• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    井内混合效应与尺度效应对注入井附近溶质径向弥散过程的影响

    肖勋 施文光 王全荣

    肖勋, 施文光, 王全荣, 2020. 井内混合效应与尺度效应对注入井附近溶质径向弥散过程的影响. 地球科学, 45(4): 1439-1446. doi: 10.3799/dqkx.2019.124
    引用本文: 肖勋, 施文光, 王全荣, 2020. 井内混合效应与尺度效应对注入井附近溶质径向弥散过程的影响. 地球科学, 45(4): 1439-1446. doi: 10.3799/dqkx.2019.124
    Xiao Xun, Shi Wenguang, Wang Quanrong, 2020. Effect of Mixing Effect and Scale-Dependent Dispersion for Radial Solute Transport near the Injection Well. Earth Science, 45(4): 1439-1446. doi: 10.3799/dqkx.2019.124
    Citation: Xiao Xun, Shi Wenguang, Wang Quanrong, 2020. Effect of Mixing Effect and Scale-Dependent Dispersion for Radial Solute Transport near the Injection Well. Earth Science, 45(4): 1439-1446. doi: 10.3799/dqkx.2019.124

    井内混合效应与尺度效应对注入井附近溶质径向弥散过程的影响

    doi: 10.3799/dqkx.2019.124
    基金项目: 

    国家自然科学基金项目 41502229

    国家自然科学基金项目 41772252

    国家自然科学基金创新群体 41521001

    详细信息
      作者简介:

      肖勋(1995-), 女, 硕士生, 主要从事地下水流动及污染物迁移规律数值模拟研究.E-mail:xiaox@cug.edu.cn

      通讯作者:

      王全荣, 男, 教授, E-mail:wangqr@cug.edu.cn

    • 中图分类号: P641.2

    Effect of Mixing Effect and Scale-Dependent Dispersion for Radial Solute Transport near the Injection Well

    • 摘要: 径向弥散是指溶质在径向流场下的迁移规律,被广泛用于描述含水层修复领域中污染物的迁移过程.然而,在现有描述径向弥散的模型中,往往忽略了井内混合效应对溶质径向弥散的影响.建立新的注入井附近溶质径向运移动力学模型,同时考虑井内混合效应与弥散度的尺度效应.采用Laplace变换推导该模型的半解析解,利用Stehfest数值逆变换获取溶质在实数空间的解.通过与不考虑混合效应的模型对比研究混合效应对溶质径向弥散的影响,并利用室内渗流槽中的溶质径向弥散实验数据验证模型的合理性与适用性.结果表明:混合效应和尺度效应对注水井附近溶质径向弥散有显著影响.具体地讲,井内的混合效应越显著,在井壁处及含水层中的穿透曲线越低,溶质浓度达到峰值所需时间越长,与不考虑混合效应模型的差异越明显;随尺度效应的增强,溶质提前穿透且扩散范围变大,溶质浓度达到峰值所需时间越长;与前人的模型相比,本研究模型能更好地模拟注水井附近的溶质径向弥散问题.

       

    • 图  1  井壁处(a)和r=12.5 cm处(b)在不同井半径下穿透曲线的对比

      Fig.  1.  Comparison of BTCs for different well radii at wellbore (a) and at r=12.5 cm(b)

      图  2  井壁处(a)和r=12.5 cm处(b)在不同井半径下相对误差error随时间的变化

      Fig.  2.  Comparison of error for different well radii at wellbore (a) and at r=12.5 cm(b)

      图  3  不同k值下r=12.5 cm处LDM和LDNM的穿透曲线的比较

      Fig.  3.  Comparison of BTCs between LDM and LDNM for different k values at r=12.5 cm

      图  4  井壁处及r=15 cm(a)和r=20 cm(b)处LDM和LDNM穿透曲线与观测值的拟合

      Fig.  4.  Fitness of the observed BTCs by LDM and LDNM at the wellbore at r=15 cm(a) and r=20 cm (b)

      表  1  溶质不同注入条件下的特定解析解

      Table  1.   The specific solution under different boundary conditions

      溶质注入边界条件 LDM LDNM Laplace空间下的解
      浓度通量连续 $C_{1}=\frac{C_{0} /(s \beta+1)}{s \varepsilon k r_{\mathrm{w}}^{\gamma+1} K_{\gamma+1}\left(\varepsilon r_{\mathrm{w}}\right)}$ $C_{1}=\frac{C_{0}}{s \varepsilon k r_{\mathrm{w}}^{\gamma+1} K_{\gamma+1}\left(\varepsilon r_{\mathrm{w}}\right)}$ $\bar{C}_{r}=C_{1} r^{\gamma} K_{\gamma}(\varepsilon r)$
      瞬时注入 $C_{1}=\frac{M /(s \beta+1)}{Q \varepsilon k r_{\mathrm{w}}^{\gamma+1} K_{\gamma+1}\left(\varepsilon r_{\mathrm{w}}\right)}$ $C_{1}=\frac{M}{Q \varepsilon k r_{\mathrm{w}}^{\gamma+1} K_{\gamma+1}\left(\varepsilon r_{\mathrm{w}}\right)}$ $\bar{C}_{r}=C_{1} r^{\gamma} K_{\gamma}(\varepsilon r)$
      下载: 导出CSV
    • [1] Bharati, V. K., Singh, V. P., Sanskrityayn, A., et al., 2017. Analytical Solution of Advection-Dispersion Equation with Spatially Dependent Dispersivity. Journal of Engineering Mechanics, 143(11):04017126. https://doi.org/10.1061/(asce)em.1943-7889.0001346
      [2] Chen, C. S., 1987. Analytical Solutions for Radial Dispersion with Cauchy Boundary at Injection Well. Water Resources Research, 23(7):1217-1224. https://doi.org/10.1029/wr023i007p01217
      [3] Chen, H. T., Chen, C.O.K., 1988. Hybrid Laplace Transform/Finite Difference Method for Transient Heat Conduction Problems. International Journal for Numerical Methods in Engineering, 26(6):1433-1447. https://doi.org/10.1002/nme.1620260613
      [4] Chen, H.T., Chen, T.M., Chen, C.O.K., 1987. Hybrid Laplace Transform/Finite Element Method for One-Dimensional Transient Heat Conduction Problems. Computer Methods in Applied Mechanics and Engineering, 63(1):83-95. https://doi.org/10.1029/WR023i007p01217
      [5] Chen, J. S., Liu, C. W., Chen, C. S., et al., 1996. A Laplace Transform Solution for Tracer Tests in a Radially Convergent Flow Field with Upstream Dispersion. Journal of Hydrology, 183(3-4):263-275. https://doi.org/10.1016/0022-1694(95)02972-9
      [6] Cheng, J.M., 2002.Analysis on Field Scale Effect of Dispersivity in Consideration of Relative Reliability Level of Data. Journal of Hydraulic Engineering, 33(2):90-94(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb200202016
      [7] de Hoog F.R., Knight, J.H., Stokes, A.N., 1982.An Improved Method for Numerical Inversion of Laplace Transforms. SIAM Journal on Scientific and Statistical Computing, 3(3):357-366. https://doi.org/10.1137/0903022
      [8] Dubner, H., Abate, J., 1968. Numerical Inversion of Laplace Transforms by Relating Them to the Finite Fourier Cosine Transform. Journal of the ACM, 15(1):115-123. https://doi.org/10.1145/321439.321446
      [9] Gao, G.Y., Feng, S.Y., Huo, Z.L., et al., 2009.Semi-Analytical Solution for Solute Radial Transport Dynamic Model with Scale-Dependent Dispersion. Journal of Hydrodynamics(Ser.A), 24(2):156-163(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdlxyjyjz200902005
      [10] Gelhar, L. W., Welty, C., Rehfeldt, K. R., 1992. A Critical Review of Data on Field-Scale Dispersion in Aquifers. Water Resources Research, 28(7):1955-1974. https://doi.org/10.1029/92wr00607
      [11] Gu, H.C., Wang, Q.R., Zhan, H.B., 2018. An Improved Approach in Modeling Injection-Withdraw Test of the Partially Penetrating Well. Earth Science(in Chinese with English abstract). http://kns.cnki.net/kcms/detail/42.1874.p.20181116.0912.008.html
      [12] Han, C., Kang, J., Choe, J., 2003. Finite Difference Modeling for Scale-Dependent Dispersivity in a Fractured Medium. Energy Sources, 25(4):265-278. https://doi.org/10.1080/00908310390142316
      [13] Huang, J. Q., Liu, C. Q., 1986. Analytical Solution of Partial Differential Equations for Radial Transport of a Solute in Double Porous Media. Applied Mathematics and Mechanics, 7(4):327-336. https://doi.org/10.1007/bf01898222
      [14] Lai, K. H., Liu, C. W., Liang, C. P., et al., 2016. A Novel Method for Analytically Solving a Radial Advection-Dispersion Equation. Journal of Hydrology, 542:532-540. https://doi.org/10.1016/j.jhydrol.2016.09.027
      [15] Li, G.M., Chen, C.X., 1995.Fractal Geometry and Estimation of Scale-Dependent Dispersivity in Geologic Media. Earth Science, 20(4):405-409(in Chinese with English abstract).
      [16] McGuire, J. T., Long, D. T., Klug, M. J., et al., 2002. Evaluating Behavior of Oxygen, Nitrate, and Sulfate during Recharge and Quantifying Reduction Rates in a Contaminated Aquifer. Environmental Science & Technology, 36(12):2693-2700. https://doi.org/10.1021/es015615q
      [17] Mishra, S., Parker, J. C., 1990. Analysis of Solute Transport with a Hyperbolic Scale-Dependent Dispersion Model. Hydrological Processes, 4(1):45-57. https://doi.org/10.1002/hyp.3360040105
      [18] Moench, A. F., Ogata, A., 1981. A Numerical Inversion of the Laplace Transform Solution to Radial Dispersion in a Porous Medium. Water Resources Research, 17(1):250-252. https://doi.org/10.1029/wr017i001p00250
      [19] Novakowski, K. S., 1992a. An Evaluation of Boundary Conditions for One-Dimensional Solute Transport:1. Mathematical Development. Water Resources Research, 28(9):2399-2410. https://doi.org/10.1029/92wr00593
      [20] Novakowski, K. S., 1992b. An Evaluation of Boundary Conditions for One-Dimensional Solute Transport:2. Column Experiments. Water Resources Research, 28(9):2411-2423. https://doi.org/10.1029/92wr00592
      [21] Ogata, A., 1958. Dispersion in Porous Media(Dissertation). Northwestern University, Evanston, lllinois.
      [22] Phanikumar, M. S., McGuire, J. T., 2010. A Multi-Species Reactive Transport Model to Estimate Biogeochemical Rates Based on Single-Well Push-Pull Test Data. Computers & Geosciences, 36(8):997-1004. https://doi.org/10.1016/j.cageo.2010.04.001
      [23] Pickens, J. F., Grisak, G. E., 1981a. Modeling of Scale-Dependent Dispersion in Hydrogeologic Systems. Water Resources Research, 17(6):1701-1711. https://doi.org/10.1029/wr017i006p01701
      [24] Pickens, J. F., Grisak, G. E., 1981b. Scale-Dependent Dispersion in a Stratified Granular Aquifer. Water Resources Research, 17(4):1191-1211. https://doi.org/10.1029/wr017i004p01191
      [25] Ren, L., 1994.A Hybrid Laplace Transform Finite Element Method for Solute Radial Dispersion Problem in Subsurface Flow. Journal of Hydrodynamics(Ser.A), 9(1):37-43(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400399541
      [26] Schapery, R.A., 1962. Approximate Methods of Transform Inversion for Viscoelastic Stress Analysis. Proc. Fourth USN at Congr. Appl. Mech., 2:1075-1085. http://cn.bing.com/academic/profile?id=404faa0d2b48fffb86324f69c0e6e983&encoded=0&v=paper_preview&mkt=zh-cn
      [27] Schulze-Makuch, D., 2005. Longitudinal Dispersivity Data and Implications for Scaling Behavior. Ground Water, 43(3):443-456. https://doi.org/10.1111/j.1745-6584.2005.0051.x
      [28] Stehfest, H., 1970a. Algorithm 368:Numerical Inversion of Laplace Transforms[D5]. Communications of the ACM, 13(1):47-49. https://doi.org/10.1145/361953.361969
      [29] Stehfest, H., 1970b. Remark on Algorithm 368:Numerical Inversion of Laplace Transforms. Communications of the ACM, 13(10):624. https://doi.org/10.1145/355598.362787
      [30] Tang, D. H., Babu, D. K., 1979. Analytical Solution of a Velocity Dependent Dispersion Problem. Water Resources Research, 15(6):1471-1478. https://doi.org/10.1029/wr015i006p01471
      [31] Valocchi, A. J., 1986. Effect of Radial Flow on Deviations from Local Equilibrium during Sorbing Solute Transport through Homogeneous Soils. Water Resources Research, 22(12):1693-1701. https://doi.org/10.1029/wr022i012p01693
      [32] Wang, Q., Shi, W., Zhan, H., et al., 2018. Models of Single-Well Push-Pull Test with Mixing Effect in the Wellbore. Water Resources Research, 54(12):10155-10171. https://doi.org/10.1029/2018WR023317
      [33] Wang, Q. R., Zhan, H. B., 2013. Radial Reactive Solute Transport in an Aquifer-Aquitard System. Advances in Water Resources, 61(11):51-61. https://doi.org/10.1016/j.advwatres.2013.08.013
      [34] Wang, Q. R., Zhan, H. B., 2015. On Different Numerical Inverse Laplace Methods for Solute Transport Problems. Advances in Water Resources, 75:80-92. https://doi.org/10.1016/j.advwatres.2014.11.001
      [35] Yates, S.R., 1990. An Analytical Solution for One-Dimensional Transport in Heterogeneous Porous Media. Water Resources Research, 26(10):2331-2338. https://doi.org/10.1029/wr026i010p02331
      [36] You, K. H., Zhan, H. B., 2013. New Solutions for Solute Transport in a Finite Column with Distance-Dependent Dispersivities and Time-Dependent Solute Sources. Journal of Hydrology, 487(2):87-97. https://doi.org/10.1016/j.jhydrol.2013.02.027
      [37] Zhang, D.S., Chang, A.D., Shen, B., et al., 2005.Quasi-Analytical Solution and Numerical Simulation for Advection-Dispersion Model of Adsorbed Solute Transport through Soils under Steady State Flow. Journal of Hydrodynamics(Ser.A), 20(2):226-232(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdlxyjyjz200502014
      [38] 成建梅, 2002.考虑可信度的弥散度尺度效应分析.水利学报, 33(2):90-94. doi: 10.3321/j.issn:0559-9350.2002.02.016
      [39] 高光耀, 冯绍元, 霍再林, 等, 2009.考虑弥散尺度效应的溶质径向运移动力学模型及半解析解.水动力学研究与进展(A辑), 24(2):156-163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdlxyjyjz200902005
      [40] 顾昊琛, 王全荣, 詹红兵, 2018.非完整井下单井注抽试验数值模拟方法改进.地球科学. http://kns.cnki.net/kcms/detail/42.1874.p.20181116.0912.008.html
      [41] 李国敏, 陈崇希, 1995.空隙介质水动力弥散尺度效应的分形特征及弥散度初步估计.地球科学, 20(4):405-409. http://www.earth-science.net/article/id/232
      [42] 任理, 1994.地下水溶质径向弥散问题的混合拉普拉斯变换有限单元解.水动力学研究与进展(A辑), 9(1):37-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400399541
      [43] 张德生, 常安定, 沈冰, 等, 2005.土壤中吸附性溶质运移对流-弥散模型的准解析解及其数值模拟.水动力学研究与进展(A辑), 20(2):226-232. http://d.old.wanfangdata.com.cn/Periodical/sdlxyjyjz200502014
    • 加载中
    图(4) / 表(1)
    计量
    • 文章访问数:  1549
    • HTML全文浏览量:  504
    • PDF下载量:  20
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-05-25
    • 刊出日期:  2020-04-15

    目录

      /

      返回文章
      返回