Accumulation Characteristics and Preservation Conditions of Niutitang Formation of Lower Cambrian Series Shale Gas in West Hubei: A Case Study of Well XD1
-
摘要: 为了获得鄂西地区下寒武统牛蹄塘组页岩气成藏特征,通过对XD1井储层裂缝统计,方解石脉流体包裹体测试以及寒武纪碎屑锆石U-Pb同位素年代学研究.XD1井裂缝发育,以高角度剪切缝为主,裂缝大部分被方解石充填.液相包裹体成分以H2O和CH4为主,气相包裹体成分含有CO2、H2S、CH4、N2和H2.流体包裹体的均一温度显示出较大差异性,从168~293℃均有分布,且大致划分为3个区间:168~175℃低温区、185~227℃中温区和244~293℃高温区,反映出页岩气成藏具有多期次成藏的特点,大部分晚期次生包裹体处于中温区,且CH4含量较高,因此页岩气主要成藏期为晚期次生聚集成藏.获得有效碎屑锆石年龄数据178组,年龄值变化范围在2 638~330 Ma区间内,主要集中在2 638~2 010 Ma、1 997~1 516 Ma、1 450~904 Ma、890~722 Ma和699~330 Ma的5个时间段,说明XD1井经历多期构造改造.XD1井页岩气具有生烃的物质基础,但由于多期的构造运动产生大量裂缝和破裂带,导致页岩气保存条件的破坏,造成了页岩气的散失,因此,鄂西地区优选页岩气有利勘探区重点是寻找构造稳定区.Abstract: To find out the accumulation characteristics of the Cambrian Niutitang Formation shale gas in West Hubei,reservoir fracture characteristics,fluid inclusion testing of fracture-filling calcite veins,and detrital zircon U-Pb dating of Cambrian sedimentary rocks were conducted based on the data of Well XD1. This well contains developed,high-angle,mostly calcite-filled fractures. Inclusions inside the fractures include liquid inclusions typically consisting of H2O and CH4,and gas inclusions that contain CO2,H2S,CH4,N2 and H2. The fluid inclusions display a high level of divergence in their homogenization temperature,spanning from 168 to 293℃,and are roughly distinguished by three temperature intervals:168-175℃ low-temperature intervals,185-227℃ medium-temperature intervals,and 244-293℃ high-temperature intervals,suggesting a multistage history of reservoir formation. Most of the late secondary inclusions are found in the medium-temperature intervals and contain high levels of CH4,which indicates an origin of late secondary accumulation. According to the valid age data of 178 groups of detrital zircon obtained,the ages range from 2 638 to 330 Ma and mostly fall within five time intervals of 2 638-2 010 Ma,1 997-1 516 Ma,1 450-904 Ma,890-722 Ma and 699-330 Ma. It shows that XD1 has undergone multistage tectonic transformation. Well XD1 shale gas has the material basis of hydrocarbon generation. This suggests that extensive fracture and rupture zones resulting from multistage tectonic reformation in the area have led to destruction of shale gas preservation conditions,resulting in the loss of shale gas. Therefore,the stable structure regions are predicted as the favorable shale exploration areas in West Hubei.
-
Key words:
- West Hubei /
- Well XD1 /
- fracture characteristics /
- fluid inclusion /
- detrital zircon /
- geochronology
-
表 1 XD1井裂缝特征
Table 1. The statistics of fracture characteristics
切深 条数 百分比 裂缝类型 条数 百分比 充填性 条数 百分比 0~5 cm 105 25.74% 缝合线 21 2.43% 方解石充填 583 71.18% 5~10 cm 164 40.20% 剪切缝 502 58.10% 未充填裂缝 236 28.82% 10~15 cm 74 18.14% 网状缝 15 1.74% / / / 15~20 cm 35 8.58% 张扭缝 126 14.58% / / / >20 cm 30 7.35% 滑脱缝 200 23.15% / / / 合计 408 100% 合计 864 100% 合计 819 100% 表 2 鄂西地区XD1井裂缝方解石脉流体包裹体液相、气相激光拉曼分析和均一温度测试数据
Table 2. Liquid-phase and gas-phase laser Raman analysis of the fluid inclusions of calcite vein in fractures and homogenization temperatures in West Hubei
样号 深度(m) 宿主矿物 类型 成因 液相(摩尔数的相对百分含量%) 气相(摩尔数的相对百分含量%) 冰点(℃) 均一温度(℃) CH4 H2O CO2 H2S CH4 N2 H2 XD01 1 085.2 裂缝方解石脉 气液两相 晚期次生 100 11.3 66.4 22.4 -16.2 224.7~228.3(227) XD02 1 085.2 裂缝方解石脉 气液两相 晚期次生 0.06 99.94 4.1 8.3 71.2 16.4 -19.4 185.4~203.5(194) XD03 1 085.2 裂缝方解石脉 气液两相 晚期次生 0.02 99.98 10.0 86.0 4.0 -17.6 240.8~250.4(244) XD04 1 085.2 裂缝方解石脉 气液两相 晚期次生 100 14.0 86.0 -18.1 187.4~198.8(193) XD05 1 299.5 裂缝方解石脉 气液两相 晚期次生 100 8.6 91.4 -15.8 182.3~195.8(190) XD06 1 299.5 裂缝方解石脉 气液两相 早期次生 100 38.2 32.9 28.8 -12.9 289.7~299.8(293) XD07 1 326.7 裂缝方解石脉 气液两相 晚期次生 100 10.8 79.7 9.5 -17.9 167.7~168.3(168) XD08 1 326.7 裂缝方解石脉 气液两相 晚期次生 100 5.3 83.9 10.7 -16.4 173.7~175.4(175) XD09 1 345.0 裂缝方解石脉 气液两相 晚期次生 0.09 99.91 24.6 23.7 43.0 8.7 -17.1 198.6~205.4(201) XD10 1 345.0 裂缝方解石脉 气液两相 晚期次生 100 43.1 56.9 -17.9 183.6~186.4(185) -
[1] Buick, R., Thornett, J.R., McNaughton, N.J., et al., 1995.Record of Emergent Continental Crust ~3.5 Billion Years Ago in the Pilbara Craton of Australia. Nature, 375(6532):574-577. https://doi.org/10.1038/375574a0 [2] Ding, R.X., Zou, H.P., Min, K., et al., 2017. Detrital Zircon U-Pb Geochronology of Sinian-Cambrian Strata in the Eastern Guangxi Area, China. Journal of Earth Science, 28(2):295-304. https://doi.org/10.1007/s12583-017-0723-y [3] Feng, M.Y., Zheng, J., Liu, T., et al., 2018.Characteristics and Implications of Fracture-Filling in Carbonate Concretions from the Lower Cambrian Qiongzhusi Formation, Northern Sichuan. Geological Review, 64(3):711-722(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzlp201803018 [4] Guo, T.L., Lou, Z.H., Ma, Y.S., 2003. Several Problems on Oil and Gas Preservation and Their Commercial Prospecting in Marine Sequences of South China. Petroleum Geology & Experiment, 25(1):3-9 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz200301001 [5] Li, H., Bai, Y.S., Wang, B.Z., et al., 2014. Preservation Conditions Research on Shale Gas in the Lower Paleozoicof Western Hunan and Hubei Area. Petroleum Geology and Recovery Efficiency, 21(6):22-25 (in Chinese with English abstract). [6] Li, H., Liu, A., Wei, K., et al., 2016. Geological Characteristic of Cambrian Black Shale and Prediction of Shale Gas Prospective Area in Western Hubei Province. Geology and Mineral Resources of South China, 32(2):117-125 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hndzykc201602003 [7] Li, P., Hu, Z.X., He, R.L., et al., 2018. The Tectonic Evolution of the Central Anticline in Western Hubei of China during Mesozoic:Evidences from Apatite Fission Track. Earth Science, 43(7):2518-2526 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.517 [8] Li, W., He, S., Zhang, B.Q., et al., 2018. Characteristics of Paleo-Temperature and Paleo-Pressure of Fluid Inclusions in Shale Composite Veins of Longmaxi Formation at the Western Margin of Jiaoshiba Anticline. Acta Petrolei Sinica, 39(4):402-415 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201804004 [9] Li, Y.W., Liu, L., Liu, Y.K., et al., 2017. Analysis of Fluid Inclusion within Fracture Calcite Veins of Conventional-Cores in Guizhong Depression and Its Geological Significance. Resources Environment & Engineering, 31(1):42-48 (in Chinese with English abstract). [10] Mei, L.F., Liu, Z.Q., Tang, J.G., et al., 2010. Mesozoic Intra-Continental Progressive Deformation in Western Hunan-Hubei-Eastern Sichuan Provinces of China:Evidence from Apatite Fission Track and Balanced Cross-Section. Earth Science, 35(2):161-174 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2010.017 [11] Nie, H.K., Bao, S.J., Gao, B., et al., 2012. A Study of Shale Gas Preservation Conditions for the Lower Paleozoic in Sichuan Basin and Its Periphery. Earth Science Frontiers, 19(3):280-294 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201203030 [12] Ren, L.H., Lin, C.Y., 2007. Classification Methods for Development Period of Fractures and Its Application:A Case Study from Budate Group of Hailaer Basin. Acta Sedimentologica Sinica, 25(2):253-260 (in Chinese with English abstract). [13] Wan, Y.P., Li, Y.Y., Liang, X., 2010. Fractures of Reservoirs Inferred from Fluid Inclusions:A Case Study on the Upper Paleozoic of Northern Shaanxi Slope. Geology and Exploration, 46(4):711-715 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt201004020 [14] Wang, R.Y., Ding, W.L., Gong, D.J., et al., 2016. Gas Preservation Conditions of Marine Shale in Northern Guizhou Area:A Case Study of the Lower Cambrian Niutitang Formation in the Cen' gong Block, Guizhou Province. Oil & Gas Geology, 37(1):45-55 (in Chinese with English abstract). [15] Wang, X., Gao, J., He, S., et al., 2017. Fluid Inclusion and Geochemistry Studies of Calcite Veins in Shizhu Synclinorium, Central China:Record of Origin of Fluids and Diagenetic Conditions. Journal of Earth Science, 28(2):315-332. https://doi.org/10.1007/s12583-016-0921-7 [16] Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15):1554-1569. https://doi.org/10.1007/bf03184122 [17] Xia, M.L., Fan, Y., Jiang, R.R., et al., 2012. The Characteristics of Fluid Inclusions in Feixianguan Formation, Northeastern Sichuan Basin, China. Acta Petrolei Sinica, 33(Suppl.2):74-81 (in Chinese with English abstract). [18] Yan, Y., Lin, G., Li, Z.A., 2003. Provenance Tracing of Sediments by Means of Synthetic Study of Shape, Composition and Chronology of Zircon. Geotectonica et Metallogenia, 27(2):184-190 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx200302012 [19] Yang, H., Xin, B.S., Fu, J.H., et al., 2014. LA-ICP-MS U-Pb Dating of Detrital Zircons from Kongtongshan Formation Conglomerate in the Southwestern Margin of Ordos Basin and Its Tectonic Significance. Geological Review, 60(3):677-692 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201403019 [20] Zhai, G.Y., Wang, Y.F., Bao, S.J., et al., 2017.Major Factors Controlling the Accumulation and High Productivity of Marine Shale Gas and Prospect Forecast in Southern China. Earth Science, 42(7):1057-1068 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.085 [21] Zhou, Z., Zhai, G.Y., Shi, D.S., et al., 2019. Shale Gas Reservoir Geology of the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Western Hubei and Northeastern Chongqing. Petroleum Geology & Experiment, 41(1):1-9 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201901002 [22] Zhu, Y.F., Zhou, J., Zeng, Y.S., 2007.The Tianger (Bingdaban) Shear Zone Hosted Gold Deposit, West Tianshan, NW China:Petrographic and Geochemical Characteristics. Ore Geology Reviews, 32(1-2):337-365. https://doi.org/10.1016/j.oregeorev.2006.10.006 [23] Zou, Y.Y., Zhang, S.L., Shen, C.B., et al., 2018.Western Hunan-Hubei Fold Belt Exhumation Characteristics and Its Tectonic Implication in Mesozoic-Cenozoic:Evidence from Apatite Fission Track. Earth Science, 43(6):2007-2018 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.611 [24] 冯明友, 郑江, 刘田, 等, 2018.川北地区寒武系筇竹寺组钙质结核裂缝充填物特征及指示意义.地质论评, 64(3):711-722. http://d.old.wanfangdata.com.cn/Periodical/dzlp201803018 [25] 郭彤楼, 楼章华, 马永生, 2003.南方海相油气保存条件评价和勘探决策中应注意的几个问题.石油实验地质, 25(1):3-9. http://d.old.wanfangdata.com.cn/Periodical/sysydz200301001 [26] 李海, 白云山, 王保忠, 等, 2014.湘鄂西地区下古生界页岩气保存条件.油气地质与采收率, 21(6):22-25. http://d.old.wanfangdata.com.cn/Periodical/yqdzycsl201406005 [27] 李海, 刘安, 危凯, 等, 2016.鄂西地区寒武系黑色页岩地质特征及页岩气远景预测.华南地质与矿产, 32(2):117-125. http://d.old.wanfangdata.com.cn/Periodical/hndzykc201602003 [28] 李朋, 胡正祥, 何仁亮, 等, 2018.鄂西中央背斜带中生代构造演化过程:来自磷灰石裂变径迹的证据.地球科学, 43(7):2518-2526. doi: 10.3799/dqkx.2018.517 [29] 李文, 何生, 张柏桥, 等, 2018.焦石坝背斜西缘龙马溪组页岩复合脉体中流体包裹体的古温度及古压力特征.石油学报, 39(4):402-415. http://d.old.wanfangdata.com.cn/Periodical/syxb201804004 [30] 李英文, 刘力, 刘宇坤, 等, 2017.桂中坳陷岩心裂缝方解石脉流体包裹体分析及其地质意义.资源环境与工程, 31(1):42-48. http://d.old.wanfangdata.com.cn/Periodical/hbdk201701007 [31] 梅廉夫, 刘昭茜, 汤济广, 等, 2010.湘鄂西-川东中生代陆内递进扩展变形:来自裂变径迹和平衡剖面的证据.地球科学, 35(2):161-174. doi: 10.3799/dqkx.2010.017 [32] 聂海宽, 包书景, 高波, 等, 2012.四川盆地及其周缘下古生界页岩气保存条件研究.地学前缘, 19(3):280-294. http://d.old.wanfangdata.com.cn/Periodical/dxqy201203030 [33] 任丽华, 林承焰, 2007.构造裂缝发育期次划分方法研究与应用:以海拉尔盆地布达特群为例.沉积学报, 25(2):253-260. http://d.old.wanfangdata.com.cn/Periodical/cjxb200702013 [34] 万永平, 李园园, 梁晓, 2010.基于流体包裹体的储层微裂缝研究——以陕北斜坡上古生界为例.地质与勘探, 46(4):711-715. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201004020 [35] 王濡岳, 丁文龙, 龚大建, 等, 2016.黔北地区海相页岩气保存条件:以贵州岑巩区块下寒武统牛蹄塘组为例.石油与天然气地质, 37(1):45-55. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201601007 [36] 夏茂龙, 范毅, 江蓉蓉, 等, 2012.四川盆地东北部飞仙关组储层流体包裹体特征.石油学报, 33(S2):74-81. http://d.old.wanfangdata.com.cn/Periodical/syxb2012z2007 [37] 闫义, 林舸, 李自安, 2003.利用锆石形态、成分组成及年龄分析进行沉积物源区示踪的综合研究.大地构造与成矿学, 27(2):184-190. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx200302012 [38] 杨华, 辛补社, 付金华, 等, 2014.鄂尔多斯盆地西南缘崆峒山组砾岩中的碎屑锆石LA-ICP-MS U-Pb定年及其构造意义.地质论评, 60(3):677-692. http://d.old.wanfangdata.com.cn/Periodical/dzlp201403019 [39] 翟刚毅, 王玉芳, 包书景, 等, 2017.我国南方海相页岩气富集高产主控因素及前景预测.地球科学, 42(7):1057-1068. doi: 10.3799/dqkx.2017.085 [40] 周志, 翟刚毅, 石砥石, 等, 2019.鄂西-渝东北地区五峰-龙马溪组页岩气成藏地质条件分析.石油实验地质, 41(1):1-9. [41] 邹耀遥, 张树林, 沈传波, 等, 2018.湘鄂西褶皱带中-新生代剥蚀特征及其构造指示:来自磷灰石裂变径迹的证据.地球科学, 43 (6):2007-2018. doi: 10.3799/dqkx.2018.611