Characteristics of Biotite in the Granite Porphyry and Its Significance for Petrogenesis and Mineralization of Dachang Sn-Polymetallic Ore Deposit, Guangxi
-
摘要: 广西大厂锡多金属矿床是世界上最大的锡多金属矿床之一,区内花岗斑岩主要分布于铜坑-长坡-巴里-龙头山矿区的东侧,受近SN向张扭性断裂构造控制,并对早期形成的矿体产生了叠加改造作用.为了探讨花岗斑岩的成岩成矿条件,对花岗斑岩中以斑晶、包体以及基质形式产出的黑云母进行了详细的电子探针分析.结果显示:花岗斑岩中的黑云母主要为岩浆成因的铁质黑云母,且指示岩体具有高碱度的特征.与斑晶和包体黑云母相比,基质黑云母相对富铁、锰、锂,贫镁、钛.斑晶和包体黑云母结晶温度为688~715℃,结晶压力为1.7~2.3 kbar,相当于6.3~8.4 km的侵位深度;基质黑云母的结晶温度为630~673℃,结晶压力为1.6~2.0 kbar,相当于6.0~7.4 km的侵位深度.斑晶、包体和基质黑云母的氧逸度分别为-17.0~-16.1、-17.0~-16.6和-19.0~-17.4,指示在侵位的过程中,伴随着岩浆的上涌,氧逸度随之降低,成岩条件由相对氧化向相对还原的方向变化.与花岗斑岩有关的共存流体性质研究显示,斑晶黑云母中的lg(fH2O/fHF)Fluid、lg(fH2O/fHCl)Fluid和lg(fHF/fHCl)Fluid值分别为3.41~3.82、3.78~4.07和-0.54~-0.17;包体黑云母中的lg(fH2O/fHF)Fluid、lg(fH2O/fHCl)Fluid和lg(fHF/fHCl)Fluid值分别为3.90~4.11、3.86~4.11和-0.74~-0.43;基质黑云母中的lg(fH2O/fHF)Fluid、lg(fH2O/fHCl)Fluid和lg(fHF/fHCl)Fluid值分别为3.90~4.39、3.85~4.96和-0.61~0.25.结果显示,在花岗斑岩上侵的过程中,与不同阶段结晶生成的斑晶、包体和基质黑云母共存的流体在成分上有一定的差异性,不是单一的流体.大厂花岗斑岩中黑云母成分的变化指示岩浆结晶过程早期阶段具有高温、高碱度和低氧逸度的特征,有利Sn元素的活化、迁移、富集,进而对大厂锡多金属矿床起到叠加改造作用.Abstract: The Dachang Sn-polymetallic ore deposit,Guangxi,is one of the largest tin deposits in the world. The granite porphyry occurs in the eastern side of the Tongkeng-Changpo-Bali-Longtoushan area,which is mainly controlled by nearly SN extensional tectonics and has superimposed and reformed the ore bodies formed in the early stage. To further evaluate the petrogenesis and associated hydrothermal mineralization of the granite porphyry,detailed electron microprobe analyses were performed on three modes of biotite occurrence:inclusions enclosed in quartz,phenocrysts and matrix as one of rock-forming minerals. The biotites of different occurrences are all classified as magmatic ferrobiotites,reflecting that their host rock has high basicity. Biotite matrixes contain higher FeOt,MnO and Li2O but lower MgO and TiO2 than those occur as phenocryst and inclusion. The estimated crystallization temperatures for phenocryst and inclusion biotites are 688-715℃ and pressure conditions range from 1.7 to 2.3 kbar,equivalent to emplacement depth of 6.3-8.4 km. In contrast,the calculated crystallization temperatures for matrix biotites are 630-673℃ and pressure conditions range from 1.6 to 2.0 kbar,equivalent to emplacement depth of 6.0-7.4 km. Systematic differences in oxygen fugacity between biotites related to inclusion (-17.0 to -16.6),phenocryst (-17.0 to -16.1) and matrix (-19.0 to -17.4) are found,which are characterized by a trend of decreasing oxygen fugacities in the direction of magma upwelling,suggesting that the diagenetic conditions change from relative oxidizing condition to reducing condition. Magmatic biotite composition is useful in the calculation of the halogen fugacity in magma during its crystallization,which are represented by lg(fH2O/fHF)Fluid,lg(fH2O/fHCl)Fluid and lg(fHF/fHCl)Fluid values. These values for phenocrystys are 3.41-3.82,3.78-4.07 and -0.54 to -0.17 respectively; for inclusions are 3.90-4.11,3.86-4.11 and -0.74 to -0.43 respectively; and for matrix are 3.90-4.39,3.85-4.96 and -0.61-0.25 respectively,which indicates that the coexisting hydrothermal fluids associated with phenocrysty,inclusion and matrix biotite crystallization are not continuous episode but differences in composition. The changes in the composition of biotites regarding to inclusion,phenocrysts and matrix,indicate that the early stage of the magma crystallization is characterized by high temperature,high basicity and low oxygen fugacity. These characteristics could have been beneficial to the activation,migration and concentration of the Sn element,as well as to further transformation on the earlier formed deposit.
-
Key words:
- Dachang /
- granite porphyry /
- biotite /
- oxygen fugacity /
- Sn-polymetallic ore deposit /
- ore deposits
-
图 1 广西大厂地质简图
Fig. 1. Geological map of the Dachang Sn-polymetallic ore district
图 5 大厂花岗斑岩黑云母分类图(a)和大厂花岗斑岩黑云母10×TiO2-FeO*-MgO图解(b)
图a据Tischendorf et al. (1999);图b据Nachit et al.(2005)
Fig. 5. Plot of Fetot+Mn-AlVI+Ti versus Mg-Li (a) and 10×TiO2-FeO*-MgO (b) of biotite from Dachang granite porphyry
图 8 在2 070 bar大气压下黑云母+透长石+磁铁矿平衡的lg(fo2)-T图解
Fig. 8. lg(fo2)-T diagram for the biotite+sanidine+magnetite+gas equilibrium at Ptotal=2 070 bar
图 9 大厂花岗斑岩黑云母Al2O3-FeO*-MgO图解(a);黑云母的FeO*/(FeO*+MgO)-MgO图(b);按黑云母的成分确定岩体碱度图解(c)
图a据Abdel-Rahman(1994);图b据周作侠(1988);图c据谢应雯等(1995). a~b.低碱度区;c.正常碱度区;d~e.高碱度区
Fig. 9. Plot of Al2O3-FeO*-MgO(a) and FeO*/(FeO*+MgO)-MgO(b) of biotite from Dachang granite porphyry; alkalinity diagrams of the rockbodies in accordance with the composition of biotite(c)
-
[1] Abdel-Rahman, A.F.M., 1994.Nature of Biotites from Alkaline, Calc-Alkaline, and Peraluminous Magmas.Journal of Petrology, 35(2): 525-541.https://doi.org/10.1093/petrology/35.2.525 [2] Ayati, F., Yavuz, F., Noghreyan, M., et al., 2008.Chemical Characteristics and Composition of Hydrothermal Biotite from the Dalli Porphyry Copper Prospect, Arak, Central Province of Iran.Mineralogy and Petrology, 94(1-2): 107-122.https://doi.org/10.1007/s00710-008-0006-5 [3] Bhalla, P., Holtz, F., Linnen, R.L., et al., 2005.Solubility of Cassiterite in Evolved Granitic Melts: Effect of T, fo2, and Additional Volatiles.Lithos, 80(1-4): 387-400.https://doi.org/10.1016/j.lithos.2004.06.014 [4] Cai, M.H., He, L.Q., Liu, G.Q., et al., 2006.SHRIMP Zircon U-Pb Dating of the Intrusive Rocks in the Dachang Tin-Polymetallic Ore Field, Guangxi and Their Geological Significance.Geological Review, 52(3):409-414(in Chinese with English abstract). [5] Cai, M.H., Mao, J.W., Liang, T., et al., 2007.The Origin of the Tongkeng-Changpo Tin Deposit, Dachang Metal District, Guangxi, China: Clues from Fluid Inclusions and He Isotope Systematics.Mineralium Deposita, 42(6): 613-626.https://doi.org/10.1007/s00126-007-0127-5 [6] Chen, Y.C., Huang, M.Z., Xu, J., et al., 1985.Geological Features and Metallogenetic Series of the Dachang Cassiterite-Sulfide-Polymetallic Belt.Acta Geologica Sinica, 59(3):228-240(in Chinese with English abstract). [7] Ding, X.S., 1988.Study of Typomorphic Characteristics of Micas from Grantioids in Central-Southern Xizang and Their Geological Significance.Bulletin of the Institute of Mineral Deposits, Chinese Academy of Geological Sciences, 21(1):33-50(in Chinese with English abstract). [8] Fan, S.K., Li, X.D., Cheng, Y.S., et al., 2010.Geochemical Features of Vein Rocks and Their Significance to Structure and Mineralization in the Dachang Ore District, Guangxi Province.Geology and Exploration, 46(5):828-835(in Chinese with English abstract). [9] Fu, M., Kwak, T.A.P., Mernagh, T.P., 1993.Fluid Inclusion Studies of Zoning in the Dachang Tin-Polymetallic Ore Field, People's Republic of China.Economic Geology, 88(2): 283-300.https://doi.org/10.2113/gsecongeo.88.2.283 [10] Fu, J.B., Xu, W.Y., Zhou, W.N., et al., 1983.The Characteristics of Biotite from Longxianggai Pluton in Dachang of Guangxi and Its Geological Significance.Mineral Resources and Geology, (3):89-103(in Chinese with English abstract). [11] Gong, L., Chen, H.Y., Wang, Y.F., et al., 2018.Petrogenesis and Mineralization of Yuhai and Sanchakou Copper Deposit:Constraints from Mineral Chemistry of Biotite in Xinjiang, Northwestern China.Earth Science, 43(9):2929-2942(in Chinese with English abstract). [12] Guo, J., Zhang, R.Q., Sun, W.D., et al., 2018.Genesis of Tin-Dominant Polymetallic Deposits in the Dachang District, South China: Insights from Cassiterite U-Pb Ages and Trace Element Compositions.Ore Geology Reviews, 95: 863-879.https://doi.org/10.1016/j.oregeorev.2018.03.023 [13] Han, F., Zhao, R.S., Shen, J.Z., et al., 1997.Geology and Origin of Ores in the Dachang Polymetallic Tin Ore Field.Geological Publishing House, Beijing (in Chinese). [14] Heinrich, C.A., 1990.The Chemistry of Hydrothermal Tin(-Tungsten) Ore Deposition.Economic Geology, 85(3): 457-481.https://doi.org/10.2113/gsecongeo.85.3.457 [15] Henry, D.J., Guidotti, C.V., Thomson, J.A., 2005.The Ti-Saturation Surface for Low-to-Medium Pressure Metapelitic Biotites: Implications for Geothermometry and Ti-Substitution Mechanisms.American Mineralogist, 90(2-3): 316-328.https://doi.org/10.2138/am.2005.1498 [16] Kumar, S., Pathak, M., 2010.Mineralogy and Geochemistry of Biotites from Proterozoic Granitoids of Western Arunachal Himalaya: Evidence of Bimodal Granitogeny and Tectonic Affinity.Journal of the Geological Society of India, 75(5): 715-730.https://doi.org/10.1007/s12594-010-0058-0 [17] Li, X., Qing, D.X., Cai, W., et al., 2009.The Geological Characteristics and Ore-Controlling Role of the East Dyke in Dachang Deposit in Guangxi.Mineral Resources and Geology, 23(5):406-411(in Chinese with English abstract). [18] Liang, T., Wang, D.H., Hou, K.J., et al., 2011.LA-MC-ICP-MS Zircon U-Pb Dating of Longxianggai Pluton in Dachang of Guangxi and Its Geological Significance.Acta Petrologica Sinica, 27(6):1624-1636(in Chinese with English abstract). [19] Liao, Q.K., Peng, M.Y., 1992.Study on the Method for Granite Unit-Super Unit Mapping in the Darong-Shiwan Mountians Area, Guangxi.Guangxi Normal University Press, Guilin(in Chinese). [20] Lin, W.W., Peng, L.J., 1994.The Estimation of Fe3+ and Fe2+ Contents in Amphibole and Biotite from EMPA Data.Journal of Changchun University of Earth Sciences, 24(2):155-162(in Chinese with English abstract). [21] Linnen, R.L., Pichavant, M., Holtz, F., 1996.The Combined Effects of fO2 and Melt Composition on SnO2 Solubility and Tin Diffusivity in Haplogranitic Melts.Geochimica et Cosmochimica Acta, 60(24): 4965-4976.https://doi.org/10.1016/s0016-7037(96)00295-5 [22] Liu, Y.J., Cao, L.M., Li, Z.L., et al., 1984.Guidelines of Elemental Geochemistry.Geological Publishing House, Beijing(in Chinese). [23] Ma, C.Q., Yang, K.G., Tang, Z.H., et al., 1994.Magma-Dynamics Granitoids:Theory, Methods and a Case Study of the Eastern Hubei Granitoids.China University of Geosciences Press, Wuhan(in Chinese). [24] Moshefi, P., Hosseinzadeh, M.R., Moayyed, M., et al., 2018.Comparative Study of Mineral Chemistry of Four Biotite Types as Geochemical Indicators of Mineralized and Barren Intrusions in the Sungun Porphyry Cu-Mo Deposit, Northwestern Iran.Ore Geology Reviews, 97: 1-20.https://doi.org/10.1016/j.oregeorev.2018.05.003 [25] Munoz, J., 1992.Calculation of HF and HCl Fugacities from Biotite Compositions:Revised Equations.Geological Society of America, Abstracts with Programs, 24:A221. [26] Nachit, H., Ibhi, A., Abia, E.H., et al., 2005.Discrimination between Primary Magmatic Biotites, Reequilibrated Biotites and Neoformed Biotites.Comptes Rendus Geoscience, 337(16): 1415-1420.https://doi.org/10.1016/j.crte.2005.09.002 [27] Qin, D.X., Tuo, H., Long, T.Y., et al., 2002.Deposits Geology and Economic Technology of 92# Orebody on Dachang, Guangxi Tin Deposit.Geological Publishing House, Beijing (in Chinese). [28] Selby, D., Nesbitt, B.E., 2000.Chemical Composition of Biotite from the Casino Porphyry Cu-Au-Mo Mineralization, Yukon, Canada: Evaluation of Magmatic and Hydrothermal Fluid Chemistry.Chemical Geology, 171(1/2): 77-93.https://doi.org/10.1016/s0009-2541(00)00248-5 [29] Shao, Z.Z., Peng, Z.A., Cai, M.H., et al., 2018.Research Progress of the Genesis of Dachang Tin Deposit, Guangxi.Mineral Exploration, 9(6):1172-1178(in Chinese with English abstract). [30] Stone, D., 2000.Temperature and Pressure Variations in Suites of Archean Felsic Plutonic Rocks, Berens River Area, Northwest Superior Province, Ontario, Canada.The Canadian Mineralogist, 38(2): 455-470.https://doi.org/10.2113/gscanmin.38.2.455 [31] Tang, P., Tang, J.X., Zheng, W.B., et al., 2017.Mineral Chemistry of Hydrothermal Biotites from the Lakang'e Porphyry Cu-Mo Deposit, Tibet.Earth Science Frontiers, 24(5):265-282(in Chinese with English abstract). [32] Tischendorf, G., Förster, H.J., Gottesmann, B., 1999.The Correlation between Lithium and Magnesium in Trioctahedral Micas: Improved Equations for Li2O Estimation from MgO Data.Mineralogical Magazine, 63(1): 57-74.https://doi.org/10.1180/minmag.1999.063.1.07 [33] Uchida, E., Endo, S., Makino, M., 2007.Relationship between Solidification Depth of Granitic Rocks and Formation of Hydrothermal Ore Deposits.Resource Geology, 57(1): 47-56.https://doi.org/10.1111/j.1751-3928.2006.00004.x [34] Wang, R.C., Xie, L., Chen, J., et al., 2013.Tin-Carrier Minerals in Metaluminous Granites of the Western Nanling Range (Southern China): Constraints on Processes of Tin Mineralization in Oxidized Granites.Journal of Asian Earth Sciences, 74: 361-372. [35] Wang, D.H., Chen, Y.C., Chen, W., et al., 2004.Dating the Dachang Giant Tin-Polymetal Lic Deposit in Nandan, Guangxi.Acta Geologica Sinica, 78(1):132-138,146(in Chinese with English abstract). [36] Wones, D.R., Eugster, H.P., 1965.Stability of Biotite:Experiment, Theory, and Application.American Mineralogist, 50:1228-1272. [37] Wones, D.R., 1989.Significance of the Assemblage Titanite+Magnetite+Quartz in Granitic Rocks.American Mineralogist, 74(7-8):744-749. [38] Xie, Y.W., Zhang, Y.Q., 1995.Compositional Characteristics and Petrological Significance of Mg-Fe Micas in Alkalic Rocks of the Ailaoshan-Jinshajiang Rift System.Acta Mineralogica Sinica, 15(1):82-87(in Chinese with English abstract). [39] Zhang, W., Lentz, D.R., Thorne, K.G., et al., 2016.Geochemical Characteristics of Biotite from Felsic Intrusive Rocks around the Sisson Brook W-Mo-Cu Deposit, West-Central New Brunswick: An Indicator of Halogen and Oxygen Fugacity of Magmatic Systems.Ore Geology Reviews, 77: 82-96.https://doi.org/10.1016/j.oregeorev.2016.02.004 [40] Zhao, H., Su, W.C., Xie, P., et al., 2018.Re-Os Dating of Molybdenite and In-Situ Pb Isotopes of Sulfides from the Lamo Zn-Cu Deposit in the Dachang Tin-Polymetallic Ore Field, Guangxi, China.Acta Geochimica, 37(3): 384-394.https://doi.org/10.1007/s11631-018-0266-7 [41] Zhao, H., Su, W.C., Shen, N.P., et al., 2018.Fluid Inclusion Study of the Gaofeng Tin-Polymetallic Deposit in the Dachang Ore Field, Guangxi, China.Acta Petrologica Sinica, 34(12):3553-3566(in Chinese with English abstract). [42] Zhou, Y., Liang, X.Q., Cai, Y.F., et al., 2017.Petrogenesis and Mineralization of Xitian Tin-Tungsten Polymetallic Deposit:Constraints from Mineral Chemistry of Biotite from Xitian A-Type Granite, Eastern Hunan Province.Earth Science, 42(10):1647-1657(in Chinese with English abstract). [43] Zhou, Z.X., 1988.Chemical Characteristics of Mafic Mica in Intrusive Rocks and Its Geological Meaning.Acta Petrologica Sinica, 4(3):63-73(in Chinese with English abstract). [44] Zhu, C., Sverjensky, D.A., 1992.F-Cl-OH Partitioning between Biotite and Apatite.Geochimica et Cosmochimica Acta, 56(9): 3435-3467.https://doi.org/10.1016/0016-7037(92)90390-5 [45] 蔡明海, 何龙清, 刘国庆, 等, 2006.广西大厂锡矿田侵入岩SHRIMP锆石U-Pb年龄及其意义.地质论评, 52(3):409-414. [46] 陈毓川, 黄民智, 徐珏, 等, 1985.大厂锡石-硫化物多金属矿带地质特征及成矿系列.地质学报, 59(3):228-240. [47] 丁孝石, 1988.西藏中南部花岗岩类中云母矿物标型特征及其地质意义.中国地质科学院矿床地质研究所文集, 21(1):33-50. [48] 范森葵, 黎修旦, 成永生, 等, 2010.广西大厂矿区脉岩的地球化学特征及其构造和成矿意义.地质与勘探, 46(5):828-835. [49] 傅金宝, 许文渊, 周卫宁, 等, 1983.大厂锡矿田龙箱盖岩体黑云母的特征及其地质意义.矿产与地质, (3):89-103. [50] 龚林, 陈华勇, 王云峰, 等, 2018.新疆玉海-三岔口铜矿黑云母矿物化学特征及成岩成矿意义.地球科学, 43(9):2929-2942. [51] 韩发, 赵汝松, 沈建忠, 1997.大厂锡多金属矿床地质及成因.北京:地质出版社. [52] 李晓, 秦德先, 蔡稳, 等, 2009.广西大厂锡矿"东岩墙"地质特征与控矿作用.矿产与地质, 23(5):406-411. [53] 梁婷, 王登红, 侯可军, 等, 2011.广西大厂笼箱盖复式岩体的LA-MC-ICP-MS锆石U-Pb年龄及其地质意义.岩石学报, 27(6):1624-1636. [54] 廖庆康, 彭懋媛, 1992.花岗岩区填图方法:大容山——十万大山岩石谱系单位填图研究.桂林:广西师范大学出版社. [55] 林文蔚, 彭丽君, 1994.由电子探针分析数据估算角闪石、黑云母中的Fe3+、Fe2+.长春地质学院学报, 24(2):155-162. [56] 刘英俊, 曹厉明, 李兆麟, 等, 1984.元素地球化学.北京:地质出版社. [57] 马昌前, 杨坤光, 唐仲华, 等, 1994.花岗岩类与岩浆动力学——理论方法及鄂东花岗岩类例析.武汉:中国地质大学出版社. [58] 秦德先, 洪托, 田毓龙, 等, 2002.广西大厂锡矿92号矿体矿床地质与技术经济.北京:地质出版社. [59] 邵主助, 彭振安, 蔡明海, 等, 2018.广西大厂锡矿成因研究进展.矿产勘查, 9(6):1172-1178. [60] 唐攀, 唐菊兴, 郑文宝, 等, 2017.西藏拉抗俄斑岩铜钼矿床黑云母矿物化学特征.地学前缘, 24(5):265-282. [61] 王登红, 陈毓川, 陈文, 等, 2004.广西南丹大厂超大型锡多金属矿床的成矿时代.地质学报, 78(1):132-138,146. [62] 谢应雯, 张玉泉, 1995.哀牢山-金沙江裂谷系岩石中镁铁云母成分特征及其岩石学意义.矿物学报, 15(1):82-87. [63] 赵海, 苏文超, 沈能平, 等, 2018.广西大厂矿田高峰锡多金属矿床流体包裹体研究.岩石学报, 34(12):3553-3566. [64] 周云, 梁新权, 蔡永丰, 等, 2017.湘东锡田燕山期A型花岗岩黑云母矿物化学特征及其成岩成矿意义.地球科学, 42(10):1647-1657. [65] 周作侠, 1988.侵入岩的镁铁云母化学成分特征及其地质意义.岩石学报, 4(3):63-73. -
dqkx-45-4-1213-Table1.pdf