Strength Degradation Mechanism of Soft and Hard Interbedded Rock Masses of Badong Formation Caused by Rock/Discontinuity Degradation
-
摘要: 岩石/结构面劣化导致巴东组软硬互层岩体强度劣化的作用机制是揭示三峡库区库岸消落带巴东组软硬互层岩体强度渐进劣化机理和评价库岸边坡稳定性的关键问题.以三峡库区典型"易滑岩组"巴东组第二段红色系列的砂岩与粉砂质泥岩互层岩组为研究对象,考虑干湿循环条件下岩石/结构面参数劣化,开展了软硬互层岩体单轴压缩数值试验,分析了软岩/硬岩/层面劣化对巴东组软硬互层岩体单轴压缩强度劣化的贡献度及其与岩层倾角的关系.研究结果表明,不同岩层倾角条件下,软岩/硬岩/层面劣化对巴东组软硬互层岩体单轴压缩强度劣化的影响有明显区别,以软岩/硬岩/层面劣化对巴东组软硬互层岩体单轴压缩强度劣化的贡献度为依据,将岩层倾角全范围划分为软岩控制区、软岩-硬岩-层面共同控制区、沿层面滑移失稳破坏区和硬岩控制区,揭示了岩石/结构面劣化导致巴东组软硬互层岩体强度劣化的作用机制及其受岩层倾角的影响,为进一步研究库岸消落带巴东组软硬互层岩体强度渐进劣化机理奠定了基础.Abstract: Strength degradation mechanism of soft and hard interbedded rock mass of Badong Formation caused by rock/discontinuity degradation is the key issue to reveal progressive strength deterioration mechanism of soft and hard interbedded rock mass of Badong Formation in hydro-fluctuation belt of reservoir bank and to evaluate the stability of reservoir bank slope in the Three Gorges area. Sandstone and silty mudstone of the typical sliding-prone soft and hard interbedded rock masses of Badong Formation in the Three Gorges area were taken as the research object to conduct uniaxial compression numerical test, considering the deterioration of rock/discontinuity parameters under the condition of drying-wetting cycle, the contribution of soft rock/hard rock/bedding plane degradation to the uniaxial compression strength degradation of soft and hard interbedded rock masses in the Badong Formation and its relationship with the dip angle are analyzed. The results indicate that the influence of soft rock/hard rock/bedding plane deterioration on the uniaxial compression strength degradation of soft and hard interbedded rock mass in the Badong Formation has obvious difference under different dip angles. The dip angle is divided into soft rock control zone, soft rock-hard rock-bedding plane common control zone, slip failure zone along the bedding plane and hard rock control zone based on their contribution. The results reveal the mechanism of strength degradation of soft and hard interbedded rock mass caused by rock/discontinuity deterioration and the influence of dip angle, which provides the basis for revealing the progressive strength deterioration mechanism of soft and hard interbedded rock masses of the Badong Formation in hydro-fluctuation belt of reservoir bank.
-
表 1 不同干湿循环次数下巴东组粉砂质泥岩/砂岩/层面强度参数值
Table 1. Strength parameters of silty mudstone/sandstone/bedding plane in Badong Formation under different drying-wetting cycles
干湿循环
0次干湿循环
1次干湿循环
3次干湿循环
5次干湿循环
7次干湿循环
10次干湿循环
15次粉砂质泥岩 粘聚力(MPa) 2.28 1.17 0.79 0.67 0.59 0.50 0.39 内摩擦角(°) 34.8 28.8 19.4 16.6 15.4 14.9 14.6 抗拉强度(MPa) 1.44 1.35 1.15 0.47 0.25 0.12 0.03 砂岩 粘聚力(MPa) 10.1 6.35 4.99 4.26 3.75 3.19 2.52 内摩擦角(°) 45.1 44.3 41.4 39.7 38.5 37.3 35.9 抗拉强度(MPa) 5.99 3.46 2.71 2.31 2.04 1.74 1.38 层面 粘聚力(MPa) 0.045 0.040 0.028 0.023 0.021 0.019 0.016 内摩擦角(°) 27.0 26.5 25.7 24.9 24.1 23.2 22.1 表 2 不同岩层倾角条件下软岩/硬岩/层面劣化对巴东组软硬互层岩体强度劣化的贡献度
Table 2. The contribution of soft rock/hard rock/bedding plane degradation to the strength degradation of soft and hard interbedded rock masses in the Badong Formation under different dip angles
岩层倾角(°) 干湿循环15次后岩体强度劣化率d(%) 岩石/层面劣化对岩体强度劣化的贡献度 软岩贡献度Cs(%) 硬岩贡献度Ch(%) 层面贡献度Cb(%) 软岩控制区 0 88.11 56.06 43.78 0.17 10 90.31 56.91 42.95 0.14 20 85.57 60.11 39.19 0.70 22 83.46 65.05 34.95 0.00 软岩-硬岩-层面共同控制区 23 84.24 53.88 36.40 9.72 24 84.64 50.60 23.52 25.88 25 84.39 53.16 17.08 29.75 26 80.93 42.10 22.65 35.25 27 80.53 42.38 19.14 38.47 沿层面滑移失稳破坏区 28 0.00 / / / 77 13.41 / / / 硬岩控制区 78 26.99 0.26 97.83 1.92 80 33.00 0.42 96.73 2.85 85 66.75 0.45 99.21 0.34 90 75.17 25.64 74.07 0.29 注:“/”代表该区间岩体单轴压缩强度劣化可忽略不计,故无需计算软岩/硬岩/层面劣化贡献度. -
[1] Chen, Y.L., Zhang, Y.N., Li, K.B., et al., 2017. Distinct Element Numerical Analysis of Failure Process of Interlayered Rock Subjected to Uniaxial Compression. Journal of Mining and Safety Engineering, 34(4): 795-802, 816 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ksylydbgl201704027 [2] Deng, H.F., Zhou, M.L., Li, J.L., et al., 2016. Mechanical Properties Deteriorating Change Rule Research of Red-Layer Soft Rock under Water-Rock Interaction. Chinese Journal of Rock Mechanics and Engineering, 35(Suppl.2): 3481-3491 (in Chinese with English abstract). [3] Deng, Q.L., Zhu, Z.Y., Cui, Z.Q., et al., 2000. Mass Rock Creep and Landsliding on the Huangtupo Slope in the Reservoir Area of the Three Gorges Project, Yangtze River, China. Engineering Geology, 58(1): 67-83. https://doi.org/10.1016/S0013-7952(00)00053-3 [4] Diao, X.H., Fang, X.T., Yang, C.X., 1999. Key Problems in Numerical Simulation Application in Rock Engineering and Its Development. Metal Mine, (6): 5-7 (in Chinese with English abstract). [5] Fang, K., Wu, Q., Wang, J., et al., 2014. Research on Shear Characteristics and the Evolution Mechanism of Bedding Planes between Two Different Rock Types Based on Particle Flow Code. Journal of Yangtze River Scientific Research Institute, 31(11): 31-37 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjkxyyb201411007 [6] Fu, Y., Wang, Z.J., Liu, X.R., et al., 2017. Meso Damage Evolution Characteristics and Macro Degradation of Sandstone under Wetting-Drying Cycles. Chinese Journal of Geotechnical Engineering, 39(9): 1653-1661 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201709013 [7] Jia, C.G., Chen, J.H., Guo, Y.T., et al., 2013. Research on Mechanical Behaviors and Failure Modes of Layer Shale. Rock and Soil Mechanics, 34(Suppl.2): 57-61 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx2013z2009 [8] Jian, W.X., Li, S.J., Tao, L., 2015. Deterioration Mechanism of Shear Strength of Badong Formation Soft Rocks in the Hydro-Fluctuation Belt of Three Gorges Reservoir. Geological Science and Technology Information, 34(4): 170-175 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201504025 [9] Jian, W.X., Yin, K.L., Ma, C.Q., et al., 2005. Characteristics of Incompetent Beds in Jurassic Red Clastic Rocks in Wanzhou. Rock and Soil Mechanics, 26(6): 901-905, 914 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200506015 [10] Li, A., Shao, G.J., Fan, H.L., et al., 2014. Investigation of Mechanical Properties of Soft and Hard Interbedded Composite Rock Mass Based on Meso-Level Heterogeneity. Chinese Journal of Rock Mechanics and Engineering, 33(Suppl.1): 3042-3049 (in Chinese with English abstract. http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX2014S1064.htm [11] Li, H.L., Yi, S.H., Deng, Q.L., 2006. Development Characteristics and Their Spatial Variations of Badong Formation in the Three Gorges Reservoir Region. Journal of Engineering Geology, 14(5): 577-581 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb200605001 [12] Li, S.D., Li, X., Zhang, N.X., et al., 2004. Sedimentation Characteristics of the Jurassic Sliding Prone Stratum in the Three Gorges Reservoir Area and Their Influence on Physical and Mechanical Properties of Rock. Journal of Engineering Geology, 12(4): 385-389 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb200404009 [13] Liang, Z.Z., Tang, C.A., Li, H.X., et al., 2005. A Numerical Study on Failure Process of Transversely Isotropic Rock Subjected to Uniaxial Compression. Rock and Soil Mechanics, 26(1): 57-62 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200501012 [14] Liu, X.R., Wang, Z.J., Fu, Y., et al., 2017. Strength and Failure Criterion of Argillaceous Sandstone under Dry-Wet Cycles. Rock and Soil Mechanics, 38(12): 3395-3401 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201712001 [15] Shen, P.W., Tang, H.M., Wang, D.J., et al., 2017. Disintegration Characteristics of Red-Bed Mudstone of Badong Formation under Wet-Dry Cycles. Rock and Soil Mechanics, 38(7): 1990-1998 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201707019 [16] Tang, H.M., Ma, S.Z., Liu, Y.R., et al., 2002. Stability and Control Measures of Zhaoshuling Landslide, Badong County, Three Gorges Reservoir. Earth Science, 27(5): 621-625 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200205024 [17] Tang, H.M., Wasowski, J., Juang, C.H., 2019.Geohazards in the Three Gorges Reservoir Area, China: Lessons Learned from Decades of Research. Engineering Geology, 261:1-15. https://doi.org/10.1016/j.enggeo.2019.105267 doi: 10.1016/j.enggeo.2019.105267 [18] Teng, W.F., Wu, Y.P., Yang, D.Y., 2005. Landslide Stability and Control Method of Xirangpozi Landslide in Badong County. Geological Science and Technology Information, 24(Suppl.): 142-144 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ2005S1039.htm [19] Tien, Y.M., Kuo, M.C., 2001. A Failure Criterion for Transversely Isotropic Rocks. International Journal of Rock Mechanics and Mining Sciences, 38(3): 399-412. https://doi.org/10.1016/S1365-1609(01)00007-7 [20] Tien, Y.M., Kuo, M.C., Juang, C.H., 2006. An Experimental Investigation of the Failure Mechanism of Simulated Transversely Isotropic Rocks. International Journal of Rock Mechanics and Mining Sciences, 43(8): 1163-1181. https://doi.org/10.1016/j.ijrmms.2006.03.011 [21] Wu, Q., Xu, Y.J., Tang, H.M., et al., 2018. Investigation on the Shear Properties of Discontinuities at the Interface between Different Rock Types in the Badong Formation, China. Engineering Geology, 245:280-291. https://doi.org/10.1016/j.enggeo.2018.09.002 [22] Wu, Q., Xu, Y.J., Tang, H.M., et al., 2019. Peak Shear Strength Prediction for Discontinuities between Two Different Rock Types Using Neural Network Approach. Bulletin of Engineering Geology and the Environment, 78(4):2315-2329. https://doi.org/10.1007/s10064-018-1290-x [23] Wu, Y.P., Yu, H.M., Hu, Y.X., 2006. Research on Engineering Geological Characters of Aubergine Mudstone of Badong New City Zone. Rock and Soil Mechanics, 27(7): 1201-1203, 1208 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200607037 [24] Xiang, F.F., Wang, L.C., Yao, R., et al., 2018. The Characteristics of Climate Change and Response of Vegetation in Three Gorges Reservoir Area. Earth Science, 43(Suppl.1): 42-52 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx2018z1005 [25] Yan, T.Z., 1994. Hydro-Engineering Geology and Environment Protection. China University of Geosciences Press, Wuhan (in Chinese). [26] Yao, C., Li, Y., Jiang, Q.H., et al., 2015. Mesoscopic Model of Failure Process of Interlayered Rock under Compression. Chinese Journal of Rock Mechanics and Engineering, 34(8): 1542-1551 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSLX201508006.htm [27] Yin, Y.P., Hu, R.L., 2004. Engineering Geological Characteristics of Purplish-Red Mudstone of Middle Tertiary Formation at the Three Gorges Reservoir. Journal of Engineering Geology, 12(2): 124-135 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb200402003 [28] Yu, H.M., Hu, Y.X., Zhang, C.G., 2002. Research on Disintegration Characters of Red Mudstone of Xirangpo in Badong Area of the Reservoir of Three Gorges Project. Geological Science and Technology Information, 21(4): 77-80 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200204015.htm [29] Zeng, S., Li, Z.C., Wei, H., et al., 2013. Stability Analysis of Red Sand Stone Bedding Slope under Rainfall Infiltration and Dry-Wet Cycling. Rock and Soil Mechanics, 34(6): 1536-1540, 1559 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YTLX201306004.htm [30] Zhang, G.M., Li, Y.P., Yang, C.L., et al., 2012. Physical Simulation of Deformation and Failure Mechanism of Soft and Hard Interbedded Salt Rocks. Chinese Journal of Rock Mechanics and Engineering, 31(9): 1813-1820 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSLX201209009.htm [31] Zhang, J.Y., Wan, L.P., Pan, H.Y., et al., 2017. Long-Term Stability of Bank Slope Considering Characteristics of Water-Rock Interaction. Chinese Journal of Geotechnical Engineering, 39(10): 1851-1858 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201710013 [32] Zhang, Z.H., Huang, X., Cui, Q., 2017. Experimental Study on Deterioration of the Tensile Strength of Red Sandstone during the Operation of Reservoir. Chinese Journal of Rock Mechanics and Engineering, 36(11): 2731-2740 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201711012 [33] 陈宇龙, 张宇宁, 李科斌, 等, 2017.单轴压缩下软硬互层岩石破裂过程的离散元数值分析.采矿与安全工程学报, 34(4): 795-802, 816. http://d.old.wanfangdata.com.cn/Periodical/ksylydbgl201704027 [34] 邓华锋, 周美玲, 李建林, 等, 2016.水-岩作用下红层软岩力学特性劣化规律研究.岩石力学与工程学报, 35(增刊2): 3481-3491. http://www.cnki.com.cn/Article/CJFDTotal-YSLX2016S2005.htm [35] 刁心宏, 冯夏庭, 杨成祥, 1999.岩石工程中数值模拟的关键问题及其发展.金属矿山, (6): 5-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900372455 [36] 方堃, 吴琼, 王姣, 等, 2014.基于颗粒流异性层面剪切特性及演化机理研究.长江科学院院报, 31(11): 31-37. doi: 10.3969/j.issn.1001-5485.2014.11.007 [37] 傅晏, 王子娟, 刘新荣, 等, 2017.干湿循环作用下砂岩细观损伤演化及宏观劣化研究.岩土工程学报, 39(9): 1653-1661. http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201709013 [38] 贾长贵, 陈军海, 郭印同, 等, 2013.层状页岩力学特性及其破坏模式研究.岩土力学, 34(增刊2): 57-61. http://d.old.wanfangdata.com.cn/Periodical/ytlx2013z2009 [39] 简文星, 李世金, 陶良, 2015.三峡库区消落带巴东组软岩抗剪强度劣化机理.地质科技情报, 34(4): 170-175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201504025 [40] 简文星, 殷坤龙, 马昌前, 等, 2005.万州侏罗纪红层软弱夹层特征.岩土力学, 26(6): 901-905, 914. doi: 10.3969/j.issn.1000-7598.2005.06.015 [41] 李昂, 邵国建, 范华林, 等, 2014.基于细观层次的软硬互层状复合岩体力学特性研究.岩石力学与工程学报, 33(增刊1): 3042-3049. http://www.cnki.com.cn/Article/CJFDTotal-YSLX2014S1064.htm [42] 李华亮, 易顺华, 邓清禄, 2006.三峡库区巴东组地层的发育特征及其空间变化规律.工程地质学报, 14(5): 577-581. doi: 10.3969/j.issn.1004-9665.2006.05.001 [43] 李守定, 李晓, 张年学, 等, 2004.三峡库区侏罗系易滑地层沉积特征及其对岩石物理力学性质的影响.工程地质学报, 12(4): 385-389. doi: 10.3969/j.issn.1004-9665.2004.04.009 [44] 梁正召, 唐春安, 李厚祥, 等, 2005.单轴压缩下横观各向同性岩石破裂过程的数值模拟.岩土力学, 26(1): 57-62. doi: 10.3969/j.issn.1000-7598.2005.01.012 [45] 刘新荣, 王子娟, 傅晏, 等, 2017.考虑干湿循环作用泥质砂岩的强度与破坏准则研究.岩土力学, 38(12): 3395-3401. http://d.old.wanfangdata.com.cn/Periodical/ytlx201712001 [46] 申培武, 唐辉明, 汪丁建, 等, 2017.巴东组紫红色泥岩干湿循环崩解特征试验研究.岩土力学, 38(7):1990-1998. http://d.old.wanfangdata.com.cn/Periodical/ytlx201707019 [47] 唐辉明, 马淑芝, 刘佑荣, 等, 2002.三峡工程库区巴东县赵树岭滑坡稳定性与防治对策研究.地球科学, 27(5): 621-625. http://www.earth-science.net/article/id/1175 [48] 滕伟福, 吴益平, 杨冬英, 2005.巴东县西壤坡西滑坡稳定性分析与防治对策研究.地质科技情报, 24(增刊): 142-144. http://d.old.wanfangdata.com.cn/Periodical/dzkjqb2005z1038 [49] 吴益平, 余宏明, 胡艳新, 2006.巴东新城区紫红色泥岩工程地质性质研究.岩土力学, 27(7): 1201-1203, 1208. doi: 10.3969/j.issn.1000-7598.2006.07.037 [50] 向菲菲, 王伦澈, 姚瑞, 等, 2018.三峡库区气候变化特征及其植被响应.地球科学, 43(S1): 42-52. http://d.old.wanfangdata.com.cn/Periodical/dqkx2018z1005 [51] 晏同珍, 1994.水文工程地质与环境保护.武汉:中国地质大学出版社. [52] 姚池, 李姚, 姜清辉, 等, 2015.应力作用下软硬互层岩石破裂过程的细观模拟.岩石力学与工程学报, 34(8): 1542-1551. http://www.cnki.com.cn/Article/CJFDTotal-YSLX201508006.htm [53] 殷跃平, 胡瑞林, 2004.三峡库区巴东组(T2b)紫红色泥岩工程地质特征研究.工程地质学报, 12(2): 124-135. doi: 10.3969/j.issn.1004-9665.2004.02.003 [54] 余宏明, 胡艳欣, 张纯根, 2002.三峡库区巴东地区紫红色泥岩的崩解特性研究.地质科技情报, 21(4): 77-80. doi: 10.3969/j.issn.1000-7849.2002.04.016 [55] 曾胜, 李振存, 韦慧, 等, 2013.降雨渗流及干湿循环作用下红砂岩顺层边坡稳定性分析.岩土力学, 34(6): 1536-1540, 1559. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201306003 [56] 张桂民, 李银平, 杨长来, 等, 2012.软硬互层盐岩变形破损物理模拟试验研究.岩石力学与工程学报, 31(9): 1813-1820. doi: 10.3969/j.issn.1000-6915.2012.09.012 [57] 张景昱, 宛良朋, 潘洪月, 等, 2017.考虑水-岩作用特点的典型岸坡长期稳定性分析.岩土工程学报, 39(10): 1851-1858. doi: 10.11779/CJGE201710013 [58] 张振华, 黄翔, 崔强, 2017.水库运行期岸坡消落带红砂岩抗拉强度劣化机制.岩石力学与工程学报, 36(11): 2731-2740. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201711012