• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    源-汇系统级次划分方法及应用

    陆威延 朱红涛 徐长贵 张向涛 杜晓峰 杜家元 李森

    陆威延, 朱红涛, 徐长贵, 张向涛, 杜晓峰, 杜家元, 李森, 2020. 源-汇系统级次划分方法及应用. 地球科学, 45(4): 1327-1336. doi: 10.3799/dqkx.2019.123
    引用本文: 陆威延, 朱红涛, 徐长贵, 张向涛, 杜晓峰, 杜家元, 李森, 2020. 源-汇系统级次划分方法及应用. 地球科学, 45(4): 1327-1336. doi: 10.3799/dqkx.2019.123
    Lu Weiyan, Zhu Hongtao, Xu Changgui, Zhang Xiangtao, Du Xiaofeng, Du Jiayuan, Li Sen, 2020. Methods and Applications of Level Subdivision of Source-to-Sink System. Earth Science, 45(4): 1327-1336. doi: 10.3799/dqkx.2019.123
    Citation: Lu Weiyan, Zhu Hongtao, Xu Changgui, Zhang Xiangtao, Du Xiaofeng, Du Jiayuan, Li Sen, 2020. Methods and Applications of Level Subdivision of Source-to-Sink System. Earth Science, 45(4): 1327-1336. doi: 10.3799/dqkx.2019.123

    源-汇系统级次划分方法及应用

    doi: 10.3799/dqkx.2019.123
    基金项目: 

    国家自然科学基金项目 41872149

    国家自然科学基金项目 41572084

    国家科技重大专项"渤海南部古近系优质储层成因机理、综合评价技术与有利勘探方向研究" 2016ZX05024-003-007

    详细信息
      作者简介:

      陆威延(1995-), 男, 硕士研究生, 层序地层学与沉积学

      通讯作者:

      朱红涛, E-mail:htzhu@cug.edu.cn

    • 中图分类号: P56;P618.13

    Methods and Applications of Level Subdivision of Source-to-Sink System

    • 摘要: 源-汇系统研究是当今世界范围内地球科学领域颇为关注的重要课题.源-汇系统划分是源-汇系统定量化研究和精细解剖的基础,但是国内外关于源-汇系统级次划分的报道比较少见,更多是集中在源-汇系统源-渠-汇单元耦合、参数拟合、预测及其控制因素分析等研究.以分水岭、分水线和脊线分别作为划分一级、二级和三级源-汇系统级次划分的界线和依据,总结、归纳出三级源-汇系统级次划分方法、流程,并选取云南洱海现代湖盆源-汇和珠江口盆地珠一坳陷西江凹陷XJ23洼南部低凸起古代湖盆源-汇实例解剖,开展三级源-汇系统级次划分方法的应用分析.云南洱海"点苍山-洱海"现代源-汇系统可以划分为东、西侧两个一级源-汇系统,东侧一级源-汇系统划分为19个二级源-汇系统,15号二级源-汇系统进一步划分为AB两个三级源-汇系统.珠江口盆地珠一坳陷西江凹陷XJ23洼南部低凸起古代源-汇系统可以划分为ABC三个一级源-汇系统,一级源-汇系统A划分为A1A2A3A4四个二级源-汇系统,二级源-汇系统A3进一步划分为Ⅰ、Ⅱ两个三级源-汇系统.三级源-汇系统级次划分方法对源-汇系统定量化研究和精细解剖方面具一定的参考价值.

       

    • 图  1  三级源-汇系统级次划分示意图

      Fig.  1.  Level division model of three level source-to-sink system

      图  2  “点苍山-洱海”源-汇系统构造位置及其水系

      Fig.  2.  Structure and water system map of Diancangshan-Erhai source-to-sink system

      图  3  洱海西岸“点苍山-洱海”源-汇系统级次划分

      a.分水岭将“点苍山-洱海”源-汇系统划分为Ⅰ、Ⅱ两个一级源-汇系统;b.分水线将一级源-汇系统Ⅰ划分为19个二级源-汇系统;c.脊线将15号源-汇系统划分为AB两个三级源-汇系统

      Fig.  3.  Source-to-sink system level division of Diancangshan-Erhai, Erhai western bank

      图  4  珠江口盆地珠一坳陷西江凹陷XJ23洼南部低凸起源-汇系统构造位置

      Fig.  4.  Southern uplift structure map of XJ23 sub-sag of Xijiang sag, Zhuyi depression, Pearl River Mouth basin

      图  5  珠江口盆地珠一坳陷XJ23洼南部低凸起古近系文昌组古代源-汇系统级次划分结果

      Fig.  5.  Source-to-sink system level division of XJ23 sub-sag of Xijiang sag, Zhuyi depression, Pearl River Mouth basin

      图  6  珠江口盆地珠一坳陷XJ23洼南部低凸起一级源-汇系统A典型剖面

      Fig.  6.  Typical Section of first level source-to-sink system A of XJ23 sub-sag of Xijiang sag, Zhuyi depression, Pearl River Mouth basin

    • [1] Allen, P., 2005. Striking a Chord. Nature, 434(7036):961-961. https://doi.org/10.1038/434961a
      [2] Allen, P. A., 2008a. From Landscapes into Geological History. Nature, 451(7176):274-276. https://doi.org/10.1038/nature06586 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0215096832/
      [3] Allen, P.A., 2008b. Time Scales of Tectonic Landscapes and Their Sediment Routing Systems. Geological Society, London, Special Publications, 296(1):7-28. https://doi.org/10.1144/sp296.2 doi: 10.1144/SP296.2
      [4] Allen, P.A., Densmore, A.L., 2000. Sediment Flux from an Uplifting Fault Block. Basin Research, 12(3-4):367-380. https://doi.org/10.1111/j.1365-2117.2000.00135.x doi: 10.1046/j.1365-2117.2000.00135.x
      [5] Allen, P.A., Hovius, N., 1998. Sediment Supply from Landslide-Dominated Catchments:Implications for Basin-Margin Fans. Basin Research, 10(1):19-35. https://doi.org/10.1046/j.1365-2117.1998.00060.x
      [6] Cheng, Y., 2018. Study on Semi-Quantitative Prediction Model on Sensitive Parameters of "Source to Sink" System in Continental Basin (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      [7] Dai, C.Q., Du, J.Y., Wei, X.W., et al., 2014.Prediction and Identification of the Lithologic Trap in Huizhou Sag of Pearl River Mouth Basin. Sino-Global Energy, 19(4):41-44(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zwny201404008
      [8] Dearing, J.A., Jones, R.T., Shen, J., et al., 2007. Using Multiple Archives to Understand Past and Present Climate-Human-Environment Interactions:The Lake Erhai Catchment, Yunnan Province, China. Journal of Paleolimnology, 40(1):3-31. https://doi.org/10.1007/s10933-007-9182-2 http://cn.bing.com/academic/profile?id=817540325e606bff71eca299bc5d71c1&encoded=0&v=paper_preview&mkt=zh-cn
      [9] Du, X.F., Wang, Q.B., Pang, X.J., et al., 2018.Quantitative Characterization of Source-Sink System of Ed3 in Shinan Steep Slope Zone, Bozhong Depression. Lithologic Reservoirs, 30(5):1-10(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/yxyqc201805001
      [10] Galloway, W.E., 2000. Cenozoic Depositional History of the Gulf of Mexico Basin. AAPG Bulletin, 84:1743-1774. https://doi.org/10.1306/8626c37f-173b-11d7-8645000102c1865d http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=69ede78b8fc2682eb933f6b0102d52ba
      [11] Galloway, W.E., 2001. Cenozoic Evolution of Sediment Accumulation in Deltaic and Shore-Zone Depositional Systems, Northern Gulf of Mexico Basin. Marine and Petroleum Geology, 18(10):1031-1040. https://doi.org/10.1016/s0264-8172(01)00045-9 doi: 10.1016/S0264-8172(01)00045-9
      [12] Geng, W, 2009.Characteristics of Reservoir Sedimentology of Paleogene in Huizhou Depression, Zhujiangkou Basin(Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      [13] Hao, B.F., Han, X.J., Ma, M.G., et al., 2018. Research Progress on the Application of Google Earth Engine in Geoscience and Environmental Sciences. Remote Sensing Technology and Application, 33(1):600-611(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ygjsyyy201804004
      [14] Helland-Hansen, W., Sømme, T.O., Martinsen, O.J., et al., 2016. Deciphering Earth's Natural Hourglasses:Perspectives on Source-to-Sink Analysis. Journal of Sedimentary Research, 86(9):1008-1033. https://doi.org/10.2110/jsr.2016.56
      [15] Leloup, P.H., Harrison, T.M., Ryerson, F.J., et al., 1993. Structural, Petrological and Thermal Evolution of a Tertiary Ductile Strike-Slip Shear Zone, Diancang Shan, Yunnan. Journal of Geophysical Research:Solid Earth, 98(B4):6715-6743. https://doi.org/10.1029/92jb02791 doi: 10.1029/92JB02791
      [16] Li, J.L., Xiao, Y.J., Wang, D.H., et al., 2016.Jurassic Prototype Basin Reconstruction in East Part of Qaidam Basin. Earth Science Frontiers, 23(5):11-22(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201605003
      [17] Li, S.L., Zhu, X.M., Li, H.Y., et al., 2017.Quantitative Characterization of Elements and Coupling Mode in Source-to-Sink System:A Case Study of the Shahejie Formation between the Shaleitian Uplift and Shanan Sag, Bohai Sea. China Offshore Oil and Gas, 29(4):39-50(in Chinese with English abstract).
      [18] Lin, C.S., Xia, Q.L., Shi, H.S., et al., 2015.Geomorphological Evolution, Source to Sink System and Basin Analysis. Earth Science Frontiers, 22(1):9-20(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201501002
      [19] Liu, Q.H., Zhu, X.M., Li, S.L., et al., 2017.Source-to-Sink System of the Steep Slope Fault in the Western Shaleitian Uplift. Earth Science, 42(11):1883-1896(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201711003
      [20] Meng, W., Li, R.K., Duan, Z., et al., 2018.Digital Elevation Model Fusion by Landform Characteristics. Journal of Geo-Information Science, 20(7):895-905(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201807004
      [21] Nyberg, B., Helland-Hansen, W., Gawthorpe, R.L., et al., 2018. Revisiting Morphological Relationships of Modern Source-to-Sink Segments as a First-Order Approach to Scale Ancient Sedimentary Systems. Sedimentary Geology, 373:111-133. https://doi.org/10.1016/j.sedgeo.2018.06.007
      [22] Socquet, A., Pubellier, M., 2005. Cenozoic Deformation in Western Yunnan (China-Myanmar Border). Journal of Asian Earth Sciences, 24(4):495-515. https://doi.org/10.1016/j.jseaes.2004.03.006
      [23] Sømme, T.O., Helland-Hansen, W., Martinsen, O.J., et al., 2009a. Relationships between Morphological and Sedimentological Parameters in Source-to-Sink Systems:A Basis for Predicting Semi-Quantitative Characteristics in Subsurface Systems. Basin Research, 21(4):361-387. https://doi.org/10.1111/j.1365-2117.2009.00397.x
      [24] Sømme, T.O., Jackson, C.A.L., 2013. Source-to-Sink Analysis of Ancient Sedimentary Systems Using a Subsurface Case Study from the Møre-Trøndelag Area of Southern Norway:Part 2-Sediment Dispersal and Forcing Mechanisms. Basin Research, 25(5):512-531. https://doi.org/10.1111/bre.12014
      [25] Sømme, T.O., Jackson, C.A.L., Vaksdal, M., 2013. Source-to-Sink Analysis of Ancient Sedimentary Systems Using a Subsurface Case Study from the Møre-Trøndelag Area of Southern Norway:Part 1-Depositional Setting and Fan Evolution. Basin Research, 25(5):489-511. https://doi.org/10.1111/bre.12013
      [26] Sømme, T.O., Martinsen, O.J., Thurmond, J.B., 2009b. Reconstructing Morphological and Depositional Characteristics in Subsurface Sedimentary Systems:An Example from the Maastrichtian-Danian Ormen Lange System, Møre Basin, Norwegian Sea. AAPG Bulletin, 93(10):1347-1377. https://doi.org/10.1306/06010909038
      [27] Wang, X., Yu, S., Huang, G.H., 2004. Land Allocation Based on Integrated GIS-Optimization Modeling at a Watershed Level. Landscape & Urban Planning, 66:61-74. doi: 10.1016-S0169-2046(03)00095-1/
      [28] Wu, J., Ye, J.R., Shi, H.S., et al., 2012.Reservoir-Forming Pattern of Typical Hydrocarbon Accumulation Zone in Huizhou Sag. Journal of Southwest Petroleum University(Science & Technology Edition), 34(6):17-26(in Chinese with English abstract). doi: 10.3863/j.issn.1674-5086.2012.06.003
      [29] Xian, B.Z., Wang, Z., Ma, L.C., et al., 2017.Paleo-Drainage System and Integrated Paleo-Geomorphology Restoration in Depositional and Erosional Areas:Guantao Formation in East Liaodong Area, Bohai Bay Basin, China. Earth Science, 42(11):1922-1935(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQKX201711006.htm
      [30] Xiao, F., 2017.Characteristics of Transport Pathways in Component Units of Source to Sink Systems and Quantitative Prediction on Sedimentary Bodies under Its Control(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      [31] Xu, L., Li, J.H., Liu, C.H., et al., 2017. Research on Geomorphological Morphology and Regionalization of Hoh Xil Based on Digital Elevation Model (DEM). Acta Scientiarum Naturalium Univereitatie Pekinensis, 53(5):833-842(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjdxxb201705006
      [32] Xu, C.G., Du, X.F., 2017.Industrial Application of Source-to-Sink Theory in Continental Rift Basin:A Case Study of Bohai Sea Area. China Offshore Oil and Gas, 29(4):9-18(in Chinese with English abstract). doi: 10.11935/j.issn.1673-1506.2017.04.002
      [33] Xu, H.L., Fan, C.Y., Gao, X., et al., 2013.Early Cretaceous Prototype Restoration of the Basin Group in Eastern Jilin. Global Geology, 32(2):263-272(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjdz201302009
      [34] Zha, Z.Z., 2007.The Extraction of Topographic Patterns Based on Digital Elevation Model(Dissertation). Tongji University, Shanghai (in Chinese with English abstract).
      [35] Zhao, C.Q., Zhao, L., Cao, S.Y., et al., 2014.Cenozoic Deformation-Metamorphic Evolution of the Diancang Shan Metamorphic Complex and Regional Tectonic Implications. Acta Petrologica Sinica, 30(3):851-866(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201403023
      [36] Zhao, Y.G., Wang, D.X., Feng, Q.H., et al., 2017.Review on Palaeomorphologic Reconstruction Methods in Oil and Gas Fields. Journal of Earth Sciences and Environment, 39(4):516-529(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201704004
      [37] Zhu, H.T., Xu, C.G., Zhu, X.M., et al., 2017.Advances of the Source-to-Sink Units and Coupling Model Research in Continental Basin. Earth Science, 42(11):1851-1870(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201711001
      [38] Zhu, X., Zhu, H.T., Zeng, H.L., et al., 2017.Subdivision, Characteristics, and Varieties of the Source-to-Sink Systems of the Modern Lake Erhai Basin, Yunnan Province. Earth Science, 42(11):2010-2024(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201711012
      [39] 程园, 2018.陆相湖盆"源-汇"系统敏感参数半定量预测模型研究(硕士学位论文).武汉: 中国地质大学.
      [40] 戴朝强, 杜家元, 魏旭旺, 等, 2014.珠江口盆地惠州凹陷岩性圈闭预测及识别.中外能源, 19(4):41-44. http://d.old.wanfangdata.com.cn/Thesis/Y1282509
      [41] 杜晓峰, 王清斌, 庞小军, 等, 2018.渤中凹陷石南陡坡带东三段源汇体系定量表征.岩性油气藏, 30(5):1-10. http://d.old.wanfangdata.com.cn/Periodical/yxyqc201805001
      [42] 耿威, 2009.珠江口盆地惠州凹陷古近系储层沉积学特征(硕士学位论文).成都: 成都理工大学.
      [43] 郝斌飞, 韩旭军, 马明国, 等, 2018. Google Earth Engine在地球科学与环境科学中的应用研究进展.遥感技术与应用, 33(4):600-611. http://d.old.wanfangdata.com.cn/Periodical/ygjsyyy201804004
      [44] 李军亮, 肖永军, 王大华, 等, 2016.柴达木盆地东部侏罗纪原型盆地恢复.地学前缘, 23(5):11-22. http://d.old.wanfangdata.com.cn/Periodical/dxqy201605003
      [45] 李顺利, 朱筱敏, 李慧勇, 等, 2017.源-汇系统要素定量表征及耦合模式——以沙垒田凸起与沙南凹陷沙河街组为例.中国海上油气, 29(4):39-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-gc201704005
      [46] 林畅松, 夏庆龙, 施和生, 等, 2015.地貌演化、源-汇过程与盆地分析.地学前缘, 22(1):9-20. http://d.old.wanfangdata.com.cn/Periodical/dxqy201501002
      [47] 刘强虎, 朱筱敏, 李顺利, 等, 2017.沙垒田凸起西部断裂陡坡型源-汇系统.地球科学, 42(11):1883-1896. doi: 10.3799/dqkx.2017.119
      [48] 孟伟, 李润奎, 段峥, 等, 2018.基于地貌特征的数字高程模型融合方法.地球信息科学学报, 20(7):895-905. http://d.old.wanfangdata.com.cn/Periodical/dqxxkx201807004
      [49] 吴娟, 叶加仁, 施和生, 等, 2012.惠州凹陷典型油气聚集带成藏模式.西南石油大学学报(自然科学版), 34(6):17-26. http://d.old.wanfangdata.com.cn/Periodical/xnsyxyxb201206004
      [50] 鲜本忠, 王震, 马立驰, 等, 2017.沉积区-剥蚀区古地貌一体化恢复及古水系研究:以渤海湾盆地辽东东地区馆陶组为例.地球科学, 42(11):1922-1935. doi: 10.3799/dqkx.2017.122
      [51] 肖凡, 2017.源-汇系统组成单元搬运通道特征及其控制下的沉积体定量预测(硕士学位论文).武汉: 中国地质大学.
      [52] 徐汉梁, 范超颖, 高璇, 等, 2013.吉林东部盆地群早白垩世原型盆地恢复.世界地质, 32(2):263-272. doi: 10.3969/j.issn.1004-5589.2013.02.009
      [53] 徐长贵, 杜晓峰, 2017.陆相断陷盆地源-汇理论工业化应用初探——以渤海海域为例.中国海上油气, 29(4):9-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-gc201704002
      [54] 许丽, 李江海, 刘持恒, 等, 2017.基于数字高程模型(DEM)的可可西里地貌及区划研究.北京大学学报(自然科学版), 53(5):833-842. http://d.old.wanfangdata.com.cn/Periodical/bjdxxb201705006
      [55] 查正军, 2007.基于数字高程模型(DEM)的地形特征提取(硕士学位论文).上海: 同济大学.
      [56] 赵春强, 赵利, 曹淑云, 等, 2014.点苍山变质杂岩新生代变质-变形演化及其区域构造内涵.岩石学报, 30(3):851-866. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201403023
      [57] 赵永刚, 王东旭, 冯强汉, 等, 2017.油气田古地貌恢复方法研究进展.地球科学与环境学报, 39(4):516-529. doi: 10.3969/j.issn.1672-6561.2017.04.004
      [58] 朱红涛, 徐长贵, 朱筱敏, 等, 2017.陆相盆地源-汇系统要素耦合研究进展.地球科学, 42(11):1851-1870. doi: 10.3799/dqkx.2017.117
      [59] 朱秀, 朱红涛, 曾洪流, 等, 2017.云南洱海现代湖盆源-汇系统划分、特征及差异.地球科学, 42(11):2010-2024. doi: 10.3799/dqkx.2017.128
    • 加载中
    图(6)
    计量
    • 文章访问数:  1921
    • HTML全文浏览量:  661
    • PDF下载量:  142
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-05-25
    • 刊出日期:  2020-04-15

    目录

      /

      返回文章
      返回