Hydrochemistry Characteristics and Its Control Factors in Sedimentary Metamorphic Iron Deposit under Conditions of Mining: A Case Study of Southern Sijiaying Iron Mine Area
-
摘要: 为了解沉积变质型铁矿床开采后矿区地下水化学特征的变化趋势,在充分掌握矿区含水系统划分和流动系统发育规律的基础上,通过对四含上、四含下、基岩含水层148个水样常规离子的相关性、水化学类型及公因子的分析,得出水化学类型分区和公因子得分等值线,将二者叠加,分析各含水层潜在的形成作用及其控制因素.研究结果表明,四含上以碳酸盐溶滤、污染、氧化作用为主;四含下以污染、溶滤、局部脱硫酸作用为主;基岩含水层以离子交换吸附、第四系水的混合、硅酸盐矿物的不全等溶解作用为主.除了背景因素外,矿山开采后的三维流场控制了基岩含水层的形成作用和原生水化学类型,影响了第四系含水层的局部形成作用,水化学类型分区界线明显移动.Abstract: In order to understand the hydrochemistry characterization variation tendency of the aquifer after the sedimentary metamorphic iron deposit mined, on the basis of the division of aquifer system and development law of the flow system in the mining area, through the analysis of relevance of conventional ions, hydrochemistry types and common factors on 148 groundwater samples collected from the Upper Quaternary aquifer, the Lower Quaternary aquifer and the bedrock aquifer, the hydrochemical type distribution and the isolines of common factors scores were obtained, then they were overlaid to analyze potential formation and controlling factors of the aquifers. The results show that Upper Quaternary aquifer is characterized by the carbonate dissolution, pollution and oxidation; the Lower Quaternary aquifer is characterized by the pollution, the carbonate dissolution and the local sulfate reduction; the bedrock aquifer is characterized by ion exchange adsorption, the mixing effect of the Quaternary aquifer and incongruent dissolution of silicate. In addition to background factors, three-dimensional flow field has controlled the formation and original hydrochemical types of the bedrock aquifers, and has affected the local formation of the Quaternary aquifer to make hydrochemical type boundary move significantly.
-
图 4 突水时基岩观测孔与上覆第四系观测孔水位埋深对比
孔位见图 3
Fig. 4. Comparison of groundwater depth between bedrock observation well and Quaternary observation well
表 1 司家营矿区各含水层水化学指标统计
Table 1. Statistical results of hydrochemical indexes for groundwater samples in Sijiaying iron mine
水化学指标 四含上 四含下 基岩水 均值 标准差 变异系数 均值 标准差 变异系数 均值 标准差 变异系数 pH 7.08 0.24 0.03 7.99 0.22 0.03 8.30 0.36 0.04 TDS(mg·L-1) 725.35 235.13 0.32 356.07 130.49 0.37 472.43 118.96 0.25 K+(mg·L-1) 3.70 2.56 0.69 1.28 0.99 0.77 2.73 1.12 0.41 Na+(mg·L-1) 34.66 10.82 0.31 19.44 10.44 0.54 119.24 44.91 0.38 Ca2+(mg·L-1) 123.70 36.90 0.30 67.09 27.26 0.41 19.52 8.35 0.43 Mg2+(mg·L-1) 37.62 13.73 0.36 19.23 8.87 0.46 8.30 4.56 0.55 Cl-(mg·L-1) 61.12 27.10 0.44 27.79 31.05 1. 12 68.30 38.41 0.56 SO42-(mg·L-1) 122.85 36.87 0.30 37.35 32.24 0.86 58.11 26.20 0.45 HCO3-(mg·L-1) 296.33 83.23 0.28 232.20 63.52 0.27 212.75 35.40 0.17 F-(mg·L-1) 0.29 0.11 0.38 0.39 0.13 0.33 4.48 2.51 0.56 注:样品均在河北省矿业开发与安全技术实验室测试,每个含水层各选一个平行样,送国土部地下水检测中心测试,并测试了碳、氧、氢同位素. -
[1] Cao, X.C., Qian, J.Z., Sun, X.P., et al., 2010.Hydrochemical Classification and Identification for Groundwater System by Using Integral Multivariate Statistical Models:A Case Study in Guqiao Mine.Journal of China Coal Society, 35(S1):141-144(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=c93e61e445d3761a2fd0b8fcde932296&encoded=0&v=paper_preview&mkt=zh-cn [2] Chen, J.P., Pan, G.Y., Wu, L., et al., 2018.Identifying the Source of the Groundwater Based on the Characteristics of Environmental Isotopes and Water Chemistry.Environmental Chemistry, 37(6):1410-1420(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/hjhx201806026 [3] Chen, L.W., Liu, X., Yin, X.X., et al., 2012.Analysis of Hydrochemical Environment Evolution in Main Discharge Aquifers under Mining Disturbance in the Coal Mine.Journal of China Coal Society, 37(S2):362-367(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/mtxb2012z2018 [4] Chen, L.W., Xu, D.Q., Yin, X.X., et al., 2017.Analysis on Hydrochemistry and Its Control Factors in the Concealed Coal Mining Area in North China:A Case Study of Dominant Inrush Aquifers in Suxian Mining Area.Journal of China Coal Society, 42(4):996-1004(in Chinese with English abstract). [5] Guo, J.F., Yao, D.X., Huang, H., et al., 2016.System Design and Implementation of Water Source Identification of Mine Water Inrush Based on the Bayes Algorithm.Hydrogeology & Engineering Geology, 43(2):153-158(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/swdzgcdz201602023 [6] Li, H., Wen, Z., Xie, X.J., et al., 2017.Hydrochemical Characteristics and Evolution of Karst Groundwater in Sanqiao District of Guiyang City.Earth Science, 42(5):804-812(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705016 [7] Li, W.H., Peng, W.N., Liu, J.X., et al., 1983.The Minerogenesis and Prognosis of Precambrian Sedimentary-Metamorphic Iron Ore Deposits of Luan Xian District, Eastern Hebei.Earth Science, 8(2):115-123, 179(in Chinese with English abstract). [8] Lu, Y., Guo, J.Q., 2016.Hydrochemical Characteristics of Groundwater of Zhangye Basin.Journal of Arid Land Resources and Environment, 30(5):129-134(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201605022 [9] Ma, L., Qian, J.Z., Zhao, W.D., 1995. GIS-Based Approaches for Spatially Dividing Groundwater Chemical Types. Journal of China Coal Society, 37(3):490-494 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/mtxb201203025 [10] Pan, G.T., Lu, S.N., Xiao, Q.H., et al., 2016.Division of Tectonic Stages and Tectonic Evolution in China.Earth Science Frontiers, 23(6):1-23(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201606001 [11] Shen, Z.L., Zhu, W.H., Zhong, Z.X., et al., 1993. Hydrogeochemistry. Geological Publishing House, Beijing, 113 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgyr201103002 [12] Sun, L.H., Gui, H.R., 2013.Statistical Analysis of Deep Groundwater Geochemistry from Taoyuan Coal Mine, Northern Anhui Province.Journal of China Coal Society, 38(S2):442-447(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/mtxb2013z2030 [13] Wu, Q., 2014.Progress, Problems and Prospects of Prevention and Control Technology of Mine Water and Reutilization in China.Journal of China Coal Society, 39(5):795-805(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/mtxb201405001 [14] Wu, Y.Z., Pan, C.F., Lin, Y., et al., 2018.Hydrogeochemical Characteristics and Controlling Factors of Main Water Filled Aquifers in the Typical North China Coalfield.Geological Science and Technology Information, 37(5):191-199(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201805026 [15] Xu, Y.X., Zhang, L.F., Li, H.M., et al., 2015.The Exploration Model of the Sijiaying Sedimentary Metamorphic Iron Deposit in Eastern Hebei Province.Geology and Exploration, 51(1):23-35(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201501003 [16] Yu, H.T., Ma, T., Deng, Y.M., et al., 2017.Hydrochemical Characteristics of Shallow Groundwater in Eastern Jianghan Plain.Earth Science, 42(5):685-692(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705004 [17] Zhang, W.B., Chen, H.Y., 2006.Practical Data Analysis and SPSS 12.0 Applicance.Posts & Telecom Press, Beijing(in Chinese). [18] Zhao, H.J., Chen, X.F., He, X.Z., et al., 2018.A Study of Genetic Type Characteristics and Important Distribution Zones of Global Iron Deposits.Geology in China, 45(5):890-919(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201805003 [19] Zhou, X., Hu, F.S., He, J.T., et al., 2014. Introduction to Groundwater Science. Geological Publishing House, Beijing, 125 (in Chinese). [20] 曹雪春, 钱家忠, 孙兴平, 等, 2010.煤矿地下水系统水质分类判别的多元统计组合模型——以顾桥煤矿为例.煤炭学报, 35(S1):141-144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtxb2010Z1031 [21] 陈建平, 潘光义, 吴丽, 等, 2018.基于环境同位素和水化学特征识别矿井涌水来源.环境化学, 37(6):1410-1420. http://d.old.wanfangdata.com.cn/Periodical/hjhx201806026 [22] 陈陆望, 刘鑫, 殷晓曦, 等, 2012.采动影响下井田主要充水含水层水化学环境演化分析.煤炭学报, 37(S2):362-367. http://d.old.wanfangdata.com.cn/Periodical/mtxb2012z2018 [23] 陈陆望, 许冬清, 殷晓曦, 等, 2017.华北隐伏型煤矿区地下水化学及其控制因素分析——以宿县矿区主要突水含水层为例.煤炭学报, 42(4):996-1004. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201704024.htm [24] 郭江峰, 姚多喜, 黄河, 等, 2016.基于Bayes算法的煤矿井下突水水源判识系统的设计与实现.水文地质工程地质, 43(2):153-158. http://d.old.wanfangdata.com.cn/Periodical/swdzgcdz201602023 [25] 李华, 文章, 谢先军, 等, 2017.贵阳市三桥地区岩溶地下水水化学特征及其演化规律.地球科学, 42(5):804-812. doi: 10.3799/dqkx.2017.068 [26] 李万亨, 彭文能, 刘瑾璇, 等, 1983.冀东滦县一带前寒武纪沉积变质铁矿床成矿规律及成矿预测.地球科学, 8(2):115-123, 179. [27] 卢颖, 郭建强, 2016.基于多元统计方法的张掖盆地地下水化学特征分析.干旱区资源与环境, 30(5):129-134. http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201605022 [28] 马雷, 钱家忠, 赵卫东, 2012.基于GIS的地下水化学类型空间分区方法.煤炭学报, 37(3):490-494. http://d.old.wanfangdata.com.cn/Periodical/mtxb201203025 [29] 潘桂棠, 陆松年, 肖庆辉, 等, 2016.中国大地构造阶段划分和演化.地学前缘, 23(6):1-23. http://d.old.wanfangdata.com.cn/Periodical/dxqy201606001 [30] 沈照理, 朱宛华, 钟佐燊, 1993.水文地球化学基础.北京:地质出版社, 104-113. [31] 孙林华, 桂和荣, 2013.皖北桃源矿深部含水层地下水地球化学数理统计分析.煤炭学报, 38(S2):442-447. http://d.old.wanfangdata.com.cn/Periodical/mtxb2013z2030 [32] 武强, 2014.我国矿井水防控与资源化利用的研究进展、问题和展望.煤炭学报, 39(5):795-805. http://d.old.wanfangdata.com.cn/Periodical/mtxb201405001 [33] 武亚遵, 潘春芳, 林云, 等, 2018.典型华北型煤矿区主要充水含水层水文地球化学特征及控制因素.地质科技情报, 37(5):191-199. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201805026 [34] 许英霞, 张龙飞, 李厚民, 等, 2015.冀东司家营沉积变质型铁矿床找矿模型.地质与勘探, 51(1):23-35. http://d.old.wanfangdata.com.cn/Periodical/dzykt201501003 [35] 於昊天, 马腾, 邓娅敏, 等, 2017.江汉平原东部地区浅层地下水水化学特征.地球科学, 42(5):685-692. doi: 10.3799/dqkx.2017.056 [36] 章文波, 陈红艳, 2006.实用数据统计分析及SPSS12.0应用.北京:人民邮电出版社. [37] 赵宏军, 陈秀法, 何学洲, 等, 2018.全球铁矿床主要成因类型特征与重要分布区带研究.中国地质, 45(5):890-919. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201805003 [38] 周训, 胡伏生, 何江涛, 等, 2014.地下水科学概论.北京:地质出版社, 125.