Determination of Lalong Dome in South Tibet and New Discovery of Rare Metal Mineralization
-
摘要: 拉隆穹窿位于特提斯喜马拉雅构造带东南缘,与错那洞穹窿、库局穹窿构成平行于拉轨岗日穹窿带的另一条重要穹窿带.穹窿被上下拆离断层分割为核部单元、过渡带和盖层.核部单元主要由花岗片麻岩、淡色花岗岩和伟晶岩组成,花岗片麻岩锆石U-Pb年龄为474.3±5.5 Ma,淡色花岗岩主要包括二云母花岗岩和黑云母花岗岩两类;过渡带由石榴石片岩、十字石片岩、红柱石片岩、蓝晶石片岩,以及大理岩、矽卡岩化大理岩、矽卡岩等组成,由内向外显示出巴罗型变质分带特征;盖层由中生界浅变质碎屑沉积岩组成.拉隆穹窿中新发现有3类稀有多金属矿化作用,第1类为伟晶岩型铍矿化,主要富铍矿物为绿柱石,伟晶岩的独居石U-Pb年龄为23.19±0.12 Ma;第2类为矽卡岩型铍、钨、铌、钽稀有多金属矿化,矽卡岩型稀有多金属矿化产于白云母花岗岩与大理岩接触带,白云母花岗岩独居石U-Pb年龄为23.23±0.27 Ma;第3类为受构造控制的热液铜铅锌银矿化.拉隆稀有多金属矿化显示出以淡色花岗岩为核心向外的Be、Be-W-Nb-Ta、Cu-Pb-Zn-Ag矿化分带特征.拉隆穹窿的厘定表明特提斯-喜马拉雅成矿带存在一条“双穹窿”构造带,拉隆穹窿稀有多金属成矿作用的发现,进一步证实特提斯喜马拉雅成矿带具有巨量稀有金属找矿潜力,有望成为我国继华南和新疆阿尔泰之后第3条稀有金属成矿带.Abstract: The Lalong dome is located in the southeast margin of the Tethys-Himalayan tectonic belt, which constitutes another important dome belt parallel to the North Himalayan dome belt along with Cuonadong dome and Kuju dome. The dome is separated by fault into a core unit, a transitional zone and a caprock. The core unit is mainly composed of granitic gneiss, leucogranites and pegmatite. The zircon U-Pb age of granitic gneisses is 474.3±5.5 Ma. Leucogranties mainly consist of two-mica granite and muscovite granite. The transitional zone is composed of garnet schist, cross schist, andalusite schist, kyanite schist, marble, skarn and so on. The caprock is composed of Mesozoic epimetamorphic clastic sedimentary rocks. Three types of rare metal mineralization are recognized. The first type is pegmatite beryllium mineralization. The main beryllium-bearing mineral is beryl. The monazite U-Pb age of pegmatite is 23.19 ±0.12 Ma. The second type is skarn beryllium, tungsten, niobium and tantalum with rare polymetallic mineralization. The monazite U-Pb age of muscovite granite in the contact zone with skarn is 23.23±0.27 Ma. The third type is tectonically controlled hydrothermal Cu-Pb-Zn-Ag mineralization. The rare polymetallic mineralization in Lalong dome shows the zonation characteristics of Be, Be-W-Nb-Ta, Cu-Pb-Zn-Ag mineralization with leucogranite as the core. The determination of the Lalong dome indicates the existence of a "double dome" structural belt in the Tethys-Himalayan metallogenic belt. The discovery of rare polymetallic mineralization in the Lalong dome further confirms that the Tethys-Himalayan metallogenic belt has a huge potential for rare metal prospecting and is expected to become the third rare metal metallogenic belt after South China belt and Altai Xinjiang belt.
-
Key words:
- Tethyan-Himalayan /
- Lalong dome /
- rare polymetallic mineralization /
- southern Tibet /
- geochronology
-
表 1 藏南拉隆穹窿含绿柱石伟晶岩和白云母花岗岩LA-ICP-MS独居石U-Pb年龄
Table 1. Monazite U-Pb ages of beryl-bearing pegmatite and muscovite granite, southern Tibet
点号 元素含量 Th/
U同位素比值 年龄(Ma) Th
(10-6)U
(10-6)207Pb/
235U±1σ 206Pb/
238U±1σ 208Pb/
232Th±1σ 207Pb/
235U±1σ 206Pb/
238U±1σ 208Pb/
232Th±1σ LL1806:含绿柱石花岗伟晶岩 1 99 390.7 8 003.0 12.4 0.035 96 0.001 51 0.004 17 0.000 05 0.001 07 0.000 01 35.9 1.5 26.8 0.3 21.7 0.2 2 58 637.2 18 216.2 3.2 0.024 91 0.001 16 0.003 60 0.000 04 0.001 16 0.000 01 25.0 1.1 23.1 0.2 23.5 0.2 3 72 202.2 7 581.5 9.5 0.034 00 0.001 33 0.003 70 0.000 05 0.001 04 0.000 01 33.9 1.3 23.8 0.3 21.0 0.2 4 81 185.4 22 620.0 3.6 0.029 41 0.002 11 0.003 57 0.000 06 0.001 09 0.000 02 29.4 2.1 23.0 0.4 22.1 0.4 5 79 141.3 8 101.7 9.8 0.028 10 0.001 80 0.003 68 0.000 07 0.001 01 0.000 01 28.1 1.8 23.7 0.4 20.4 0.2 6 51 857.3 15 271.2 3.4 0.028 31 0.000 99 0.003 60 0.000 03 0.001 07 0.000 01 28.3 1.0 23.2 0.2 21.7 0.2 7 78 634.5 10 650.2 7.4 0.031 18 0.001 27 0.003 66 0.000 04 0.001 06 0.000 01 31.2 1.2 23.5 0.2 21.4 0.2 8 68 743.2 7 499.3 9.2 0.031 38 0.001 43 0.003 65 0.000 05 0.001 01 0.000 01 31.4 1.4 23.5 0.3 20.5 0.2 9 49 189.5 13 171.8 3.7 0.026 66 0.000 94 0.003 58 0.000 04 0.001 09 0.000 01 26.7 0.9 23.1 0.2 22.0 0.2 10 60 039.7 18 227.4 3.3 0.028 04 0.000 97 0.003 60 0.000 03 0.001 07 0.000 01 28.1 1.0 23.2 0.2 21.6 0.2 11 39 746.6 16 998.9 2.3 0.024 75 0.000 86 0.003 58 0.000 03 0.001 05 0.000 01 24.8 0.9 23.1 0.2 21.2 0.2 12 93 757.9 4 355.6 21.5 0.044 89 0.002 07 0.004 58 0.000 06 0.001 05 0.000 01 44.6 2.0 29.5 0.4 21.3 0.2 13 58 134.4 17 117.7 3.4 0.024 35 0.000 88 0.003 57 0.000 03 0.001 09 0.000 01 24.4 0.9 23.0 0.2 22.0 0.2 14 63 624.5 7 273.8 8.7 0.031 33 0.002 13 0.003 67 0.000 06 0.001 08 0.000 01 31.3 2.1 23.6 0.4 21.9 0.2 15 58 207.4 11 365.9 5.1 0.033 50 0.001 12 0.003 59 0.000 03 0.001 06 0.000 01 33.5 1.1 23.1 0.2 21.5 0.2 16 59 291.9 17 005.4 3.5 0.027 82 0.000 92 0.003 57 0.000 03 0.001 10 0.000 01 27.9 0.9 23.0 0.2 22.3 0.2 17 53 507.0 16 239.0 3.3 0.024 34 0.001 18 0.003 54 0.000 05 0.001 08 0.000 01 24.4 1.2 22.8 0.3 21.8 0.3 18 68 938.2 9 618.6 7.2 0.030 87 0.001 52 0.003 63 0.000 05 0.001 02 0.000 01 30.9 1.5 23.4 0.3 20.6 0.2 19 67 261.9 6 924.9 9.7 0.030 38 0.001 32 0.003 59 0.000 04 0.001 04 0.000 01 30.4 1.3 23.1 0.3 21.0 0.2 20 93 271.4 10 667.8 8.7 0.029 40 0.001 33 0.003 63 0.000 04 0.001 01 0.000 01 29.4 1.3 23.4 0.3 20.4 0.2 LZ1845:白云母花岗岩 1 58 137.6 7 895.1 7.4 0.055 84 0.004 00 0.005 62 0.000 12 0.001 13 0.000 01 55.17 3.84 36.13 0.79 22.80 0.25 2 83 946.4 2 021.3 41.5 0.043 79 0.003 54 0.004 08 0.000 10 0.000 94 0.000 01 43.51 3.44 26.27 0.61 19.06 0.18 3 77 612.4 5 792.3 13.4 0.036 83 0.001 72 0.003 82 0.000 06 0.001 10 0.000 01 36.72 1.69 24.57 0.38 22.29 0.23 4 62 775.4 7 107.4 8.8 0.028 88 0.001 25 0.003 63 0.000 04 0.001 11 0.000 01 28.91 1.23 23.37 0.29 22.34 0.20 5 76 056.0 4 112.9 18.5 0.031 79 0.002 75 0.003 67 0.000 08 0.001 05 0.000 01 31.78 2.71 23.59 0.54 21.13 0.24 6 53 145.8 4 795.1 11.1 0.031 17 0.001 74 0.003 63 0.000 06 0.001 08 0.000 01 31.17 1.72 23.37 0.42 21.89 0.26 7 70 194.6 9 906.5 7.1 0.027 12 0.001 19 0.003 55 0.000 04 0.001 07 0.000 01 27.17 1.18 22.82 0.28 21.70 0.18 8 67 245.1 6 419.2 10.5 0.057 81 0.006 05 0.003 66 0.000 13 0.001 01 0.000 02 57.07 5.81 23.57 0.85 20.45 0.44 9 67 285.6 11 161.3 6.0 0.031 57 0.001 13 0.003 65 0.000 04 0.001 11 0.000 01 31.56 1.11 23.47 0.25 22.34 0.22 10 46 623.0 4 496.7 10.4 0.034 96 0.001 74 0.003 55 0.000 05 0.001 05 0.000 01 34.89 1.71 22.87 0.34 21.21 0.23 11 57 110.0 13 905.5 4.1 0.026 64 0.000 92 0.003 56 0.000 04 0.001 14 0.000 01 26.69 0.91 22.89 0.26 23.09 0.24 12 80 311.9 4 606.7 17.4 0.031 73 0.002 45 0.003 60 0.000 11 0.001 01 0.000 01 31.72 2.41 23.17 0.68 20.37 0.24 13 48 005.1 7 717.6 6.2 0.028 22 0.001 00 0.003 58 0.000 04 0.001 07 0.000 01 28.26 0.99 23.07 0.27 21.55 0.22 14 81 878.4 5 293.1 15.5 0.043 38 0.003 02 0.003 64 0.000 07 0.001 01 0.000 01 43.12 2.94 23.41 0.46 20.48 0.27 15 56 317.3 5 137.6 11.0 0.031 58 0.001 50 0.003 58 0.000 05 0.001 09 0.000 01 31.57 1.47 23.06 0.30 22.10 0.25 -
[1] Aikman, A. B., Harrison, T. M., Lin, D., 2008. Evidence for Early (>44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, Southeastern Tibet. Earth and Planetary Science Letters, 274(1-2):14-23. https://doi.org/10.1016/j.epsl.2008.06.038 [2] Aoya, M., Wallis, S. R., Kawakami, T., et al., 2006. The Malashan Gneiss Dome in South Tibet:Comparative Study with the Kangmar Dome with Special Reference to Kinematics of Deformation and Origin of Associated Granites. Geological Society, London, Special Publications, 268(1):471-495. https://doi.org/10.1144/gsl.sp.2006.268.01.22 [3] Fu, J. G., Li, G. M., Wang, G. H., et al., 2018. Establishment of the North Himalayan Double Gneiss Domes:Evidence from Field Identification of the Cuonadong Dome, South Tibet. Geology in China, 45(4):783-802 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201804011 [4] Gao, L., Zeng, L. S., Xie, K. J., 2012. Eocene High Grade Metamorphism and Crustal Anatexis in the North Himalaya Gneiss Domes, Southern Tibet. Chinese Science Bulletin, 57(6):639-650. https://doi.org/10.1007/s11434-011-4805-4 [5] Hu, Z. C., Zhang, W., Liu, Y. S., et al., 2015. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis:Application to Lead Isotope Analysis. Analytical Chemistry, 87(2):1152-1157. https://doi.org/10.1021/ac503749k [6] Huang, C. M., Zhao, Z. D., Li, G. M., et al., 2017. Leucogranites in Lhozag, Southern Tibet:Implications for the Tectonic Evolution of the Eastern Himalaya. Lithos, 294-295:246-262. https://doi.org/10.1016/j.lithos.2017.09.014 [7] Huang, Y., Liang, W., Zhang, L. K., et al., 2018. The Initial Break-Up between Tethyan-Himalaya and Indian Terrane:Evidences from Late Cretaceous OIB-Type Basalt in Southern Tibet. Earth Science, 43(8):2651-2663 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.573 [8] Le Fort, P., 1981. Manaslu Leucogranite:A Collision Signature of the Himalaya:A Model for Its Genesis and Emplacement. Journal of Geophysical Research:Solid Earth, 86(B11):10545-10568. https://doi.org/10.1029/jb086ib11p10545 [9] Le Fort, P., Cronin, V., 1988. Granites in the Tectonic Evolution of the Himalaya, Karakoram and Southern Tibet[and Discussion]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 326(1589):281-299. https://doi.org/10.1098/rsta.1988.0088 [10] Li, G. M., Zhang, L. K., Jiao, Y. J., et al., 2017. First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet. Mineral Deposits, 36(4):1003-1008 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201704014 [11] Liang, W., Zhang, L. K., Xiao, X. B., et al., 2018. Geology and Preliminary Mineral Genesis of the Cuonadong W-Sn Polymetallic Deposit, Southern Tibet, China. Earth Science, 43(8):2742-2754 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.154 [12] Lin, B., Tang, J. X., Zeng, W. B., et al., 2014. Petrochemical Features, Zircon U-Pb Dating and Hf Isotopic Composition of the Rhyolite in Zhaxikang Deposit, Southern Xizang (Tibet). Geological Review, 60(1):178-189 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201401017 [13] Liu, X. C., Wu, F. Y., Yu, L. J., et al., 2015. Emplacement Age of Leucogranite in the Kampa Dome, Southern Tibet. Tectonophysics, 667:163-175. https://doi.org/10.1016/j.tecto.2015.12.001 [14] Liu, Z. C., Wu, F. Y., Ding, L., et al., 2016. Highly Fractionated Late Eocene (~35 Ma) Leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet. Lithos, 240-243:337-354. https://doi.org/10.1016/j.lithos.2015.11.026 [15] Liu, Z. C., Wu, F. Y., Ji, W. Q., et al., 2014. Petrogenesis of the Ramba Leucogranite in the Tethyan Himalaya and Constraints on the Channel Flow Model. Lithos, 208-209:118-136. https://doi.org/10.1016/j.lithos.2014.08.022 [16] Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [17] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [18] Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California, Berkeley. [19] Qi, X. X., Zeng, L. S., Meng, X. J., et al., 2008. Zircon SHRIMP U-Pb Dating for Dala Granite in the Tethyan Himalaya and Its Geological Implication. Acta Petrologica Sinica, 24(7):1501-1508 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200807007 [20] Wang, R. C., Wu, F. Y., Xie, L., et al., 2017. A Preliminary Study of Rare-Metal Mineralization in the Himalayan Leucogranite Belts, South Tibet. Science in China (Series D), 47(8):871-880 (in Chinese). [21] Wang, X. X., Zhang, J. J., Yan, S. Y., et al., 2016. Age and Geochemistry of the Cuona Leucogranite in Southern Tibet and Its Geological Implications. Geological Bulletin of China, 35(1):91-103 (in Chinese with English abstract). [22] Wu, F. Y., Liu, Z. C., Liu, X. C., et al., 2015. Himalayan Leucogranite:Petrogenesis and Implications to Orogenesis and Plateau Uplift. Acta Petrologica Sinica, 31(1):1-36 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501001 [23] Yin, A., Dubey, C. S., Webb, A. A. G., et al., 2010. Geologic Correlation of the Himalayan Orogen and Indian Craton:Part 1. Structural Geology, U-Pb Zircon Geochronology, and Tectonic Evolution of the Shillong Plateau and Its Neighboring Regions in NE India. Geological Society of America Bulletin, 122(3-4):336-359. https://doi.org/10.1130/b26460.1 [24] Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211 [25] Zeng, L. S., Gao, L. E., 2017. Cenozoic Crustal Anatexis and the Leucogranites in the Himalayan Collisional Orogenic Belt. Acta Petrologica Sinica, 33(5):1420-1444 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201705004 [26] Zhang, J. J., Guo, L., Zhang, B., 2007. Structure and Kinematics of the Yalashangbo Dome in the Northern Himalayan Dome Belt, China. Chinese Journal of Geology, 42(1):16-30 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200701003 [27] Zhang, J. J., Santosh, M., Wang, X. X., et al., 2012. Tectonics of the Northern Himalaya since the India-Asia Collision. Gondwana Research, 21(4):939-960. https://doi.org/10.1016/j.gr.2011.11.004 [28] Zhang, Z., Zhang, L. K., Li, G. M., et al., 2017. The Cuonadong Gneiss Dome of North Himalaya:A New Member of Gneiss Dome and a New Proposition for the Ore-Controlling Role of North Himalaya Gneiss Domes. Acta Geoscientia Sinica, 38(5):754-766 (in Chinese with English abstract). [29] Zhang, Z. M., Ding, L., Zhao, Z. D., et al., 2017. Tectonic Evolution and Dynamics of the Tibetan Plateau. Gondwana Research, 41:1-8. https://doi.org/10.1016/j.gr.2016.09.001 [30] 付建刚, 李光明, 王根厚, 等, 2018.北喜马拉雅双穹窿构造的建立:来自藏南错那洞穹窿的厘定.中国地质, 45(4):783-802. http://www.cnki.com.cn/Article/CJFDTotal-DIZI201804011.htm [31] 黄勇, 梁维, 张林奎, 等, 2018.特提斯喜马拉雅-印度地体初始裂解:来自藏南地区晚白垩世OIB型玄武岩的证据.地球科学, 43(8):2651-2663. http://earth-science.net/WebPage/Article.aspx?id=3903 [32] 李光明, 张林奎, 焦彦杰, 等, 2017.西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义.矿床地质, 36(4):1003-1008. http://d.old.wanfangdata.com.cn/Periodical/kcdz201704014 [33] 梁维, 张林奎, 夏祥标, 等, 2018.藏南地区错那洞钨锡多金属矿床地质特征及成因.地球科学, 43(8):2742-2754. http://earth-science.net/WebPage/Article.aspx?id=3909 [34] 林彬, 唐菊兴, 郑文宝, 等, 2014.藏南扎西康矿区流纹岩的岩石地球化学、锆石U-Pb测年和Hf同位素组成.地质论评, 60(1):178-189. http://d.old.wanfangdata.com.cn/Periodical/dzlp201401017 [35] 戚学祥, 曾令森, 孟祥金, 等, 2008.特提斯喜马拉雅打拉花岗岩的锆石SHRIMP U-Pb定年及其地质意义.岩石学报, 24(7):1501-1508. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200807007 [36] 王汝成, 吴福元, 谢磊, 等, 2017.藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究.中国科学(D辑), 47(8):871-880. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201708001 [37] 王晓先, 张进江, 闫淑玉, 等, 2016.藏南错那淡色花岗岩LA-MC-ICP-MS锆石U-Pb年龄、岩石地球化学及其地质意义.地质通报, 35(1):91-103. doi: 10.3969/j.issn.1671-2552.2016.01.008 [38] 吴福元, 刘志超, 刘小驰, 等, 2015.喜马拉雅淡色花岗岩.岩石学报, 31(1):1-36. http://d.old.wanfangdata.com.cn/Periodical/dqkx200503003 [39] 曾令森, 高利娥, 2017.喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩.岩石学报, 33(5):1420-1444. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201705004 [40] 张进江, 郭磊, 张波, 2007.北喜马拉雅穹窿带雅拉香波穹窿的构造组成和运动学特征.地质科学, 42(1):16-30. doi: 10.3321/j.issn:0563-5020.2007.01.003 [41] 张志, 张林奎, 李光明, 等, 2017.北喜马拉雅错那洞穹窿:片麻岩穹窿新成员与穹窿控矿新命题.地球学报, 38(5):754-766. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201705015.htm