012.烃源岩过成熟阶段生气潜力的实验室模拟.沉积学报, 30(6):1172-1179. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201206022 [48] 王杰, 陈践发, 王铁冠, 等, 2006.松辽盆地双城-太平川地区天然气成因类型及气源.石油学报, 27(3):16-21. doi: 10.3321/j.issn:0253-2697.2006.03.004 [49] 魏祥峰, 郭彤楼, 刘若冰, 等, 2016.涪陵页岩气田焦石坝地区页岩气地球化学特征及成因.天然气地球科学, 27(3):539-548. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201603017 [50] 于聪, 龚德瑜, 黄士鹏, 等, 2014.四川盆地须家河组天然气碳、氢同位素特征及其指示意义.天然气地球科学, 25(1):87-97. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201401010 [51] 翟俪娜, 倪云燕, 吴朝东, 等, 2017.川中地区须家河组天然气地球化学特征.天然气地球科学, 28(4):539-549. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201704006 [52] 张俊, 赵红静, 张敏, 等, 2012.松辽盆地梨树断陷天然气地球化学特征及成因探讨.石油实验地质, 34(4):417-421. doi: 10.3969/j.issn.1001-6112.2012.04.013 [53] 赵力彬, 黄志龙, 马玉杰, 等, 2006.松辽盆地南部德惠断陷深层天然气地球化学特征及成因.天然气地球科学, 17(2):177-182. doi: 10.3969/j.issn.1672-1926.2006.02.009