Petrogenesis and Implications of the Late Jurassic Granitoid and Its Mafic Microgranular Enclaves in West Guangdong Province: Constraints from Geochronological, Mineralogical and Geochemical Evidence
-
摘要: 粤西阳江市八二花岗质岩体中广泛发育似斑状细粒闪长质暗色微粒包体,这些暗色微粒包体形态多样,与寄主岩具相似的矿物组合,对研究花岗岩成因和壳-幔相互作用具有十分重要的意义.为了探讨它们的岩石成因及构造属性,对寄主岩和暗色微粒包体开展了系统的岩相学、年代学和地球化学研究.LA-ICP-MS锆石U-Pb定年结果表明,寄主岩年龄为160.0±1.0 Ma,暗色微粒包体年龄为159.3±1.1 Ma,均为晚侏罗世的产物.全岩地球化学特征显示,寄主岩属于富钾的准铝质I型花岗岩,寄主岩和暗色微粒包体均富集轻稀土元素和大离子亲石元素,亏损重稀土元素和Nb、Ta、Ti等高场强元素.此外,两者具相似的Sr-Nd同位素组成,寄主岩的εNd(t)值为-5.73~-5.67,(87Sr/86Sr)i值为0.707 63~0.707 67;而暗色微粒包体的εNd(t)值为-5.81~-4.35,(87Sr/86Sr)i值为0.707 04~0.707 74.锆石饱和温度计和角闪石全铝压力计表明八二花岗质岩体结晶于730~754℃和19.8~20.6 km.综合寄主岩及其暗色微粒包体的岩石学、地球化学、同位素特征,晚侏罗世八二花岗质岩体可能形成于陆内伸展背景,由于软流圈物质上涌底侵,导致中下地壳变基性岩为主的源岩部分熔融,并且源区有少量幔源物质的加入,局部可能存在岩浆混合作用;暗色微粒包体是由镁铁质岩浆与长英质岩浆混合形成的.Abstract: Mafic microgranular enclaves (MMEs) are widespread in the host granitoid from the Ba'er pluton in the west of the Guangdong Province. The MMEs have variable shapes and share similar mineral compositions with their host rocks, but are not fully understood. Petrographic study, zircon U-Pb dating and geochemical data are reported for the host granitoid and its MMEs, to constrain their petrogenesis and tectonic setting. LA-ICP-MS zircon U-Pb dating results yield weighted mean 238U/206Pb ages of 160.0±1.0 Ma and 159.3±1.1 Ma for the host rocks and the MMEs, respectively. The host granitoid is characterized by high SiO2(61.04%-65.84%), K2O(1.60%-4.97%), low A/CNK(1.59-1.99), belonging to metaluminous, K-enriched I-type granitoid. Both host rocks and MMEs are enriched in LREE and LILE, and are depleted in HREE and HFSE (e.g., Nb, Ta and Ti). In addition, they also have indistinguishable Sr-Nd isotopic compositions. The granitoid has εNd(t) values of -5.73 to -5.67 and (87Sr/86Sr)i values of 0.707 63-0.707 67. The MMEs have εNd(t) values of -5.81 to -4.35 and (87Sr/86Sr)i values of 0.707 04-0.707 74. The calculated crystallization temperatures and depths of the Ba'er pluton are 730-754℃ and 16.8-20.6 km, respectively. According to comprehensive analysis of their tectonic settings as well as petrographic characteristics and geochemical data, the magma produced by partial melting of predominantly mafic middle-lower crust, with the input of minor mantle-derived materials, experienced different degrees of fractional crystallization in an intraplate extensional setting of Late Jurassic, Southeast China, which was accompanied by local magma mixing. The MMEs are generated by the mixing of the mafic magma with felsic magma.
-
Key words:
- South China /
- Late Jurassic /
- mafic microgranular enclave /
- U-Pb ages /
- geochemistry
-
图 1 研究区地质简图与采样点
图a据Wang et al.(2003);图b据广东省地质局(1964)1:20万地质图修改
Fig. 1. Geological schematic map of the study area and sample location
图 5 寄主岩和MMEs的TAS(a)、A/CNK-A/NK(b)和SiO2-K2O(c)图解
图b据Maniar and Piccoli(1989);图c据Rickwood(1989)
Fig. 5. TAS (a), A/NK-A/CNK(b) and SiO2-K2O(c) classification diagrams for the Ba'er pluton
图 6 寄主岩(a,b)和MMEs(c,d)的球粒陨石标准化稀土元素配分图、原始地幔标准化微量元素蛛网图
球粒陨石、原始地幔数据引自Sun and McDonough (1989)
Fig. 6. Chondrite-normalized REE patterns and primitive mantle-normalized spidergrams of host rocks (a, b) and mafic microgranular enclaves (c, d)
图 9 寄主岩及其MMEs(87Sr/86Sr)i-εNd(t)图解
晚侏罗世花岗岩数据引自Li et al.(2007),Xu et al.(2007); 晚侏罗世基性岩数据引自Meng et al. (2012),Wang et al.(2003, 2008),Gan et al.(2018)
Fig. 9. (87Sr/86Sr)i-εNd(t) diagram of granodiorites and enclaves in the Ba'er pluton
图 10 不同源岩脱水部分熔融实验获得的熔体图解
a, b据Wang et al. (2016)
Fig. 10. Experimental results of partial melts from different source rock types
图 11 ThN/YbN-NbN/ThN关系图(a)和MgO-FeOt图(b)
图a据曾认宇等(2016);图b据Zorpi et al.(1989)
Fig. 11. Diagrams of ThN/YbN-NbN/ThN (a) and MgO-FeOt (b)
表 1 暗色微粒包体及寄主岩锆石LA-MC-ICP-MS锆石U-Pb定年结果
Table 1. LA-MC-ICP-MS U-Pb zircon data of host rocks and MMEs in the Ba'er pluton
样品 同位素比值 年龄(Ma) 207Pb/
206Pb1σ 207Pb/
235U1σ 206Pb/
238U1σ 207Pb/
206Pb1σ 207Pb/
235U1σ 206Pb/
238U1σ 谐和
度暗色微粒包体 15YD-01-01 0.048 75 0.001 73 0.171 43 0.005 48 0.025 20 0.000 80 200 83 161 5 160 5 99% 15YD-01-02 0.048 44 0.001 68 0.169 34 0.005 52 0.025 05 0.000 81 121 88 159 5 160 5 99% 15YD-01-03 0.050 57 0.001 73 0.175 49 0.005 56 0.024 96 0.000 79 220 80 164 5 159 5 96% 15YD-01-04 0.062 78 0.002 16 0.235 91 0.008 60 0.027 07 0.000 89 702 69 215 7 172 6 77% 15YD-01-05 0.048 68 0.001 59 0.171 59 0.006 36 0.025 31 0.000 93 132 76 161 6 161 6 99% 15YD-01-06 0.056 48 0.002 00 0.195 18 0.007 86 0.024 54 0.000 87 472 78 181 7 156 6 85% 15YD-01-07 0.049 12 0.001 57 0.170 61 0.005 59 0.025 03 0.000 81 154 79 160 5 159 5 99% 15YD-01-08 0.050 64 0.001 57 0.176 22 0.005 67 0.025 05 0.000 80 233 72 165 5 160 5 96% 15YD-01-09 0.048 92 0.001 50 0.171 27 0.005 54 0.025 24 0.000 81 143 68 161 5 161 5 99% 15YD-01-10 0.049 35 0.001 51 0.173 05 0.005 67 0.025 31 0.000 83 165 68 162 5 161 5 99% 15YD-01-11 0.055 85 0.001 72 0.236 32 0.007 67 0.030 77 0.001 02 456 73 215 6 195 6 90% 15YD-01-12 0.049 60 0.001 50 0.170 01 0.005 74 0.024 76 0.000 83 176 75 159 5 158 5 98% 15YD-01-13 0.049 52 0.001 51 0.169 98 0.005 62 0.024 85 0.000 81 172 72 159 5 158 5 99% 15YD-01-14 0.051 21 0.001 54 0.174 78 0.006 14 0.024 72 0.000 87 250 64 164 5 157 6 96% 15YD-01-15 0.050 77 0.001 58 0.173 91 0.005 70 0.024 86 0.000 79 232 68 163 5 158 5 97% 15YD-01-16 0.051 46 0.001 63 0.176 06 0.005 72 0.024 86 0.000 78 261 72 165 5 158 5 96% 15YD-01-17 0.052 49 0.001 60 0.177 49 0.005 91 0.024 47 0.000 78 306 70 166 5 156 5 93% 15YD-01-18 0.048 62 0.001 50 0.168 70 0.005 52 0.025 26 0.000 83 128 79 158 5 161 5 98% 15YD-01-19 0.048 39 0.001 48 0.168 50 0.005 39 0.025 34 0.000 81 117 72 158 5 161 5 97% 15YD-01-20 0.051 52 0.001 63 0.175 91 0.006 10 0.024 70 0.000 79 265 77 165 5 157 5 95% 15YD-01-21 0.049 32 0.001 50 0.170 00 0.005 39 0.025 02 0.000 78 165 66 159 5 159 5 99% 15YD-01-22 0.050 12 0.001 55 0.174 11 0.006 77 0.025 15 0.000 94 211 103 163 6 160 6 98% 15YD-01-23 0.051 20 0.001 57 0.176 91 0.005 67 0.025 04 0.000 78 250 72 165 5 159 5 96% 15YD-01-24 0.049 35 0.001 52 0.170 99 0.005 61 0.025 09 0.000 79 165 68 160 5 160 5 99% 15YD-01-25 0.049 51 0.001 55 0.171 77 0.005 75 0.025 14 0.000 81 172 72 161 5 160 5 99% 寄主岩 15YD-02-01 0.049 51 0.001 50 0.172 49 0.005 95 0.025 21 0.000 87 172 72 162 5 161 6 99% 15YD-02-02 0.049 25 0.001 49 0.170 60 0.005 68 0.025 07 0.000 83 167 70 160 5 160 5 99% 15YD-02-03 0.049 61 0.001 51 0.172 01 0.006 03 0.025 11 0.000 87 176 75 161 5 160 6 99% 15YD-02-04 0.049 74 0.001 50 0.171 74 0.005 57 0.024 98 0.000 81 183 70 161 5 159 5 98% 15YD-02-05 0.049 53 0.001 49 0.171 95 0.005 50 0.025 13 0.000 80 172 70 161 5 160 5 99% 15YD-02-06 0.049 67 0.001 50 0.173 23 0.005 41 0.025 25 0.000 78 189 73 162 5 161 5 99% 15YD-02-07 0.048 95 0.001 49 0.170 42 0.005 71 0.025 19 0.000 84 146 72 160 5 160 5 99% 15YD-02-08 0.049 65 0.001 52 0.175 23 0.006 61 0.025 35 0.000 90 189 75 164 6 161 6 98% 15YD-02-09 0.050 96 0.001 54 0.175 56 0.006 02 0.025 05 0.000 87 239 69 164 5 160 6 97% 15YD-02-10 0.049 54 0.001 49 0.173 01 0.005 56 0.025 31 0.000 81 172 70 162 5 161 5 99% 15YD-02-11 0.049 24 0.001 51 0.170 56 0.005 55 0.025 11 0.000 80 167 70 160 5 160 5 99% 15YD-02-12 0.049 42 0.001 49 0.171 24 0.005 71 0.025 14 0.000 84 169 70 161 5 160 5 99% 15YD-02-13 0.059 55 0.001 89 0.201 13 0.007 03 0.024 45 0.000 81 587 69 186 6 156 5 82% 15YD-02-14 0.049 14 0.001 49 0.170 14 0.005 52 0.025 13 0.000 81 154 75 160 5 160 5 99% 15YD-02-15 0.049 67 0.001 56 0.172 44 0.005 68 0.025 23 0.000 80 189 72 162 5 161 5 99% 15YD-02-16 0.049 50 0.001 49 0.172 66 0.005 76 0.025 32 0.000 84 172 70 162 5 161 5 99% 15YD-02-17 0.048 88 0.001 62 0.167 92 0.005 85 0.025 09 0.000 83 143 78 158 5 160 5 98% 15YD-02-18 0.049 98 0.001 52 0.173 58 0.005 80 0.025 26 0.000 84 195 72 163 5 161 5 98% 15YD-02-19 0.049 24 0.001 48 0.169 73 0.005 47 0.025 05 0.000 81 167 70 159 5 160 5 99% 15YD-02-20 0.049 38 0.001 49 0.171 95 0.005 72 0.025 30 0.000 84 165 68 161 5 161 5 99% 15YD-02-21 0.049 65 0.001 50 0.171 56 0.005 70 0.025 09 0.000 82 189 75 161 5 160 5 99% 15YD-02-22 0.049 56 0.001 50 0.171 71 0.005 86 0.025 18 0.000 85 176 70 161 5 160 5 99% 15YD-02-23 0.050 87 0.001 56 0.175 94 0.005 91 0.025 10 0.000 83 235 72 165 5 160 5 97% 15YD-02-24 0.049 24 0.001 49 0.171 56 0.005 61 0.025 26 0.000 82 167 70 161 5 161 5 99% 15YD-02-25 0.049 77 0.001 51 0.172 53 0.006 02 0.025 16 0.000 88 183 66 162 5 160 6 99% 表 2 暗色微粒包体及寄主岩主量元素(%)、微量元素(10-6)和Sr-Nd同位素组成分析结果
Table 2. Major oxides (%), trace elements (10-6) and Sr-Nd isotopic results of host rocks and MMEs in the Ba'er pluton
样品 YD-01C YD-01D YD-01E YD-01F YD-01G YD-02A YD-02B YD-02C YD-02D YD-02E 岩性 暗色微粒包体 寄主岩 SiO2 55.53 57.08 56.44 55.26 56.42 65.84 63.94 61.04 65.98 63.73 TiO2 1.29 1.16 1.22 1.12 1.25 0.74 0.55 0.98 0.72 0.66 Al2O3 17.83 17.36 17.37 16.83 17.23 15.10 16.81 16.07 15.47 16.34 CaO 6.50 6.18 6.42 6.99 6.50 4.54 3.47 4.81 4.52 3.87 FeOt 8.68 8.15 8.46 8.54 8.55 5.69 4.62 7.41 5.28 5.42 K2O 2.04 1.79 1.80 2.25 1.76 1.60 4.97 2.34 1.79 3.97 MgO 2.79 2.84 2.96 4.02 2.98 1.85 1.51 2.45 1.68 1.71 MnO 0.14 0.16 0.16 0.21 0.17 0.11 0.09 0.14 0.10 0.10 Na2O 3.91 3.93 3.93 3.33 3.90 3.56 3.17 3.56 3.66 3.34 P2O5 0.29 0.27 0.30 0.27 0.30 0.23 0.18 0.30 0.21 0.21 LOI 0.70 0.79 0.64 0.89 0.66 0.49 0.41 0.61 0.33 0.37 Total 99.70 99.71 99.70 99.70 99.70 99.73 99.72 99.72 99.73 99.72 Mg# 43 45 45 52 45 43 43 43 43 42 A/CNK 0.87 0.88 0.86 0.82 0.86 0.95 1.00 0.94 0.96 0.97 A/NK 2.06 2.07 2.06 2.13 2.07 1.99 1.59 1.91 1.95 1.67 Li 85.01 91.64 88.74 75.77 82.12 77.96 60.77 95.46 64.63 61.73 Be 2.28 2.29 3.11 3.90 2.41 4.02 3.64 4.17 3.86 3.98 Sc 20.23 18.79 21.05 22.12 19.19 13.01 11.32 16.69 12.36 12.67 V 214.08 186.56 192.97 189.19 193.03 100.51 85.71 129.97 95.80 97.29 Cr 11.31 12.41 7.26 34.95 8.09 13.23 16.95 20.55 10.37 11.47 Co 22.67 22.00 21.59 24.81 22.17 12.57 9.74 16.57 11.68 11.57 Ni 6.60 7.64 6.34 17.83 6.57 6.25 5.51 13.64 5.45 4.82 Cu 21.38 28.47 27.31 28.20 28.68 11.03 6.56 12.16 6.68 7.13 Zn 145.90 143.76 144.54 133.97 138.40 97.36 82.46 123.55 88.49 87.27 Ga 21.94 21.40 21.01 20.86 20.80 19.81 17.66 21.02 19.40 18.30 Rb 127.99 149.81 145.66 120.19 138.23 113.00 167.92 158.16 119.28 163.05 Sr 516.70 440.97 446.41 428.97 441.45 383.59 445.22 390.81 397.78 431.19 Y 31.06 27.91 29.88 33.07 31.34 27.31 16.68 32.46 27.77 21.26 Zr 231.07 222.79 198.25 163.96 210.34 234.43 201.91 303.35 212.46 207.94 Nb 13.67 13.00 14.33 16.70 14.61 15.02 9.63 18.94 14.76 12.07 Cs 9.34 11.82 11.30 6.88 11.26 8.01 8.33 11.15 9.36 9.70 Ba 538.47 240.85 316.04 461.07 253.69 150.31 1064.07 284.51 200.39 720.25 La 38.32 45.51 45.36 27.14 42.23 60.87 32.81 47.87 40.86 39.56 Ce 77.87 84.96 87.67 61.15 85.01 109.52 61.45 95.27 76.19 70.96 Pr 9.24 9.16 10.03 7.46 9.84 11.36 6.26 10.72 8.51 7.66 Nd 34.37 34.09 36.49 30.41 37.33 37.30 21.95 38.62 29.75 24.74 Sm 6.86 6.00 7.10 6.62 7.19 6.71 3.57 6.98 5.78 4.67 Eu 1.70 1.49 1.70 1.48 1.70 1.37 0.91 1.61 1.29 1.06 Gd 6.54 5.98 6.70 6.51 6.73 5.99 3.30 6.69 5.32 3.72 Tb 0.97 0.90 0.99 0.96 1.03 0.92 0.50 1.03 0.82 0.63 Dy 5.19 4.74 5.30 5.49 5.50 4.59 2.61 5.78 4.38 3.21 Ho 1.01 0.90 1.03 1.08 1.06 0.92 0.56 1.12 0.87 0.62 Er 2.89 2.65 2.92 3.16 2.97 2.69 1.58 3.16 2.50 1.95 Tm 0.41 0.35 0.40 0.46 0.40 0.39 0.23 0.46 0.35 0.28 Yb 2.53 2.22 2.56 3.05 2.64 2.47 1.49 3.02 2.38 1.83 Lu 0.38 0.34 0.40 0.45 0.39 0.39 0.24 0.45 0.36 0.30 Hf 5.21 5.02 4.74 3.88 5.11 5.90 4.93 7.68 4.89 4.80 Ta 0.80 0.75 0.95 0.85 1.26 1.77 0.95 2.02 1.69 1.16 W 1.04 0.86 0.73 1.13 1.42 0.50 0.77 1.13 0.66 0.51 Tl 0.64 0.76 0.77 0.60 0.76 0.61 0.84 0.88 0.59 0.76 Pb 12.92 14.15 14.65 12.71 14.77 14.00 26.35 14.71 13.48 19.56 Bi 0.21 0.25 0.26 0.19 0.23 0.24 0.18 0.22 0.22 0.19 Th 8.82 10.92 10.70 6.77 10.35 25.51 16.23 22.35 17.88 16.96 U 2.06 2.54 2.77 1.93 2.46 6.35 4.60 6.72 5.25 4.77 Eu* 0.78 0.76 0.75 0.69 0.75 0.66 0.81 0.72 0.71 0.78 Tzr(℃) 746 732 754 737 730 ∑REE 188.28 199.29 208.66 155.41 204.01 245.49 137.46 222.78 179.34 161.20 LREE 168.35 181.21 188.36 134.27 183.29 227.13 126.96 201.07 162.37 148.65 HREE 19.92 18.07 20.30 21.14 20.71 18.36 10.50 21.71 16.97 12.55 LREE/HREE 8.45 10.03 9.28 6.35 8.85 12.37 12.09 9.26 9.57 11.85 (La/Yb)N 10.85 14.73 12.70 6.39 11.47 17.67 15.80 11.38 12.29 15.47 Rb/Sr 0.25 0.34 0.33 0.28 0.31 0.29 0.38 0.40 0.30 0.38 Nb/Ta 17.2 17.3 15.0 19.7 11.6 8.5 10.1 9.4 8.7 10.4 87Rb/86Sr 0.436 34 0.983 16 0.852 46 0.867 79 147Sm/144Nd 0.100 26 0.106 47 0.108 69 0.117 38 87Sr/86Sr 0.708 02 0.709 93 0.709 54 0.709 60 2σ 0.000 008 0.000 008 0.000 006 0.000 006 143Nd/144Nd 0.512 316 0.512 247 0.512 254 0.512 266 2σ 0.000 006 0.000 005 0.000 003 0.000 006 (87Sr/86Sr)i 0.707 04 0.707 74 0.707 63 0.707 67 εNd(t) -4.35 -5.81 -5.73 -5.67 TDM2 (Ga) 1.12 1.28 1.30 1.40 注:LOI.烧失量; A/NK(摩尔比)=Al2O3/(Na2O+K2O); A/CNK(摩尔比)=Al2O3/(Na2O+K2O+CaO); Eu*=EuN/[(SmN×GdN)1/2]; (87Sr/86Sr)i=(87Sr/86Sr)S-(87Rb/86Sr)S×(eλt-1); λ=1.42×10-11 a-1; εSr=[(143Nd/144Nd)S/(143Nd/144Nd)CHUR-1]×10 000; εNd=[(143Nd/144Nd)S/(143Nd/144Nd)CHUR-1]×10 000; t代表样品形成时间,S代表样品,CHUR代表球粒陨石; (147Sm/144Nd)CHUR=0.196 7; (143Nd/144Nd)CHUR=0.512 638 表 3 暗色微粒包体和寄主岩中斜长石的电子探针数据(%)
Table 3. EMPA results (%) of plagioclases in MMEs and host rocks
Samples SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Total Si Al Ca Na K Or Ab An 暗色微粒包体 15YD-01-2-1 59.54 0.00 25.10 0.08 0.00 0.00 6.91 7.69 0.14 99.47 2.67 1.33 0.33 0.67 0.01 0.80 66.28 32.91 15YD-01-2-2 59.30 0.00 24.64 0.16 0.04 0.00 7.01 7.62 0.15 98.91 2.68 1.31 0.34 0.67 0.01 0.86 65.73 33.42 15YD-01-2-3 59.78 0.02 25.41 0.03 0.01 0.00 7.11 7.57 0.17 100.10 2.66 1.33 0.34 0.65 0.01 0.96 65.18 33.86 15YD-01-2-4 59.24 0.03 25.06 0.10 0.01 0.00 7.30 7.50 0.19 99.42 2.66 1.33 0.35 0.65 0.01 1.06 64.35 34.60 15YD-01-2-5 58.86 0.00 25.46 0.09 0.01 0.02 7.38 7.82 0.20 99.83 2.64 1.35 0.35 0.68 0.01 1.07 65.01 33.91 15YD-01-2-6 59.87 0.00 25.14 0.15 0.02 0.01 6.97 7.68 0.23 100.06 2.67 1.32 0.33 0.66 0.01 1.31 65.71 32.98 15YD-01-2-7 59.04 0.00 24.81 0.16 0.02 0.02 7.05 7.55 0.19 98.84 2.67 1.32 0.34 0.66 0.01 1.07 65.25 33.68 15YD-01-3-1 59.55 0.00 25.32 0.00 0.00 0.00 7.42 7.80 0.19 100.28 2.65 1.33 0.35 0.67 0.01 1.01 64.87 34.12 15YD-01-3-2 58.98 0.00 25.41 0.10 0.00 0.01 7.49 7.39 0.23 99.60 2.65 1.34 0.36 0.64 0.01 1.31 63.25 35.44 15YD-01-3-3 56.90 0.00 26.59 0.11 0.00 0.00 8.83 6.60 0.12 99.15 2.57 1.42 0.43 0.58 0.01 0.69 57.10 42.21 15YD-01-3-4 58.57 0.00 26.38 0.10 0.00 0.00 8.08 7.05 0.11 100.29 2.61 1.39 0.39 0.61 0.01 0.62 60.85 38.54 15YD-01-3-5 59.36 0.00 25.34 0.11 0.00 0.03 7.31 7.60 0.12 99.87 2.65 1.34 0.35 0.66 0.01 0.68 64.86 34.46 15YD-01-3-6 59.10 0.00 25.31 0.14 0.01 0.01 7.56 7.66 0.14 99.92 2.65 1.34 0.36 0.66 0.01 0.77 64.19 35.04 15YD-01-3-7 59.17 0.00 25.14 0.07 0.00 0.00 7.39 7.67 0.12 99.56 2.66 1.33 0.36 0.67 0.01 0.64 64.83 34.53 15YD-01-3-8 60.55 0.00 24.75 0.16 0.04 0.01 6.41 8.30 0.15 100.37 2.69 1.30 0.31 0.71 0.01 0.83 69.50 29.67 寄主岩 15YD-02-2-1 60.53 0.07 24.63 0.05 0.00 0.00 6.46 8.11 0.12 99.98 2.70 1.29 0.31 0.70 0.01 0.69 68.98 30.34 15YD-02-2-2 60.60 0.01 24.65 0.09 0.00 0.00 6.39 8.16 0.18 100.08 2.70 1.29 0.30 0.70 0.01 0.99 69.13 29.88 15YD-02-2-3 60.45 0.00 24.62 0.00 0.02 0.00 6.50 8.06 0.15 99.79 2.70 1.29 0.31 0.70 0.01 0.84 68.60 30.56 15YD-02-2-4 58.32 0.00 25.68 0.15 0.05 0.01 8.18 7.28 0.15 99.83 2.62 1.36 0.39 0.63 0.01 0.85 61.17 37.98 15YD-02-2-5 57.86 0.00 26.22 0.05 0.00 0.02 8.37 6.83 0.14 99.50 2.60 1.39 0.40 0.60 0.01 0.81 59.16 40.03 15YD-02-2-6 57.97 0.01 26.03 0.06 0.03 0.00 8.28 6.98 0.11 99.48 2.61 1.38 0.40 0.61 0.01 0.63 60.03 39.35 15YD-02-2-7 58.57 0.00 25.82 0.02 0.00 0.04 7.46 7.28 0.09 99.28 2.63 1.37 0.36 0.63 0.00 0.50 63.53 35.97 15YD-02-2-8 59.75 0.00 25.05 0.15 0.01 0.00 7.01 7.45 0.12 99.54 2.67 1.32 0.34 0.65 0.01 0.68 65.34 33.99 15YD-02-1-1 59.78 0.01 25.01 0.06 0.00 0.00 7.09 7.90 0.07 99.92 2.67 1.32 0.34 0.68 0.00 0.39 66.59 33.02 15YD-02-1-2 59.59 0.00 25.16 0.04 0.00 0.04 7.03 7.65 0.13 99.65 2.67 1.33 0.34 0.66 0.01 0.76 65.82 33.42 15YD-02-1-3 58.44 0.01 25.92 0.09 0.00 0.00 7.93 7.31 0.11 99.81 2.62 1.37 0.38 0.64 0.01 0.62 62.13 37.25 15YD-02-1-4 58.61 0.00 26.22 0.00 0.00 0.00 7.96 7.20 0.08 100.07 2.62 1.38 0.38 0.62 0.00 0.47 61.78 37.74 15YD-02-1-5 60.38 0.03 24.61 0.01 0.12 0.03 6.64 7.99 0.09 99.88 2.69 1.29 0.32 0.69 0.00 0.49 68.22 31.30 15YD-02-2-1 58.49 0.00 25.96 0.01 0.00 0.00 7.95 6.93 0.09 99.43 2.63 1.37 0.38 0.60 0.01 0.51 60.91 38.58 15YD-02-1-2 58.78 0.01 26.02 0.02 0.01 0.00 7.82 7.18 0.15 99.97 2.63 1.37 0.37 0.62 0.01 0.85 61.88 37.27 15YD-02-1-3 59.24 0.04 25.56 0.11 0.00 0.00 7.70 7.46 0.19 100.29 2.64 1.34 0.37 0.64 0.01 1.08 63.00 35.93 表 4 暗色微粒包体和寄主岩中角闪石电子探针分析结果(%)
Table 4. EMPA results(%) of hornblendes in enclaves and host rocks
Samples 15YD-
01-2-115YD-
01-2-215YD-
01-3-115YD-
01-3-215YD-
02-2-115YD-
02-2-2暗色微粒包体 寄主岩 SiO2 42.24 42.36 42.41 42.28 41.99 42.27 TiO2 0.85 0.86 0.91 0.92 0.83 0.84 Al2O3 10.46 10.66 10.53 10.71 10.98 10.81 FeO 20.74 20.22 20.87 20.39 21.13 21.28 MnO 0.60 0.64 0.52 0.51 0.55 0.78 MgO 8.12 8.58 8.25 8.50 8.05 7.96 CaO 11.36 11.56 11.59 11.71 11.52 11.63 Na2O 0.32 0.41 0.39 0.36 0.33 0.32 K2O 1.32 1.17 1.41 1.18 1.06 1.22 以23个O计算的阳离子数 Si 6.45 6.42 6.43 6.41 6.37 6.39 Al IV 1.55 1.58 1.57 1.59 1.63 1.61 Al VI 0.33 0.32 0.32 0.32 0.33 0.32 Ti 0.10 0.10 0.10 0.11 0.10 0.10 Fe3+ 0.96 0.96 0.89 0.92 1.06 1.00 Fe2+ 1.69 1.60 1.76 1.66 1.62 1.69 Mn 0.08 0.08 0.07 0.07 0.07 0.10 Mg 1.85 1.94 1.87 1.92 1.82 1.80 Ca 1.86 1.88 1.88 1.90 1.87 1.88 Na 0.09 0.12 0.11 0.11 0.10 0.09 K 0.26 0.23 0.27 0.23 0.20 0.23 P (kbar) 5.94 6.05 5.95 6.10 6.34 6.16 H (km) 19.63 20.12 19.62 19.96 20.91 20.32 -
[1] Barbarin, B., 2005. Mafic Magmatic Enclaves and Mafic Rocks Associated with Some Granitoids of the Central Sierra Nevada Batholith, California:Nature, Origin, and Relations with the Hosts. Lithos, 80(1-4):155-177. https://doi.org/10.1016/j.lithos.2004.05.010 [2] Beard, J. S., Lofgren, G. E., 1991. Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6.9 kb. Journal of Petrology, 32(2):465-401. https://doi.org/10.1093/petrology/32.2.365 [3] Blake, S., Fink, J.H., 2000. On the Deformation and Freezing of Enclaves during Magma Mixing. Journal of Volcanology and Geothermal Research, 95(1-4):1-8. https://doi.org/10.1016/s0377-0273(99)00129-8 [4] Boehnke, P., Watson, E.B., Trail, D., et al., 2013. Zircon Saturation Re-Revisited. Chemical Geology, 351:324-334. https://doi.org/10.1016/j.chemgeo.2013.05.028 [5] Chappell, B.W., 1996. Magma Mixing and the Production of Compositional Variation within Granite Suites:Evidence from the Granites of Southeastern Australia. Journal of Petrology, 37(3):449-470. https://doi.org/10.1093/petrology/37.3.449 [6] Chappell, B.W., White, A.J.R., 1974. Two Contrasting Granite Type. Pacific Geology, (8):173-174. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027419645/ [7] Charvet, J., 2013. The Neoproterozoic-Early Paleozoic Tectonic Evolution of the South China Block:An Overview. Journal of Asian Earth Sciences, 74(18):198-209. https://doi.org/10.1016/j.jseaes.2013.02.015 [8] Charvet, J., Shu, L. S., Faure, M., et al., 2010. Structural Development of the Lower Paleozoic Belt of South China:Genesis of an Intracontinental Orogen. Journal of Asian Earth Sciences, 39(4):309-330. https://doi.org/10.1016/j.jseaes.2010.03.006 [9] Chen, C. H., Lee, C. Y., Shinjo, R., 2008. Was There Jurassic Paleo-Pacific Subduction in South China?:Constraints from 40Ar/39Ar Dating, Elemental and Sr-Nd-Pb Isotopic Geochemistry of the Mesozoic Basalts. Lithos, 106(1-2):83-92. https://doi.org/10.1016/j.lithos.2008.06.009 [10] Chen, J.Y., Yang, J.H., 2015. Petrogenesis of the Fogang Highly Fractionated I-Type Granitoids:Constraints from Nb, Ta, Zr and Hf. Acta Petrologica Sinica, 31(3):846-854(in Chinese with English abstract). [11] Chen, S., Niu, Y. L., Sun, W. L., et al., 2015. On the Origin of Mafic Magmatic Enclaves (MMEs) in Syn-Collisional Granitoids:Evidence from the Baojishan Pluton in the North Qilian Orogen, China. Mineralogy and Petrology, 109(5):577-596. https://doi.org/10.1007/s00710-015-0383-5 [12] Chen, G.N., Grapes, R., 2003. An In-Situ Melting Model of Granite Formation:Geological Evidence from Southeast China. International Geology Review, 45(7):611-622. https://doi.org/10.2747/0020-6814.45.7.611 [13] Chen, X.Y., Wang, Y.J., Zhang, Y.Z., et al., 2013. Geochronology and Geochemical Characteristics of the Nandu Syenite in SE Guangxi and Its Implications. Geotectonica et Metallogenia, 37(2):284-293(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201302011 [14] Clemens, J.D., Wall, V.J., 1988. Controls on the Mineralogy of S-Type Volcanic and Plutonic Rocks. Lithos, 21(1):53-66. https://doi.org/10.1016/0024-4937(88)90005-9 [15] Cui, J.J., Zhang, Y.Q., Dong, S.W., et al., 2013.Late Mesozoic Orogenesis along the Coast of Southeast China and Its Geological Significance.Geology in China, 40(1):86-105(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201301006 [16] Dan, W., Wang, Q., Wang, X.C., et al., 2015. Overlapping Sr-Nd-Hf-O Isotopic Compositions in Permian Mafic Enclaves and Host Granitoids in Alxa Block, NW China:Evidence for Crust-Mantle Interaction and Implications for the Generation of Silicic Igneous Provinces. Lithos, 230:133-145. https://doi.org/10.1016/j.lithos.2015.05.016 [17] Didier, J., Barbarin, B., 1991. Enclaves and Granite Petrology, Developments in Petrology. Elsevier, New York. [18] Elburg, M.A., 1996. Genetic Significance of Multiple Enclave Types in a Peraluminous Ignimbrite Suite, Lachlan Fold Belt, Australia. Journal of Petrology, 37(6):1385-1408. https://doi.org/10.1093/petrology/37.6.1385 [19] Fu, J.M., Ma, C.Q., Xie, C.F., et al., 2004.The Determination of the Formation Ages of the Xishan Volcanic-Intrusive Complex in Southern Hunan Province.Acta Geoscientia Sinica, 25(3):303-308(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200403005 [20] Gan, C.S., Wang, Y.J., Zhang, Y.Z., et al., 2016. The Earliest Jurassic A-Type Granite in the Nanling Range of Southeastern South China:Petrogenesis and Geological Implications. International Geology Review, 59(3):274-292. https://doi.org/10.1080/00206814.2016.1254574 [21] Gan, C. S., Zhang, Y. Z., Barry, T. L., et al., 2018. Jurassic Metasomatised Lithospheric Mantle beneath South China and Its Implications:Geochemical and Sr-Nd Isotope Evidence from the Late Jurassic Shoshonitic Rocks. Lithos, 320-321:236-249. https://doi.org/10.1016/j.lithos.2018.09.007 [22] Gan, C.S., Wang, Y.J., Zhang, Y.Z., et al., 2016.The Identification and Implications of the Late Jurassic Shoshonitic High-Mg Andesite from the Youjiang Basin.Acta Petrologica Sinica, 32(11):3281-3294(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201611004 [23] Gao, Y.B., Li, K., Qian, B., et al., 2015.The Genesis of Granodiorites and Dark Enclaves from the Kaerqueka Deposit in East Kunlun Belt:Evidence from Zircon U-Pb Dating, Geochemistry and Sr-Nd-Hf Isotopic Compositions.Geology in China, 42(3):646-662(in Chinese with English abstract). [24] Guangdong Geological Bureau, 1988. Regional Geology of Guangdong Province. Geological Publishing House, Beijing(in Chinese). [25] Hibbard, M.J., 1991. Textural Anatomy of Twelve Magma-Mixed Granitoid Systems. Enclaves and Granite Petrology. Elsevier, Amsterdam, 31-444. [26] Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta Part B:Atomic Spectroscopy, 78(78):50-57. https://doi.org/10.1016/j.sab.2012.09.007 [27] Hu, R.Z., Bi, X.W., Peng, J.T., et al., 2007.Some Problems Concerning Relationship between Mesozoic-Cenozoic Lithospheric Extension and Uranium Metallogenesis in South China.Mineral Deposits, 26(2):139-152(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200702001 [28] Huang, H. Q., Li, X. H., Li, W. X., et al., 2011. Formation of High 18O Fayalite-Bearing A-Type Granite by High-Temperature Melting of Granulitic Metasedimentary Rocks, Southern China:REPLY. Geology, 40(10):e278-e278. https://doi.org/10.1130/g33526y.1 [29] Huang, H. Q., Li, X. H., Li, Z. X., et al., 2013. Intraplate Crustal Remelting as the Genesis of Jurassic High-K Granites in the Coastal Region of the Guangdong Province, SE China. Journal of Asian Earth Sciences, 74:280-302. https://doi.org/10.1016/j.jseaes.2012.09.009 [30] Jia, X.H., Xie, G.G., Meng, D.L., et al., 2018.Petrogenesis and Implications of the Haiyan A-Type Granites and Mafic Microgranule Enclaves in Southern Guangdong Province.Earth Science, 43(7):2294-2309(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201807007 [31] Jiang, Y. H., Jiang, S. Y., Dai, B. Z., et al., 2009. Middle to Late Jurassic Felsic and Mafic Magmatism in Southern Hunan Province, Southeast China:Implications for a Continental Arc to Rifting. Lithos, 107(3-4):185-204. https://doi.org/10.1016/j.lithos.2008.10.006 [32] Jiang, Y.H., Wang, G.C., Liu, Z., et al., 2015. Repeated Slab Advance-Retreat of the Palaeo-Pacific Plate underneath SE China. International Geology Review, 57(4):472-491. https://doi.org/10.1080/00206814.2015.1017775 [33] Jochum, K. P., McDonough, W. F., Palme, H., et al., 1989. Compositional Constraints on the Continental Lithospheric Mantle from Trace Elements in Spinel Peridotite Xenoliths. Nature, 340(6234):548-550. https://doi.org/10.1038/340548a0 [34] Johannes, W., Holtz, F., 1996. Petrogenesis and Experimental Petrology of Granitic Rocks. Springer, Berlin Heidelberg, 149-150. [35] Lalonde, A. E., Bernard, P., 1993. Composition and Color of Biotite from Granites:Two Useful Properties in the Characterization of Plutonic Suites from the Hepburn Internal Zone of Wopmay Orogen, Northwest Territories. Stroke A Journal Of Cerebral Circulation, 46(7):1787. http://cn.bing.com/academic/profile?id=6f6a6192e2a04ca78ae6661d253b8688&encoded=0&v=paper_preview&mkt=zh-cn [36] Lao, M.J., Zou, H.P., Du, X.D., et al., 2015.Geochronology and Geochemistry of the Mashan Late Jurassic Shoshonitic Intrusives in Hengxian, Guangxi:With a Discussion on Yanshanian Tectonic Settings of the Southwestern Segment of Qinzhou-Hangzhou Metallogenic Belt.Earth Science Frontiers, 22(2):95-107(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201502010.htm [37] Leake, B. E., 1997. Nomenclature of Amphiboles. Mineralogical Magazine, 42(324):1023-1052. doi: 10.1180-minmag.1997.061.405.13/ [38] Lee, C. T. A., Morton, D. M., 2015. High Silica Granites:Terminal Porosity and Crystal Settling in Shallow Magma Chambers. Earth and Planetary Science Letters, 409:23-31. https://doi.org/10.1016/j.epsl.2014.10.040 [39] Li, X.H., Hu, R.Z., Rao, B., 1997. Chronology and Geochemistry of Cretaceous Mafic Dikes from Northern Guangdong, SE China. Geochimica, 26(2), 14-31(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX702.003.htm [40] Li, X.H., Li, W.X., Li, Z.X., et al., 2007.Re-Discussion on the Genetic Type and Tectonic Significance of Early Granite in Yanshan, Nanling. Chinese Science Bulletin, 52(9):981-991(in Chinese with English abstract). doi: 10.1360/csb2007-52-9-981 [41] Li, X. H., Li, W. X., Li, Z. X., et al., 2008.850-790 Ma Bimodal Volcanic and Intrusive Rocks in Northern Zhejiang, South China:A Major Episode of Continental Rift Magmatism during the Breakup of Rodinia. Lithos, 102(1-2):341-357. https://doi.org/10.1016/j.lithos.2007.04.007 [42] Li, X. H., Li, Z. X., Li, W. X., et al., 2007. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I-and A-Type Granites from Central Guangdong, SE China:A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?. Lithos, 96(1-2):186-204. https://doi.org/10.1016/j.lithos.2006.09.018 [43] Li, Z.X., Li, X.H., 2007. Formation of the 1300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China:A Flat-Slab Subduction Model. Geology, 35(2):179. https://doi.org/10.1130/g23193a.1 [44] Li, X.H., Qi, C.S., Liu, Y., et al., 2005. Genesis of Neoproterozoic Bimodal Volcanic Rocks on the Western Margin of the Yangtze Block:Constraints on Hf Isotopes and Fe/Mn. Chinese Science Bulletin, 50(19):2155-2160(in Chinese). doi: 10.1360/csb2005-50-19-2155 [45] Li, X.H., Zhou, H.W., Liu, Y., et al., 2000.Mesozoic Shoshonitic Intrusives in the Yangchun Basin, Western Guangdong, and their Tectonic Significance:Ⅰ.Petrology and Isotope Geochronology.Geochimica, 29(6):513-520(in Chinese with English abstract). https://www.researchgate.net/publication/284045263_Mesozoic_shoshonitic_intrusives_in_the_Yangchun_Basin_western_Guangdong_and_their_tectonic_significance_I_Petrology_and_isotope_geochronology [46] Li, X.H., Zhou, H.W., Liu, Y., et al., 2001.Mesozoic Shoshonitic Intrusives in the Yangchun Basin, Western Guangdong, and Their Tectonic Significance:Ⅱ.Trace Elements and Sr-Nd Isotopes.Geochimica, 30(1):57-65(in Chinese with English abstract). https://www.zhangqiaokeyan.com/academic-journal-cn_geochimica_thesis/0201252982724.html [47] Li, Z.D., Yu, X.F., Wang, Q.M., et al., 2018. Petrogenesis of Sanfoshan granite, Jiaodong:Diagenetic Physical and Chemical Conditions, Zircon U-Pb Geochronology and Sr-Nd Isotope Constraints. Acta Petrologica Sinica, 34(2):447-468(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201802018 [48] Liang, X.R., Wei, G.J., Li, X.H., et al., 2003. Precise Measurement of 143Nd/144Nd and Sm/Nd Ratios Using Multiple-Collectors Inductively Coupled Plasma-Mass Spectrometer (MC-ICPMS). Geochimica, 32(1):91-96(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200301013 [49] Liu, Y., Gao, S., Hu, Z., et al., 2009. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [50] Liu, Y., Liu, H.C., 1996. Accurate Determination of More than 40 Trace Elements in Rock Samples by ICP-MS. Geochimica, (6):552-558(in Chinese with English abstract). [51] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)101 < 0635:tdog>2.3.co; 2 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [52] Mao, J.W., Xie, G.Q., Li, X.F., et al., 2004.Mesozoic Large Scale Mineralization and Multiple Lithospheric Extension in South China.Earth Science Frontiers, 11(1):45-55(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=794b046cc674b08f32f473fbcd64c113&encoded=0&v=paper_preview&mkt=zh-cn [53] Meng, L. F., Li, Z. X., Chen, H. L., et al., 2012. Geochronological and Geochemical Results from Mesozoic Basalts in Southern South China Block Support the Flat-Slab Subduction Model. Lithos, 132-133:127-140. https://doi.org/10.1016/j.lithos.2011.11.022 [54] Mo, X.X., 2011.Magma and Magmatic/Igneous Rocks:A Lithoprobe into the Deep Earth and Records of the Earth's Evolution.Chinese Journal of Nature, 33(5):255-259, 313(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=fe401b1c2051bbb7cc065c6624353d82&encoded=0&v=paper_preview&mkt=zh-cn [55] Münker, C., Pf nder, J.A., Weyer, S., et al., 2003. Evolution of Planetary Cores and the Earth-Moon System from Nb/Ta Systematics. Science, 301(5629):84-87. https://doi.org/10.1126/science.1084662 [56] Niu, Y. L., Zhao, Z. D., Zhu, D. C., et al., 2013. Continental Collision Zones are Primary Sites for Net Continental Crust Growth-A Testable Hypothesis. Earth-Science Reviews, 127(2):96-110. https://doi.org/10.1016/j.earscirev.2013.09.004 [57] Niu, Z.J., Liu, Y., Di, Y.J., et al., 2014.Zoning Characteristics of the Plagioclase from the Mesozoic Trachyandesite in Wuchagou Area of the Da Hinggan Mountains and Its Geological Implications.Acta Petrologica et Mineralogica, 33(1):102-108(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201401008 [58] Pati o Douce, A. E., Harris, N., 1998. Experimental Constraints on Himalayan Anatexis. Journal of Petrology, 39(4):689-710. https://doi.org/10.1093/petroj/39.4.689 [59] Peng, Z.L., Grapes, R., Zhuang, W.M., et al., 2011.Petrochemical Composition Characteristics of Mafic Microgranular Enclaves in Granites in SE China and Their Significance.Earth Science Frontiers, 18(1):74-81(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201101010 [60] Perugini, D., Poli, G., 2012. The Mixing of Magmas in Plutonic and Volcanic Environments:Analogies and Differences. Lithos, 153(8):261-277. https://doi.org/10.1016/j.lithos.2012.02.002 [61] Pietranik, A., Koepke, J., 2014. Plagioclase Transfer from a Host Granodiorite to Mafic Microgranular Enclaves:Diverse Records of Magma Mixing. Mineralogy and Petrology, 108(5):681-694. https://doi.org/10.1007/s00710-014-0326-6 [62] Qin, Z.W., Ma, C.Q., Fu, J.M., et al., 2018.The Origin of Mafic Enclaves in Xiangjia Granitic Pluton of East Kunlun Orogenic Belt:Evidence from Petrography and Geochemistry.Earth Science, 43(7):2420-2437(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201807015 [63] Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4):891-931. https://doi.org/10.1093/petrology/36.4.891 [64] Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements. Lithos, 22(4):247-263. https://doi.org/10.1016/0024-4937(89)90028-5 [65] Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Ceochemistry, 33:1-64. doi: 10.1016-0016-7037(95)00038-2/ [66] Schmidt, M.W., 1992. Amphibole Composition in Tonalite as a Function of Pressure:An Experimental Calibration of the Al-in-Hornblende Barometer. Contributions to Mineralogy and Petrology, 110(2-3):304-310. https://doi.org/10.1007/bf00310745 [67] Shellnutt, J.G., Jahn, B.M., Dostal, J., 2010. Elemental and Sr-Nd Isotope Geochemistry of Microgranular Enclaves from Peralkaline A-Type Granitic Plutons of the Emeishan Large Igneous Province, SW China. Lithos, 119(1-2):34-46. https://doi.org/10.1016/j.lithos.2010.07.011 [68] Shu, L.S., Zhou, X.M., 2002.Late Mesozoic Tectonism of Southeast China.Geological Review, 48(3):249-260(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005801 [69] Sisson, T. W., Ratajeski, K., Hankins, W. B., et al., 2004. Voluminous Granitic Magmas from Common Basaltic Sources. Contributions to Mineralogy and Petrology, 148(6):635-661. https://doi.org/10.1007/s00410-004-0632-9 [70] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [71] Sun, T., 2006.A New Map Showing the Distribution of Granites in South China and Its Explanatory Notes.Geological Bulletin of China, 25(3):332-335(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200603002 [72] Sylvester, P.J., 1998.Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4):29-44. https://doi.org/10.1016/s0024-4937(98)00024-3 doi: 10.1016/S0024-4937(98)00024-3 [73] Vernon, R.H., Etheridge, M.A., Wall, V.J., et al., 1988. Shape and Microstructure of Microgranitoid Enclaves:Indicators of Magma Mingling and Flow. Lithos, 22(1):1-11. https://doi.org/10.1016/0024-4937(88)90024-2 [74] Wang, Y. J., Fan, W. M., Peng, T. P., et al., 2005. Elemental and Sr-Nd Isotopic Systematics of the Early Mesozoic Volcanic Sequence in Southern Jiangxi Province, South China:Petrogenesis and Tectonic Implications. International Journal of Earth Sciences, 94(1):53-65. https://doi.org/10.1007/s00531-004-0441-4 [75] Wang, Y. J., Fan, W. M., Sun, M., et al., 2007. Geochronological, Geochemical and Geothermal Constraints on Petrogenesis of the Indosinian Peraluminous Granites in the South China Block:A Case Study in the Hunan Province. Lithos, 96(3-4):475-502. https://doi.org/10.1016/j.lithos.2006.11.010 [76] Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013. Phanerozoic Tectonics of the South China Block:Key Observations and Controversies. Gondwana Research, 23(4):1273-1305. https://doi.org/10.1016/j.gr.2012.02.019 [77] Wang, Y. J., He, H. Y., Cawood, P. A., et al., 2016. Geochronological, Elemental and Sr-Nd-Hf-O Isotopic Constraints on the Petrogenesis of the Triassic Post-Collisional Granitic Rocks in NW Thailand and Its Paleotethyan Implications. Lithos, 266-267:264-286. https://doi.org/10.1016/j.lithos.2016.09.012 [78] Wang, Y. J., Zhang, A. M., Fan, W. M., et al., 2011. Kwangsian Crustal Anatexis within the Eastern South China Block:Geochemical, Zircon U-Pb Geochronological and Hf Isotopic Fingerprints from the Gneissoid Granites of Wugong and Wuyi-Yunkai Domains. Lithos, 127(1-2):239-260. https://doi.org/10.1016/j.lithos.2011.07.027 [79] Wang, D.Z., Liu, C.S., Shen, W.Z., et al., 1993.The Contrast between Tonglu I-Type and Xiangshan S-Type Clastoporphyritic Lava.Acta Petrologica Sinica, 9(1):44-54(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-ysxb199301004.htm [80] Wang, D.Z., Xie, L., 2008.Magma Mingling:Evidence from Enclaves.Geological Journal of China Universities, 14(1):16-21(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200801002 [81] Wang, D.Z., Zhou, J.C., 2005.New Progress in the Study of Large Igneous Province. Geological Journal of China Universities, 11(1):1-8(in Chinese with English abstract). [82] Wang, Y.J., Fan, W.M., Cawood, P. A., et al., 2008. Sr-Nd-Pb Isotopic Constraints on Multiple Mantle Domains for Mesozoic Mafic Rocks beneath the South China Block Hinterland. Lithos, 106(3-4):297-308. https://doi.org/10.1016/j.lithos.2008.07.019 [83] Wang, Y.J., Fan, W.M., Guo, F., et al., 2003. Geochemistry of Mesozoic Mafic Rocks Adjacent to the Chenzhou-Linwu Fault, South China:Implications for the Lithospheric Boundary between the Yangtze and Cathaysia Blocks. International Geology Review, 45(3):263-286. https://doi.org/10.2747/0020-6814.45.3.263 [84] Wang, Y.J., Liao, C.L., Fan, W.M., et al., 2004.Early Mesozoic OIB Type Alkaline Basalt in Central Jiangxi Province and Its Tectonic Implications.Geochimica, 33(2):109-117(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200402001 [85] Wei, G.J., Liang, X.R., Li, X.H., et al., 2002. Precise Measurement of Sr Isotopic Composition of Liquid and Solid Base Using (LP)MC-ICPMS. Geochimica, 31(3):295-299(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200203011 [86] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202 doi: 10.1007/BF00402202 [87] Whitehouse, M. J., Platt, J. P., 2003. Dating High-Grade Metamorphism-Constraints from Rare-Earth Elements in Zircon and Garnet. Contributions to Mineralogy and Petrology, 145(1):61-74. https://doi.org/10.1007/s00410-002-0432-z [88] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6):1217-1238(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200706001 [89] Wu, Y.B., Zheng, Y.F., 2004. Zircon Genetic Mineralogy and Its Restriction on the Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16):1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589 [90] Xiao, Q.H., Deng, J.F., Ma, D.S., et al., 2002.The Ways of Investigation on Granitoids. Geological Publishing House, Beijing, 12-71(in Chinese). [91] Xie, L., Wang, D.Z., Wang, R.C., et al., 2004.Complex Zoning Texture in Plagioclases from the Quartz Diorite Enclave in the Putuo Granitic Complex, Zhejiang Province:Record of Magma Mixing.Acta Petrologica Sinica, 20(6):96-107(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=90021b6b9d50b0e78f607a6945a19541&encoded=0&v=paper_preview&mkt=zh-cn [92] Xu, X. S., Lu, W. M., He, Z. Y., 2007. Age and Generation of Fogang Granite Batholith and Wushi Diorite-Hornblende Gabbro Body. Science in China (Series D):Earth Sciences, 50(2):209-220. https://doi.org/10.1007/s11430-007-2068-3 [93] Yao, W. H., Li, Z. X., Li, W. X., et al., 2015. Detrital Provenance Evolution of the Ediacaran-Silurian Nanhua Foreland Basin, South China. Gondwana Research, 28(4):1449-1465. https://doi.org/10.1016/j.gr.2014.10.018 [94] Ye, Q., Mei, L. F., Shi, H. S., et al., 2018. The Late Cretaceous Tectonic Evolution of the South China Sea Area:An Overview, and New Perspectives from 3D Seismic Reflection Data. Earth-Science Reviews, 187:186-204. https://doi.org/10.1016/j.earscirev.2018.09.013 [95] Zeng, R.N., Lai, J.Q., Zhang, L.J., et al., 2016.Petrogenesis of Mafic Microgranular Enclaves:Evidence from Petrography, Whole-Rock and Mineral Chemistry of Ziyunshan Pluton, Central Hunan.Earth Science, 41(9):1461-1478(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201609003 [96] Zhang, G.W, Guo, A.L., Wang, Y.J., et al., 2013. Tectonics of South China Continent and Its Implications. Science China:Earth Sciences, 43(10):1553-1582(in Chinese). http://cn.bing.com/academic/profile?id=7021bf7fcc036a82839d27cc3efd4c74&encoded=0&v=paper_preview&mkt=zh-cn [97] Zhang, L., Ren, Z. Y., Nichols, A. R. L., et al., 2014. Lead Isotope Analysis of Melt Inclusions by LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 29(8):1393-1405. https://doi.org/10.1039/c4ja00088a doi: 10.1039/C4JA00088A [98] Zhang, R.G., Gao, X., Yang, L.Q., 2013. Identification of Magma Mixing: A Case Study of the Daocheng Batholith in the Yidun Arc. Advances in Earth Science, (10) (in Chinese). [99] Zhang, Y. Z., Wang, Y. J., Fan, W. M., et al., 2012a. Geochronological and Geochemical Constraints on the Metasomatised Source for the Neoproterozoic (~825 Ma) High-Mg Volcanic Rocks from the Cangshuipu Area (Hunan Province) along the Jiangnan Domain and their Tectonic Implications. Precambrian Research, 220-221:139-157. https://doi.org/10.1016/j.precamres.2012.07.003 [100] Zhang, F.F., Wang, Y. J., Zhang, A. M., et al., 2012b. Geochronological and Geochemical Constraints on the Petrogenesis of Middle Paleozoic (Kwangsian) Massive Granites in the Eastern South China Block. Lithos, 150:188-208. https://doi.org/10.1016/j.lithos.2012.03.011 [101] Zhang, Y.Q., Dong, S.W., Li, J.H., et al., 2012.The New Progress in the Study of Mesozoic Tectonics of South China.Acta Geoscientica Sinica, 33(3):257-279(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201203001 [102] Zhang, Y.Z., Wang, Y.J., 2016. Early Neoproterozoic (~840 Ma) Arc Magmatism:Geochronological and Geochemical Constraints on the Metabasites in the Central Jiangnan Orogen. Precambrian Research, 275:1-17. https://doi.org/10.1016/j.precamres.2015.11.006 [103] Zhang, Y.Z., Wang, Y.J., Guo, X.F., et al., 2015.Geochronology and Geochemistry of Cihua Neoproterozoic High-Mg Andesites in Jiangnan Orogen and Their Tectonic Implications.Earth Science, 40(11):1781-1795(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201511002 [104] Zhao, K. D., Jiang, S. Y., Yang, S. Y., et al., 2012. Mineral Chemistry, Trace Elements and Sr-Nd-Hf Isotope Geochemistry and Petrogenesis of Cailing and Furong Granites and Mafic Enclaves from the Qitianling Batholith in the Shi-Hang Zone, South China. Gondwana Research, 22(1):310-324. https://doi.org/10.1016/j.gr.2011.09.010 [105] Zhou, X. M., Li, W. X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China:Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326(3-4):269-287. https://doi.org/10.1016/s0040-1951(00)00120-7 doi: 10.1016/S0040-1951(00)00120-7 [106] Zhou, X. M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China:A Response to Tectonic Evolution. Episodes, 29(1):26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004 [107] Zhou, X.M., 2003.My Thinking about Granite Geneses of South China.Geological Journal of China Universities, 9(4):556-565(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200304009 [108] Zhu, J.C., Wang, R.C., Zhang, P. H., et al., 2009, Zircon U-Pb Geochronological Framework of Qitianling Granite Batholith, Middle Part of Nanling Range, South China. Science China:Earth Sciences, 39(8):1112-1127(in Chinese). http://cn.bing.com/academic/profile?id=8db22819095daa844e7889eeca8dbf5c&encoded=0&v=paper_preview&mkt=zh-cn [109] Zhu, J.C., Zhang, P.H., Xie, C.F., et al., 2006a.Magma Mixing Origin of the Mafic Enclaves in Lisong Granite, NE Guangxi, Western Nanling Mountains.Geochimica, 35(5):506-516(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200605005 [110] Zhu, J.C., Zhang, P.H., Xie, C.F., et al., 2006b.Ziucon U-Pb Age Framework of Huashan-Guposhan Intrusive Belt, Western Part of Naniing Range, and Its Geological Significance.Acta Petrologica Sinica, 22(9):2270-2278(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=0b0749629ba2a775ca5d7de145e60f43&encoded=0&v=paper_preview&mkt=zh-cn [111] Zorpi, M. J., Coulon, C., Orsini, J. B., et al., 1989. Magma Mingling, Zoning and Emplacement in Calc-Alkaline Granitoid Plutons. Tectonophysics, 157(4):315-329. https://doi.org/10.1016/0040-1951(89)90147-9 [112] 陈璟元, 杨进辉, 2015.佛冈高分异I型花岗岩的成因:来自Nb-Ta-Zr-Hf等元素的制约.岩石学报, 31(3):846-854. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201503017 [113] 陈新跃, 王岳军, 张玉芝, 等, 2013.桂东南南渡正长岩年代学、地球化学特征及其构造意义.大地构造与成矿学, 37(2):284-293. doi: 10.3969/j.issn.1001-1552.2013.02.011 [114] 崔建军, 张岳桥, 董树文, 等, 2013.华南陆缘晚中生代造山及其地质意义.中国地质, 40(1):86-105. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201301006 [115] 付建明, 马昌前, 谢才富, 等, 2004.湘南西山花岗质火山-侵入杂岩形成时代的确定.地球学报, 25(3):303-308. doi: 10.3321/j.issn:1006-3021.2004.03.005 [116] 甘成势, 王岳军, 张玉芝, 等, 2016.右江盆地晚侏罗世钾玄质高镁安山岩的厘定及其构造意义.岩石学报, 32(11):3281-3294. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201611004 [117] 高永宝, 李侃, 钱兵, 等, 2015.东昆仑卡而却卡铜矿区花岗闪长岩及其暗色微粒包体成因:锆石U-Pb年龄、岩石地球化学及Sr-Nd-Hf同位素证据.中国地质, 42(3):646-662. doi: 10.3969/j.issn.1000-3657.2015.03.018 [118] 广东省地质矿产局, 1988.广东省区域地质志.北京: 地质出版社. [119] 胡瑞忠, 毕献武, 彭建堂, 等, 2007.华南地区中生代以来岩石圈伸展及其与铀成矿关系研究的若干问题.矿床地质, 26(2):139-152. doi: 10.3969/j.issn.0258-7106.2007.02.001 [120] 贾小辉, 谢国刚, 孟德磊, 等, 2018.粤南海宴A型花岗岩与镁铁质包体的成因及意义.地球科学, 43(7):2294-2309. doi: 10.3799/dqkx.2018.184 [121] 劳妙姬, 邹和平, 杜晓东, 等, 2015.广西横县马山晚侏罗世钾玄质侵入岩的年代学和地球化学研究:兼论钦杭成矿带西南段燕山期构造背景.地学前缘, 22(2):95-107. http://d.old.wanfangdata.com.cn/Periodical/dxqy201502009 [122] 李献华, 胡瑞忠, 饶冰. 1997.粤北白垩纪基性岩脉的年代学和地球化学.地球化学, 26(2), 14-31. doi: 10.3321/j.issn:0379-1726.1997.02.004 [123] 李献华, 祁昌实, 刘颖, 等, 2005.扬子块体西缘新元古代双峰式火山岩成因:Hf同位素和Fe/Mn新制约.科学通报, 50(19):2155-2160. doi: 10.3321/j.issn:0023-074X.2005.19.015 [124] 李献华, 李武显, 李正祥, 等, 2007.再论南岭燕山早期花岗岩的成因类型与构造意义.科学通报, 52(9):981-991. doi: 10.3321/j.issn:0023-074X.2007.09.001 [125] 李献华, 周汉文, 刘颖, 等, 2000.粤西阳春中生代钾玄质侵入岩及其构造意义:Ⅰ.岩石学和同位素地质年代学.地球化学, 29(6):513-520. http://d.old.wanfangdata.com.cn/Periodical/dqhx200101007 [126] 李献华, 周汉文, 刘颖, 等, 2001.粤西阳春中生代钾玄质侵入岩及其构造意义:Ⅱ.微量元素和Sr-Nd同位素地球化学.地球化学, 30(1):57-65. http://d.old.wanfangdata.com.cn/Periodical/dqhx200101007 [127] 李增达, 于晓飞, 王全明, 等, 2018.胶东三佛山花岗岩的成因:成岩物理化学条件、锆石U-Pb年代学及Sr-Nd同位素约束.岩石学报, 34(2). http://d.old.wanfangdata.com.cn/Periodical/dzlp200601007 [128] 梁细荣, 韦刚健, 李献华, 等, 2003.利用MC-ICPMS精确测定143Nd/144Nd和Sm/Nd比值.地球化学, 32(1):91-96. doi: 10.3321/j.issn:0379-1726.2003.01.013 [129] 刘颖, 刘海臣, 1996.用ICP-MS准确测定岩石样品中的40余种微量元素.地球化学, (6):552-558. doi: 10.3321/j.issn:0379-1726.1996.06.004 [130] 毛景文, 谢桂青, 李晓峰, 等, 2004.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘, 11(1):45-55. doi: 10.3321/j.issn:1005-2321.2004.01.003 [131] 莫宣学, 2011.岩浆与岩浆岩:地球深部"探针"与演化记录.自然杂志, 33(5):255-259, 313. http://d.old.wanfangdata.com.cn/Periodical/zrzz201105002 [132] 牛之建, 刘跃, 狄永军, 等, 2014.大兴安岭五岔沟地区中生代粗安岩中斜长石环带特征及其地质意义.岩石矿物学杂志, 33(1):102-108. doi: 10.3969/j.issn.1000-6524.2014.01.008 [133] 彭卓伦, Grapes Rodney, 庄文明, 等, 2011.华南花岗岩暗色微粒包体的岩石化学组成特征及其意义.地学前缘, 18(1):74-81. http://d.old.wanfangdata.com.cn/Periodical/dxqy201101010 [134] 秦拯纬, 马昌前, 付建明, 等, 2018.东昆仑香加花岗质岩体中镁铁质包体成因:岩相学及地球化学证据.地球科学, 43(7):2420-2437. doi: 10.3799/dqkx.2018.549 [135] 舒良树, 周新民, 2002.中国东南部晚中生代构造作用.地质论评, 48(3):249-260. doi: 10.3321/j.issn:0371-5736.2002.03.004 [136] 孙涛, 2006.新编华南花岗岩分布图及其说明.地质通报, 25(3):332-335. doi: 10.3969/j.issn.1671-2552.2006.03.002 [137] 王德滋, 周金城, 2005.大火成岩省研究新进展.高校地质学报, 11(1):1-8. doi: 10.3969/j.issn.1006-7493.2005.01.001 [138] 王德滋, 刘昌实, 沈渭洲, 等, 1993.桐庐I型和相山S型两类碎斑熔岩对比.岩石学报, 9(1):44-54. doi: 10.3321/j.issn:1000-0569.1993.01.005 [139] 王德滋, 谢磊, 2008.岩浆混合作用:来自岩石包体的证据.高校地质学报, 14(1):16-21. doi: 10.3969/j.issn.1006-7493.2008.01.002 [140] 王岳军, 廖超林, 范蔚茗, 等, 2004.赣中地区早中生代OIB碱性玄武岩的厘定及构造意义.地球化学, 33(2):109-117. http://d.old.wanfangdata.com.cn/Periodical/dqhx200402001 [141] 韦刚健, 梁细荣, 李献华, 等, 2002. (LP)MC-ICPMS方法精确测定液体和固体样品的Sr同位素组成.地球化学, 31(3):295-299. doi: 10.3321/j.issn:0379-1726.2002.03.011 [142] 吴福元, 李献华, 杨进辉, 等, 2007.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001 [143] 吴福元, 李献华, 郑永飞, 等, 2008. Lu-Hf同位素体系及其岩石学应用.中国科学院地质与地球物理研究所学术论文汇编, 185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001 [144] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [145] 肖庆辉, 邓晋福, 马大铨, 等, 2002.花岗岩研究思维与方法.北京: 地质出版社: 12-71. [146] 谢磊, 王德滋, 王汝成, 等, 2004.浙江普陀花岗杂岩体中的石英闪长质包体:斜长石内部复杂环带研究与岩浆混合史记录.岩石学报, 20(6):96-107. [147] 曾认宇, 赖健清, 张利军, 等, 2016.湘中紫云山岩体暗色微粒包体的成因:岩相学、全岩及矿物地球化学证据.地球科学, 41(9):1461-1478. doi: 10.3799/dqkx.2016.512 [148] 张国伟, 郭安林, 王岳军, 等, 2013.中国华南大陆构造与问题.中国科学:地球科学, 43(10):1553-1582. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201310003 [149] 张瑞刚, 高雪, 杨立强, 2018.岩浆混合作用的识别: 以义敦岛弧稻城岩体为例.地球科学进展, (10). [150] 张玉芝, 王岳军, 郭小飞, 等, 2015.江南中段慈化地区新元古代高镁安山岩的厘定及其构造意义.地球科学, 40(11):1781-1795. doi: 10.3799/dqkx.2015.159 [151] 张岳桥, 董树文, 李建华, 等, 2012.华南中生代大地构造研究新进展.地球学报, 33(3):257-279. http://d.old.wanfangdata.com.cn/Periodical/dqxb201203001 [152] 周新民, 2003.对华南花岗岩研究的若干思考.高校地质学报, 9(4):556-565. doi: 10.3969/j.issn.1006-7493.2003.04.009 [153] 朱金初, 王汝成, 张佩华, 等. 2009.南岭中段骑田岭花岗岩基的锆石U-Pb年代学格架.地球科学, 39(8):1112-1127. [154] 朱金初, 张佩华, 谢才富, 等, 2006a.桂东北里松花岗岩中暗色包体的岩浆混合成因.地球化学, 35(5):506-516. http://d.old.wanfangdata.com.cn/Periodical/dqhx200605005 [155] 朱金初, 张佩华, 谢才富, 等, 2006b.南岭西段花山-姑婆山侵入岩带锆石U-Pb年龄格架及其地质意义.岩石学报, 22(9):2270-2278. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200609002