The Geochemical Characteristics and Petrogenesis of the Mineralized AlkaliRich Magmatic Rock in Yao' an Au-Pb-Ag Deposit, Yunnan Province
-
摘要: 通过锆石U-Pb定年、全岩主微量元素、Sr-Nd-Pb和锆石Hf同位素测试, 对滇西姚安Au-Pb-Ag矿床含矿正长斑岩和粗面岩的地球化学特征进行了分析, 系统探讨了其岩浆起源和演化过程.正长斑岩和粗面岩的锆石U-Pb年龄分别为33.8±0.42 Ma和33.9±0.60 Ma, 它们与同时代滇西镁铁质火山岩和煌斑岩具有相似的稀土和微量元素配分模式和Sr-Nd-Pb同位素组成, 而与区内同时代加厚地壳来源的富碱埃达克质岩石存在Sr-Nd-Pb-Hf同位素组成的明显差异.全岩SiO2与主微量元素关系指示正长斑岩和粗面岩总体上可由矿区内同时代的基性岩浆岩分异演化而来, 表明它们与这些基性岩浆岩起源相似, 较高的Rb/Sr(≥ 0.1)和较低的Ba/Rb(< 20)比值, 指示其源区为富金云母富集地幔, 较低的εHf和古老的模式年龄暗示源区的交代富集发生在中元古代.姚安富碱岩浆活动与矿化关系密切.正长斑岩和粗面岩较滇西镁铁质火山岩和煌斑岩具有稍高的初始Pb同位素组成, 暗示岩浆可能遭受了地壳混染, 从而提高了母岩浆中的金属含量, 增强了岩浆成矿潜力; 适中的氧逸度利于Au富集; 角闪石分离结晶和较多黑云母发育指示母岩浆含水量较高, 利于成矿流体的形成.这些特征综合起来为矿化发育提供了有利条件.Abstract: Newly-determined zircon U-Pb ages, whole rock major and trace elements, Sr-Nd-Pb and zircon Hf isotope data, are used to firstly examine the geochemical characteristics of the ore-related syenite porphyry and trachyte in the Yao' an Au-Pb-Ag deposit, western Yunnan, and then to systematically discuss the origin and evolution processes of the parental magmas in this paper. The zircon U -Pb ages of the syenite porphyry and trachyte in the Yao' an Au -Pb -Ag deposit respectively are 33.8±0.42 Ma and 33.9±0.60 Ma. And their patterns of trace elements and REE, and the Sr-Nd-Pb isotopes, are very similar to the contemporary mafic volcanic rocks and lamprophyre from the western Yunnan, but obviously different from the contemporary alkali-rich adakitic rocks in the western Yangtze craton. The relationships of SiO2 contents with major and trace element contents of the whole-rocks indicate that magmas for the syenite porphyry and trachyte could be formed by differentiation of the contemporary mafic magmas in the diggings. This implies that syenite porphyry and trachyte may have similar source to the mafic magmas. High Rb/Sr(≥ 0.1) and low Ba/Rb(< 20) ratios of the syenite porphyry and trachyte indicate that they were derived from a metasomatized enriched mantle source with abundant phlogopite. And the low εHf and the old model age of the rocks indicate that the metasomatism of the source region might happen in Mesoproterozoic. The alkali-rich magmation in Yao' an is closely related with the mineralization. The syenite porphyry and trachyte of Yao' an have a higher initial Pb isotopic composition than the mafic volcanic rocks and lamprophyre from the western Yunnan, which implies that some degrees of the crustal contamination might occur during evolution process of the magmas which could increase the metal contents of the magma and enhance the mineralization potential of the magmas. The moderate oxygen fugacity of the magmas in favour of the Au enrichment. And the obvious fractional crystallization of hornblende and the formation of abundant biotite indicate that the primary magmas were very hydrous, which facilitated the formation of oreforming fluids. All of these features could provide advantageous conditions for the mineralization in the Yao' an deposit.
-
Key words:
- Yao' an /
- alkali-rich magmatic rock /
- source /
- petrogenesis /
- mineralization of Au-Pb /
- petrology /
- deposits
-
图 1 (a) 青藏高原东缘区域构造图; (b)滇西地区新生代富碱岩浆岩及相关矿床分布简图
Fig. 1. (a) The tectonic map of the eastern Tibet Plateau, and (b) the distribution of the alkali-rich magmatic rocks and associated deposits in western Yunnan
图 7 姚安富碱岩浆岩地球化学分类图解
a.SiO2-K2O+Na2O关系图(岩浆岩TAS图解); b.SiO2-K2O关系图; c.A/CNK-SiO2关系图; 滇西新生代加厚地壳埃达克质侵入岩范围引自Lu et al.(2013a); 滇西煌斑岩数据引自Lu et al.(2015); 滇西镁铁质火山岩数据引自Guo et al. (2005)
Fig. 7. Geochemical classification of the Yao' an alkali- rich magmatic rocks
图 10 (a) 微量元素原始地幔标准化分配模式图; (b)稀土元素球粒陨石标准化分配模式图
滇西新生代加厚地壳埃达克质侵入岩范围引自Lu et al.(2013a); 滇西煌斑岩范围引自Lu et al.(2015); 滇西镁铁质火山岩范围引自Guo et al.(2005)
Fig. 10. (a) Primitive mantle - normalized trace element diagram and (b) chondrite - normalized rare earth element (REE) patterns for the Yao' an alkali-rich magmatic rocks
图 12 U-Pb同位素年龄-εHf(t)关系图
滇西新生代加厚地壳埃达克质侵入岩范围引自Lu et al.(2013a)
Fig. 12. Diagram of U-Pb isotopic ages vs. εHf(t)
图 8 主量元素-SiO2协变关系图(Hark)
滇西新生代加厚地壳埃达克质侵入岩范围引自Lu et al.(2013a); 滇西煌斑岩数据引自Lu et al.(2015); 滇西镁铁质火山岩数据引自Guo et al.(2005); 加厚地壳源埃达克质岩类参考范围引自Wang et al.(2006)
Fig. 8. Major element vs. SiO2 diagram (Hark)
图 13 (a) Y-Sr/Y关系图; (b) Yb-La/Yb关系图
引自Lu et al.(2013a), 虚线代表不同残余相的岩浆部分熔融变化趋势, 数值单位, %; 滇西新生代加厚地壳埃达克质侵入岩范围引自Lu et al.(2013a); 滇西镁铁质火山岩范围引自Guo et al.(2005)
Fig. 13. Diagrams of (a) Y vs. Sr/Y, (b) Yb vs. La/Yb
图 14 源区富金云母/角闪石及部分熔融等级判别图解
滇西煌斑岩数据引自Lu et al.(2015); 滇西镁铁质火山岩数据引自Guo et al.(2005)
Fig. 14. Determination for discrimination between phlogopite enriched and hornblende enriched source and for judgement of degrees of partial melting
图 15 岩浆混合作用判别
姚安煌斑岩数据引自Lu et al.(2015); 扬子克拉通古老基底端元数据引自Gao et al.(1999); 黄色实线代表两端元的混合趋势, 实线旁边的数字代表了岩浆混合过程中姚安煌斑岩所占的比例(%)
Fig. 15. Discrimination of magmatic mixing
表 1 姚安富碱岩浆岩成岩时代统计
Table 1. Summary of ages of Yao' an alkali-rich magmatic rocks
岩石类型(定名) 分析方法 年龄(Ma) 资料来源 花岗正长斑岩 黑云母K-Ar同位素 36 张玉泉等, 1987 正长岩/正长斑岩 钾长石K-Ar同位素 34.0~34.9 程锦等, 2007 碱性花岗斑岩 钾长石K-Ar同位素 31.3 粗面岩 黑云母K-Ar同位素 33.5 黑云母花岗斑岩 LA-ICP-MS锆石U-Pb同位素 36.86~40.41 李勇等, 2011 黑云母角闪正长斑岩 LA-ICP-MS锆石U-Pb同位素 31.8 黑云母石英二长斑岩 SHRIMP锆石U-Pb同位素 33.4 Lu et al., 2012 表 2 姚安正长斑岩锆石SHRIMP U-Pb同位素分析结果
Table 2. Zircon SHRIMP U-Pb analytical data of the syenite porphyry at the Yao' an deposit
样品及分析点号 Pb Th U Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb (10-6) (10-6) (10-6) 比值 (%) 比值 (%) 比值 (%) 年龄(Ma) (%) YA15-1-12-1 8.1 1 693 1 771 1.27 0.044 2 4.8 0.032 0 6.6 0.005 3 4.6 33.8 1.6 YA15-1-12-2 13.7 3 621 2 957 1.01 0.044 6 5.6 0.033 0 7.1 0.005 4 4.4 34.5 1.5 YA15-1-12-3 4.5 753 1 028 0.99 0.046 3 11.0 0.032 0 12.0 0.005 0 4.4 32.2 1.5 YA15-1-12-4 5.4 891 1 169 0.98 0.043 5 6.9 0.031 6 8.2 0.005 3 4.4 33.9 1.5 YA15-1-12-5 4.2 953 976 0.87 0.046 6 7.7 0.032 2 8.8 0.005 0 4.4 32.2 1.4 YA15-1-12-6 9.3 1 609 2 038 0.84 0.045 3 10.0 0.033 0 11.0 0.005 3 4.4 34.0 1.5 YA15-1-12-7 2.3 488 514 0.82 0.048 4 6.7 0.034 0 8.1 0.005 1 4.5 32.7 1.5 YA15-1-12-8 7.2 1 371 1 635 0.8 0.047 5 6.3 0.033 6 7.7 0.005 1 4.5 33.0 1.5 YA15-1-12-9 7.9 1 20 4 1 785 0.79 0.046 3 4.8 0.032 7 6.5 0.005 1 4.4 32.9 1.5 YA15-1-12-10 5.4 808 1 234 0.76 0.045 3 10.0 0.031 4 11.0 0.005 0 4.4 32.4 1.5 YA15-1-12-11 7.8 1 188 1 737 0.76 0.048 7 2.3 0.035 0 4.9 0.005 2 4.4 33.5 1.5 YA15-1-12-12 2.5 426 581 0.71 0.050 6 5.1 0.034 8 6.7 0.005 0 4.5 32.1 1.5 YA15-1-12-13 10.2 1 446 1 876 0.71 0.054 0 26.0 0.040 0 27.0 0.005 4 4.7 34.5 1.6 YA15-1-12-14 7.3 1 033 1 646 0.7 0.040 6 7.8 0.028 4 8.9 0.005 1 4.4 32.6 1.5 YA15-1-12-15 3.1 582 715 0.68 0.044 8 10.0 0.031 2 11.0 0.005 1 4.5 32.5 1.5 YA15-1-12-16 6.5 967 1 404 0.68 0.048 1 4.1 0.035 6 6.0 0.005 4 4.4 34.6 1.5 表 3 姚安粗面岩锆石LA-ICP-MS U-Pb同位素分析结果
Table 3. Zircon LA-ICP-MS U-Pb analytical data of the trachyte at the Yao' an deposit
样品及分析点号 Pb Th U Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 206Pb/238Pb (10-6) (10-6) (10-6) 比值 (%) 比值 (%) 比值 (%) 年龄(Ma) (%) FL17-3-3 25.4 625 787 0.79 0.047 5 0.001 9 0.035 8 0.001 7 0.005 5 0.000 2 35.2 1.2 FL17-3-4 54.0 1 397 1 189 1.17 0.045 7 0.001 6 0.034 2 0.001 6 0.005 4 0.000 2 34.9 1.2 FL17-3-5 58.0 1 502 1 734 0.87 0.047 2 0.001 3 0.034 4 0.001 5 0.005 3 0.000 2 34.0 1.3 FL17-3-6 56.1 1 458 1 549 0.94 0.048 0 0.003 9 0.035 1 0.003 5 0.005 3 0.000 2 34.0 1.4 FL17-3-7 15.1 379 440 0.86 0.048 3 0.002 6 0.035 5 0.002 1 0.005 3 0.000 2 34.3 1.3 FL17-3-8 77.0 2 135 1 807 1.18 0.047 3 0.001 3 0.033 3 0.001 3 0.005 1 0.000 2 32.8 1.0 FL17-3-9 30.7 833 401 2.08 0.049 1 0.002 9 0.035 8 0.002 4 0.005 3 0.000 2 34.0 1.3 FL17-3-10 83.0 2 374 873 2.72 0.047 8 0.002 0 0.033 9 0.001 7 0.005 1 0.000 2 33.1 1.2 FL17-3-11 68.0 1 853 1 898 0.98 0.047 5 0.001 4 0.033 4 0.001 4 0.005 1 0.000 2 32.7 1.1 FL17-3-12 59.0 1 555 1 273 1.22 0.047 5 0.001 4 0.035 1 0.001 4 0.005 4 0.000 2 34.4 1.0 FL17-3-13 23.1 594 513 1.16 0.049 3 0.002 7 0.035 8 0.002 0 0.005 3 0.000 2 34.0 1.2 FL17-3-14 57.0 1 452 1 314 1.1 0.048 9 0.001 6 0.035 7 0.001 4 0.005 3 0.000 2 34.0 1.0 FL17-3-15 39.5 1 003 860 1.17 0.047 4 0.001 7 0.035 4 0.001 6 0.005 4 0.000 2 34.8 1.3 FL17-3-16 46.9 1 313 756 1.74 0.048 5 0.002 0 0.034 2 0.001 6 0.005 1 0.000 1 32.9 0.9 表 4 姚安正长斑岩和粗面岩Sr-Nd-Pb同位素分析结果
Table 4. Sr-Nd-Pb isotope data for the syenite porphyry and trachyte at the Yao' an deposit
样品编号 87Rb/86Sr 87Sr/86Sr 147Sm/14Nd 143Nd/144Nd ISr tDMC εNd(t) 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 正长斑岩(33.8 Ma) YAB15-1-3 0.361 1 0.708 9 0.111 8 0.512 0 0.708 8 1 852 -12.38 18.148 2 15.574 0 38.831 0 YAB15-1-12 0.399 6 0.709 0 0.115 4 0.512 0 0.7088 1 801 11.75 18.215 7 15.577 1 38.856 2 BMJ16-1-1 2.532 0 0.710 3 0.117 2 0.512 2 0.709 1 1 582 -9.04 18.127 0 15.585 2 38.900 5 粗面岩(34.0 Ma) FL17-3-2 1.059 8 0.710 2 0.089 7 0.512 1 0.709 8 1 634 -9.67 18.325 2 15.640 8 39.029 6 FL17-4-1 1.058 4 0.710 3 0.087 5 0.512 1 0.709 8 1 618 -9.47 18.342 2 15.694 2 39.290 5 FL17-4-2 1.046 7 0.710 3 0.088 8 0.512 1 0.709 8 1 607 -9.34 18.369 6 15.720 0 39.361 4 表 5 姚安正长斑岩锆石Lu-Hf同位素分析结果
Table 5. Zircon Lu-Hf isotope data for the syenite porphyry at the Yao' an deposit
样品号 年龄(Ma) 176Yb 176Lu 176Hf 2σ IHf εHf(0) εHf(t) tDM2 177Hf 177Hf 177Hf YAB-15-1-12-1 32 0.064 166 0.001 323 0.282 427 0.000 024 0.282 400 -12.2 -11.5 1 845 YAB-15-1-12-2 34 0.029 201 0.000 678 0.282 495 0.000 021 0.282 500 -9.8 -9.1 1 691 YAB-15-1-12-3 34 0.036 129 0.000 923 0.282 457 0.000 018 0.282 500 -11.2 -10.4 1 776 YAB-15-1-12-4 32 0.034 037 0.000 828 0.282 471 0.000 015 0.282 500 -10.7 -10.0 1 745 YAB-15-1-12-5 34 0.054 991 0.001 149 0.282 539 0.000 019 0.282 500 -8.3 -7.5 1 593 YAB-15-1-12-6 32 0.038 756 0.000 858 0.282 464 0.000 021 0.282 500 -10.9 -10.2 1 761 YAB-15-1-12-7 35 0.051 998 0.001 369 0.282 464 0.000 016 0.282 500 -10.9 -10.2 1 761 YAB-15-1-12-8 33 0.031 344 0.000 685 0.282 524 0.000 022 0.282 500 -8.8 -8.1 1 627 YAB-15-1-12-9 33 0.053 240 0.001 232 0.282 511 0.000 019 0.282 500 -9.2 -8.5 1 656 YAB-15-1-12-10 33 0.045 195 0.001 130 0.282 505 0.000 020 0.282 500 -9.4 -8.7 1 669 YAB-15-1-12-11 32 0.035 083 0.000 847 0.282 519 0.000 019 0.282 500 -8.9 -8.2 1 637 YAB-15-1-12-12 35 0.038 377 0.000 897 0.282 448 0.000 018 0.282 400 -11.5 -10.8 1 796 YAB-15-1-12-13 32 0.109 911 0.002 172 0.282 488 0.000 025 0.282 500 -10.0 -9.4 1 709 YAB-15-1-12-14 34 0.034 789 0.000 878 0.282 470 0.000 018 0.282 500 -10.7 -10.0 1 748 YAB-15-1-12-15 33 0.036 939 0.000 935 0.282 516 0.000 020 0.282 500 -9.1 -8.4 1 646 -
[1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x [2] Baker, M.B., Hirschmann, M.M., Ghiorso, M.S., et al., 1995. Compositions of Near-Solidus Peridotite Melts from Ex-periments and Thermodynamic Calculations. Nature, 375:308-311. https://doi.org/10.1038/375308a0 [3] Bi, X.W., Hu, R.Z., Cornell, D.H., 2000.The Evolution of Ore-Forming Fluid and REE Geochemistry of Yao'an Au Deposit.Bulletin of Mineralogy, Petrology and Geochem-isty, 19(4):263-265(in Chinese). [4] Bi, X. W., Hu, R. Z., Hanley, J. J., et al., 2009. Crystallisation Conditions (T, P, fO2) from Mineral Chemistry of Cu-and Au-Mineralised Alkaline Intrusions in the Red River-Jinshajiang Alkaline Igneous Belt, Western Yunnan Province, China. Mineralogy and Petrology, 96(1-2):43-58. https://doi.org/10.1007/s00710-009-0047-4 [5] Bi, X. W., Hu, R. Z., Peng, J. T., et al., 2005. Geochemical Characteristics of the Yao'an and Machangqing Alkaline-Rich Intrusions.Acta Petrologica Sinica, 21(1):113-124(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200501011 [6] Botcharnikov, R. E., Linnen, R. L., Wilke, M., et al., 2011.High Gold Concentrations in Sulphide-Bearing Magma under Oxidizing Conditions. Nature Geoscience, 4(2):112-115. https://doi.org/10.1038/ngeo1042 [7] Chen, F. K., Li, X. H., Wang, X. L., et al., 2007. Zircon Age and Nd-Hf Isotopic Composition of the Yunnan Tethyan Belt, Southwestern China.International Journal of Earth Sciences, 96(6):1179-1194. https://doi.org/10.1007/s00531-006-0146-y [8] Cheng, J., Xia, B., Zhang, Y. Q., 2007. Petrological and Geo-chemical Characteristics of Yao' an Alkailine Complex in Yunnan Province. Geotectonica et Metallogenia, 31(1):118-125(in Chinese with English abstract). [9] Chung, S. L., Chu, M. F., Zhang, Y. Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism.Earth-Science Reviews, 68(3-4):173-196. https://doi.org/10.1016/j.earscirev.2004.05.001 [10] Chung, S.L., Jahn, B.M., 1995.Plume-Lithosphere Interaction in Generation of the Emeishan Flood Basalts at the Permian-Triassic Boundary.Geology, 23(10):889. doi: 10.1130/0091-7613(1995)023<0889:PLIIGO>2.3.CO;2 [11] Foley, S.F., Jackson, S.E., Fryer, B.J., et al., 1996.Trace Ele-ment Partition Coefficients for Clinopyroxene and Phlog-opite in an Alkaline Lamprophyre from Newfoundland by LAM-ICP-MS.Geochimica et Cosmochimica Acta, 60(4):629-638. https://doi.org/10.1016/0016-7037(95) 00422-x doi: 10.1016/0016-7037(95)00422-x [12] Gao, S., Ling, W.L., Qiu, Y.M., et al., 1999.Contrasting Geo-chemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton:Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis.Geo-chimica et Cosmochimica Acta, 63(13-14):2071-2088. https://doi.org/10.1016/s0016-7037(99)00153-2 [13] Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites.Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 [14] Guo, Z.F., Hertogen, J., Liu, J.Q., et al., 2005.Potassic Mag-matism in Western Sichuan and Yunnan Provinces, SE Tibet, China:Petrological and Geochemical Constraints on Petrogenesis. Journal of Petrology, 46(1):33-78. https://doi.org/10.1093/petrology/egh061 [15] He, J., Wang, Q.Y., Yan, G.C., 2018.Genesis and Geodynam-ic Settings of the Eocene Lamprophyres from Jinshajiang-Red River Tectonic Belt, Ludian, Western Yunnan Prov-ince.Earth Science, 43(8):2586-2599 (in Chinese with English abstract). [16] He, W.Y., Mo, X.X., He, Z.H., et al., 2015.The Geology and Mineralogy of the Beiya Skarn Gold Deposit in Yunnan, Southwest China. Economic Geology, 110(6):1625-1641. https://doi.org/10.2113/econgeo.110.6.1625 [17] Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015.Lithospheric Ar-chitecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6):1541-1575. https://doi.org/10.2113/econgeo.110.6.1541 [18] Hou, Z.Q., Pan, G.T., Wang, A.J., et al., 2006b.Metallogene-sis in Tibetan Collisional Orogenic Belt:Ⅱ. Mineraliza-tion in Late-Collisional Transformation Setting.Mineral Deposits, 25(5):521-543(in Chinese with English ab-stract). [19] Hou, Z.Q., Qu, X.M., Yang, Z.S., et al., 2006c.Metallogene-sis in Tibetan Collisional Orogenic Belt:Ⅲ. Mineraliza-tion in Post-Collisional Extension Setting. Mineral De-posits, 25(6):629-651(in Chinese with English abstract). [20] Hou, Z.Q., Yang, Z.S., Xu, W.Y., et al., 2006a.Metallogene-sis in Tibetan Collisional Orogenic Belt:Ⅰ. Mineraliza-tion in Main Collisional Orogenic Setting.Mineral Depos-its, 25(4):337-358(in Chinese with English abstract). [21] Hou, Z.Q., Zeng, P.S., Gao, Y.F., et al., 2006.Himalayan Cu-Mo-Au Mineralization in the Eastern Indo-Asian Colli-sion Zone:Constraints from Re-Os Dating of Molybde-nite. Mineralium Deposita, 41(1):33-45. https://doi.org/10.1007/s00126-005-0038-2 [22] Hou, Z.Q., Zhou, Y., Wang, R., et al., 2017.Recycling of Met-al-Fertilized Lower Continental Crust:Origin of Non-Arc Au-Rich Porphyry Deposits at Cratonic Edges.Geol-ogy, 45(6):563-566. https://doi.org/10.1130/g38619.1 [23] Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012.Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multi-ple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9):1391-1399. doi: 10.1039/c2ja30078h [24] Jiang, Y.H., Jiang, S.Y., Ling, H.F., et al., 2006.Low-Degree Melting of a Metasomatized Lithospheric Mantle for the Origin of Cenozoic Yulong Monzogranite-Porphyry, East Tibet:Geochemical and Sr-Nd-Pb-Hf Isotopic Con-straints.Earth and Planetary Science Letters, 241(3-4):617-633. https://doi.org/10.1016/j.epsl.2005.11.023 [25] Li, Y., Audétat, A., 2012.Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between Sul-fide Phases and Hydrous Basanite Melt at Upper Mantle Conditions. Earth and Planetary Science Letters, 355-356:327-340. https://doi.org/10.1016/j.epsl.2012.08.008 [26] Li, Y., Mo, X.X., Yu, X.H., et al., 2011.Zircon U-Pb Dating of Several Selected Alkali-Rich Porphyries from the Jin-shajiang-Ailaoshan Fault Zone and Geological Signifi-cance.Geoscience, 25(2):189-200(in Chinese with Eng-lish abstract). [27] Lu, Y. J., Campbell, M. T., Li, Z. X., et al., 2015. Paleogene Post-Collisional Lamprophyres in Western Yunnan, Western Yangtze Craton:Mantle Source and Tectonic Implications. Lithos, 233:139-161. https://doi.org/10.1016/j.lithos.2015.02.003 [28] Lu, Y. J., Kerrich, R., Cawood, P. A., et al., 2012. Zircon SHRIMP U-Pb Geochronology of Potassic Felsic Intru-sions in Western Yunnan, SW China:Constraints on the Relationship of Magmatism to the Jinsha Suture. Gond-wana Research, 22(2):737-747. https://doi.org/10.1016/j.gr.2011.11.016 [29] Lu, Y. J., Kerrich, R., Kemp, A. I. S., et al., 2013b. Intraconti-nental Eocene-Oligocene Porphyry Cu Mineral Systems of Yunnan, Western Yangtze Craton, China:Composi-tional Characteristics, Sources, and Implications for Con-tinental Collision Metallogeny. Economic Geology, 108(7):1541-1576. https://doi.org/10.2113/econ-geo.108.7.1541 [30] Lu, Y.J., Kerrich, R., McCuaig, T.C., et al., 2013a.Geochemi-cal, Sr-Nd-Pb, and Zircon Hf-O Isotopic Compositions of Eocene-Oligocene Shoshonitic and Potassic Adakite-Like Felsic Intrusions in Western Yunnan, SW China:Petrogenesis and Tectonic Implications. Journal of Pe-trology, 54(7):1309-1348. https://doi.org/10.1093/pe-trology/egt013 [31] Mo, X. X., Zhao, Z. D., Deng, J. F., et al., 2003. Response of Volcanism to the India-Asia Collision.Earth Science Fron-tiers, 10(3):135-148(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=0c59ab3b1103f0b7e6473eb7aa59b469&encoded=0&v=paper_preview&mkt=zh-cn [32] Mole, D.R., Fiorentini, M.L., Thebaud, N., et al., 2014.Arche-an Komatiite Volcanism Controlled by the Evolution of Early Continents. Proceedings of the National Academy of Sciences, 111(28):10083-10088. https://doi.org/10.1073/pnas.1400273111 [33] Qian, X.G., Li, Z.W., 2000.Geologicial and Geochmical Char-acteristics of the Yaoan Gold Ore Deposit in Central Yunnan.Geotectonica et Metallogenia, 24(Suppl.1):30-36(in Chinese with English abstract). [34] Tapponnier, P., Lacassin, R., Leloup, P. H., et al., 1990. The Ailao Shan/Red River Metamorphic Belt:Tertiary Left-Lateral Shear between Indochina and South China. Na-ture, 343:431-437. http://cn.bing.com/academic/profile?id=238c6dbccd2aca013eb60717ad85dccc&encoded=0&v=paper_preview&mkt=zh-cn [35] Wang, Q., Xu, J.F., Jian, P., et al., 2006.Petrogenesis of Ada-kitic Porphyries in an Extensional Tectonic Setting, Dex-ing, South China:Implications for the Genesis of Porphy-ry Copper Mineralization. Journal of Petrology, 47(1):119-144. https://doi.org/10.1093/petrology/egi070 [36] Wang, X.C., Li, X.H., Li, W.X., et al., 2009.Variable Involve-ments of Mantle Plumes in the Genesis of Mid-Neoproterozoic Basaltic Rocks in South China:A Review.Gond-wana Research, 15(3-4):381-395. https://doi.org/10.1016/j.gr.2008.08.003 [37] Williams, I.S., 1992.Some Observations on the Use of Zircon U-Pb Geochronology in the Study of Granitic Rocks. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2):447-458. doi: 10.1017/S0263593300008129 [38] Xia, P., Xu, Y.G., 2005.Domains and Enrichment Mechanism of the Lithospheric Mantle in Western Yunnan:A Com-parative Study on Two Types of Cenozoic Ultrapotassic Rocks.Science in China(Series D), 48(3):326-337. doi: 10.1360/03yd0488 [39] Yang, J.H., Du, Y.S., Yu, X., et al., 2017.Early Permian Vol-canic Fragment-Bearing Sandstones in Babu of South-east Yunnan:Indicative of Paleo-Tethyan Ocean Subduc-tion. Earth Science, 42(1):24-34(in Chinese with Eng-lish abstract). [40] Zajacz, Z., Seo, J.H., Candela, P.A., et al., 2010.Alkali Metals Control the Release of Gold from Volatile-Rich Magmas. Earth and Planetary Science Letters, 297(1-2):50-56. https://doi.org/10.1016/j.epsl.2010.06.002 [41] Zeng, P.S., Mo, X.X., Yu, X.H., 2002.Nd, Sr and Pb Isotopic Characteristics of the Alkaline-Rich Porphyries in West-ern Yunnan and Its Compression Strike-Slip Setting.Ac-ta Petrologica et Mineralogica, 21(3):231-241(in Chi-nese with English abstract). http://cn.bing.com/academic/profile?id=a0f30a8f1630cde086bc2a8066f34a60&encoded=0&v=paper_preview&mkt=zh-cn [42] Zhang, H., Ma, D.F., Zhang, H., et al., 2017.Zircon LA-ICP-MS U-Pb Dating and Geological Significance of Quartz Monzonite-Porphyry from Xifanping Copper Deposit in Yanyuan County, Sichuan Province, China. Acta Miner-alogica Sinica, 37(4):475-485. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb201704015 [43] Zhang, Y.Q., Xie, Y.W., Tu, G.C., 1987.Preliminary Studies of the Alkali-Rich Intrusive Rocks in the Alaoshan-Jinsh-ajiang Belt and Their Bearing on Rift Tectonics. Acta Petrologica Sinica, 3(1):19-28 (in Chinese with Eng-lish abstract). [44] Zhao, X., Yu, X. H., Mo, X. X., et al., 2004.. Petrological and Geochemical Characteristics of Cenozoic Alkali-Rich Porphyries and Xenoliths Hosted in Western Yunnan Province. Geoscience, 18(2):217-228(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200402012 [45] Zhu, X. P., Mo, X. X., White, N. C., et al., 2013. Petrogenesis and Metallogenic Setting of the Habo Porphyry Cu-(Mo-Au) Deposit, Yunnan, China. Journal of Asian Earth Sciences, 66:188-203. doi: 10.1016/j.jseaes.2012.12.040 [46] 毕献武, 胡瑞忠, Cornell, D.H., 2000.姚安金矿床成矿流体形成演化的稀土元素地球化学.矿物岩石地球化学通报, 19(4):263-265. doi: 10.3969/j.issn.1007-2802.2000.04.021 [47] 毕献武, 胡瑞忠, 彭建堂, 等, 2005.姚安和马厂箐富碱侵入岩体的地球化学特征.岩石学报, 21(1):113-124. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200501011 [48] 程锦, 夏斌, 张玉泉, 2007.云南姚安碱性杂岩体的岩石学和地球化学特征.大地构造与成矿学, 31(1):118-125. doi: 10.3969/j.issn.1001-1552.2007.01.014 [49] 贺娟, 王启宇, 闫国川, 2018.滇西金沙江-红河构造带鲁甸始新世煌斑岩成因及动力学背景.地球科学, 43(8):2586-2599. http://www.earth-science.net/WebPage/Article.aspx?id=3898 [50] 侯增谦, 潘桂棠, 王安建, 等, 2006b.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用.矿床地质, 25(5):521-543. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001 [51] 侯增谦, 曲晓明, 杨竹森, 等, 2006c.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质, 25(6):629-651. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001 [52] 侯增谦, 杨竹森, 徐文艺, 等, 2006a.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用.矿床地质, 25(4):337-358. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001 [53] 李勇, 莫宣学, 喻学惠, 等, 2011.金沙江-哀牢山断裂带几个富碱斑岩体的锆石U-Pb定年及地质意义.现代地质, 25(2):189-200. doi: 10.3969/j.issn.1000-8527.2011.02.001 [54] 莫宣学, 赵志丹, 邓晋福, 等, 2003.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘, 10(3):135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013 [55] 钱祥贵, 李志伟, 2000.滇中姚安金矿床地质地球化学特征.大地构造与成矿学, 24(增刊1):30-36. http://www.cnki.com.cn/Article/CJFDTotal-DGYK2000S1003.htm [56] 杨江海, 杜远生, 于鑫, 等, 2017.滇东南八布早二叠世含火山岩屑砂岩指示古特提斯洋俯冲.地球科学, 42(1):24-34. http://www.earth-science.net/WebPage/Article.aspx?id=3411 [57] 曾普胜, 莫宣学, 喻学惠, 2002.滇西富碱斑岩带的Nd、Sr、Pb同位素特征及其挤压走滑背景.岩石矿物学杂志, 21(3):231-241. doi: 10.3969/j.issn.1000-6524.2002.03.005 [58] 张玉泉, 谢应雯, 涂光炽, 1987.哀牢山-金沙江富碱侵入岩及其与裂谷构造关系初步研究.岩石学报, 3(1):19-28. http://www.cnki.com.cn/Article/CJFDTotal-YSXB198701002.htm [59] 赵欣, 喻学惠, 莫宣学, 等, 2004.滇西新生代富碱斑岩及其深源包体的岩石学和地球化学特征.现代地质, 18(2):217-228. doi: 10.3969/j.issn.1000-8527.2004.02.012 -
dqkx-44-6-2063-Table.pdf