Reservoirs Characteristics and Formation Mechanism of High Temperature and Overpressure Reservoirs from Miocene in Ying-Qiong Basin
-
摘要: 中新统黄流-梅山组重力流、高温超压储层是南海北部莺-琼盆地中央坳陷带主力勘探层系,发育粉、细、中、粗砂岩与中、低、特低渗物性特征.通过研究高温超压储层特征,确定有利储层形成机制,为重点领域评价提供地质依据.结果表明,由东方到乐东区到乐东-陵水凹陷、由凹陷斜坡区到凹陷中心,由于地温梯度与异常超压形成时间、强度的变化,进入各成岩期深度加深,储层孔隙度纵向减小幅度不大,明显不同于斜坡区常压储层.沉积环境控制的储集岩粒度、泥质杂基与高温超压、热流体控制的成岩作用共同控制有利储层,以往凹陷方向发育早期超压保护的海底扇区为有利,凹陷斜坡区热流体作用形成大量次生孔隙,发育中渗“甜点”储层.Abstract: The main exploration strata are gravity flow deposits and high temperature and overpressure reservoirs with silty, fine, medium and coarse sandstone, and with physical characteristics of medium, low and ultra-low permeability, from the Miocene Huangliu-Meishan Formation in the central depression of Ying-Qiong Basin in the northern South China Sea. By studying the characteristics of high temperature and overpressure reservoirs, the formation mechanism of favorable reservoir is determined, which provides geological basis for evaluation of key areas. From Dongfang to Ledong to Ledong-Lingshui Depression, from the slope area of the sag to the center of the sag, the depth is deepened in each diagenesis period because of differences in the geothermal gradient and the formation time and development intensity, of abnormal overpressure, however, the porosity decreases slightly in the longitudinal direction, which is obviously different from the atmospheric reservoir in the slope area. Favorable reservoirs are controlled by the grain size and mudstone matrix of reservoir rock controlled by sedimentary environment, and diagenesis controlled by high temperature, overpressure and thermal fluid.The submarine fan reservoir with overpressure protection is favorable in the center of sag. The medium permeability "sweet spot" reservoir is developed with a large number of secondary pores formed by thermal fluids in the slope.
-
图 3 莺-琼盆地中新统水道-海底扇储层特征显微照片
a.极细-细粒石英砂岩,点-线接触,粒间孔为主(X2-1井,2 984.00 m,H1,单偏光);b.极细砂岩,点-线接触,粒间孔与粒内溶孔(Y2-1井,3 852.00 m,H2,单偏光);c.中-细砂岩,线接触,粒间孔与粒内溶孔(A2-1井,3711.50 m,H1,单偏光);d.粗-中砂岩,线、凹凸-线接触,粒间溶孔、粒内溶孔(A2-1井,3 884.00 m,H2,单偏光);e.中砂岩,粒内溶孔与粒间溶孔,凹凸-线接触(A2-1井,4 136.40 m,M1,单偏光);f.粉-极细砂岩,铸模孔为主,线接触为主(B-7井,3 892.89 m,H2,单偏光);g.极细砂岩,点-线接触,粒间孔为主(S-2井,3 800.78 m,M,单偏光);h.中-粗砂岩,线-凹凸接触,粒间孔与粒间溶孔(C-1井,3 968.00 m,M,单偏光);i.砂砾岩,线接触,粒间孔发育(B-2井,4 821.25 m,M,单偏光);j.极细-细砂岩,少量粘土矿物堵塞孔隙(Y2-1井,3 871.00 m,H1,正交光);k.极细-细砂岩,大量粘土矿物堵塞孔隙(B-7井,3 701.70 m,H2,正交光);l.中-粗砂岩,溶蚀孔发育,铁白云石充填(A1-6井,4 310.50 m,H2,单偏光)
Fig. 3. Microphotos of channel-submarine fan reservoir from miocene in Ying-Qiong Basin
表 1 莺-琼盆地中央坳陷带中新统储层参数对比表
Table 1. Reservoirs parameters of miocene in the central depression of Ying-Qiong Basin
构造 层位 埋深(m) 平均压力系数 平均流体压力(MPa) 平均地温梯度(℃/km) 粒级 孔隙度(%) 孔隙度评价 渗透率(mD) 渗透率评价 东方X1区 H1 2 687~3 213 1.93 54.6 38.7 粉、极细、细 6.6~22.7/17.3 低-中孔 0.05~90.4/5.7 低渗为主 东方X2区 2 750~3 455 1.71 53.2 38.8 极细、细 4.3~21.0/15.6 0.1~344.6/33.7 中渗为主 东方Y2区 H2 3 820~3 890 2.17 82.1 40.0 极细 9.7~16.9/14.9 中-低孔 0.1~1.8/0.9 低-特低渗 乐东A区 H1 3 710~3 763 1.70 62.5 36.6 细 14.2~16.8/15.7 中孔 0.7~4.7/2.2 中孔、低渗 H2 3 850~4 340 1.96 76.8 38.0 细、中、粗 0.9~16.2/8.2 低-特低孔 0.05~33.70/1.60 特低、低、中渗 M1 4 057~4 175 2.21 88.6 39.2 粗~中 0.03~15.80/9.10 低-特低孔 0.05~8.10/0.5 低-特低渗 乐东B区 H2 3 700~3 900 2.13 79.2 42.9 极细 16.7~20.4/19.3 中孔 0.1~0.9/0.3 特低渗 陵水S区 M 3 432~3 940 1.86 67.2 35.4 粉、极细 10.2~26.1/19.6 低-中孔 0.05~26.90/4.600 中、低、特低渗 崖城C区 3 899~4 023 1.85 71.6 36.8 中~粗 1.3~19.7/13.7 低孔为主 0.1~4.6/1.6 低渗为主 崖城B区 4 817~4 835 1.85 87.4 40.0 粗、砂砾 2.5~13.1/6.8 低-特低孔 0.01~9.10/0.90 低-特低渗 -
[1] Ajdukiewicz, J. M., Nicholson, P. H., Esch, W. L., 2010. Prediction of Deep Reservoir Quality Using Early Diagenetic Process Models in the Jurassic Norphlet Formation, Gulf of Mexico. AAPG Bulletin, 94(8): 1189-1227. https://doi.org/10.1306/04211009152 [2] Bloch, S., Robert, H. L., Bonnell, L., 2002.Anomalously High Porosity and Permeability in Deeply Buried Sandstone Reservoirs: Origin and Predictability. AAPG Bulletin, 86 (2):301-328. https://doi.org/10.1306/61eed634-173e-11d7-8645000102c1865d [3] Duan, W., Li, C. F., Luo, C. F., et al., 2018. Effect of Formation Overpressure on the Reservoir Diagenesis and its Petroleum Geological Significance for the DF11 Block of the Yinggehai Basin, the South China Sea. Marine and Petroleum Geology, 33(6)649-56. https://doi.org/10.13039/501100001809 [4] Duan, W., Luo, C., Liu, J., et al., 2015. Effect of Overpressure Formation on Reservoir Diagenesis and Its Geological Significance to LD Block of Yinggehai Basin. Earth Science, 40(9):1517-1528(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201509007 [5] Fan, C.W., Li, X.S., Liu, K., et al., 2016. Hydrocarbon Accumulation Condition of Miocene Litho-Stratigraphic Trap in Ledong & Lingshui Sags, Qiongdongnan Basin. China Offshore Oil and Gas, 28(2):53-59(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-gc201602006 [6] Feng, C., Huang, Z.L., Tong, C.X., et al., 2017. Overpressure Evolution and Its Relationship with Migration and Accumulation of Gas in Yinggehai Basin. Journal of Jilin University(Earth Science Edition), 28(12):1864-1872(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201305004 [7] Guo, X.X., Xu, X.D., Xiong, X.F., et al., 2017. Gas Accumulation Characteristics and Favorable Exploration Directions in Mid-Deep Strata of the Yinggehai Basin. Natural Gas Geoscience, 28(12):1864-1872(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201712009 [8] Gao, Y., Qu, X.Y., Yang, X.B., et al., 2018. Characteristics of Fluid Inclusions and Accumulation Periodof Miocene Reservoir in Ledong-Lingshui Sag of Qiongdongnan Basin. Marine Origin Petroleum Geology, 23(1):83-90(in Chinese with English abstract). [9] Higgs, K. E., Crouch, E. M., Raine, J. I., 2017. An Interdisciplinary Approach to Reservoir Characterisation; An Example from the Early to Middle Eocene Kaimiro Formation, Taranaki Basin, New Zealand. Marine and Petroleum Geology, 86: 111-139. https://doi.org/10.1016/j.marpetgeo.2017.05.018 [10] Huang, Z.L., Zhu, J.C., Ma, J., et al., 2015. Characteristics and Genesis of High-Porosity and Low-Permeability Reservoirs in the Huangliu Formation of High Temperature and High Pressure Zone in Dongfang Area, Yinggehai Basin. Oil and Gas Geology, 36(2):288-296(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201502014 [11] Liu, J.Z., Wang, C.W., 2004. Thermal Fluids and Petroleum Geological Significance in Ying-Qiong Basin. Natural Gas Exploration and Development, 27(1): 12-15(in Chinese with English abstract). [12] Li, Z., Luo, W., Zeng, B.Y., et, a.l, 2018. Fluid-Rock Interactions and Reservoir Formation Driven by Multiscale Structural Deformation in Basin Evolution. Earth Science, 43(10):3498-3510(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201810013 [13] Shi, L., Jin, Z. K., Yan, W., et al., 2015. Influences of Overpressure on Reservoir Compaction and Cementation: A Case from Northwestern Subsag, Bozhong Sag, Bohai Bay Basin, East China. Petroleum Exploration and Development, 42(3): 339-347. https://doi.org/10.1016/s1876-3804(15)30024-0 [14] Shou, J.F., Zhang, H.L., Shen, Y., et al., 2006. Diagenetic Mechanisms of Sandstone Reservoirs in China Oil and Gas-Bearing Basins. Acta Petrologica Sinica, 22(8):2065-2170(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200608006 [15] Su, L., Zheng, J.J., Wang, Q., et al., 2012.Formation Mechanism and Research Progress on Overpressure in the Qiongdongnan Basin. Natural Gas Geoscience, 23(4):662-672(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201204007 [16] Wang, H., Zhou, L.H., Han, G.M., et al., 2018. Large Gravity Flow Deposits in the Member1 of Paleogene Shahejie Formation, Qikou Sag, Bohai Bay Basin. Earth Science, 43(10):3423-3444(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201810008 [17] Wang, Z.F., Pei, J.X., Hao, D.F., et al., 2015. Development Conditions, Sedimentary Characteristics of Miocene Large Gravity Flow Reservoirs and the Favorable Gas Exploration Directions in Ying-Qiong Basin. China Offshore Oil and Gas, 27(4):13-21(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-gc201504002 [18] Xie, Y.H., Li, X.S., Tong, C.X., et al., 2015. High Temperature and High Pressure Gas Enrichment Condition, Distribution Law and Accumulation Model in Central Diaper Zone of Yinggehai Basin. China Offshore Oil and Gas, 27(4):1-12(in Chinese with English abstract). [19] Xie, Y.H., Li, X.S., Xu, X.D., et al., 2016. Gas Accumulation and Great Exploration Breakthroughs in HTHP Formations within Yinggehai-Qiongdongnan Basins. China Petroleum Exploration, 21(4):19-29(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsykt201604003 [20] Xie, Y.H., Zhang, Y.Z., Li, X.S., et al., 2012. Main Controlling Factors Formation Models of Natural Gas Reservoirs with High-Temperature and Overpressure in Yinggehai Basin. Acta Petrolei Sinica, 33(4):601-609(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201204009 [21] Zhang, H.L., Pei, J.X., Zhang, Y.Z., et al., 2013. Overpressure Reservoirs in the Mid-Deep Huangliu Formation of the Dongfang Area, Yinggehai Basin, South China Sea. Petroleum Exploration and Development, 40(3):284-295(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201303004 [22] Zeng, Z.P., Hao, F., Song, G.Q., et al., 2010.Palaeo-Formation Pressure Evolution and Episodic Hydrocarbon Accumulation in Taoerhe Depression, Chezhen Sag. Oil & Gas Geology, 31(2):193-205(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201002012.htm [23] Zhang, X.X., Zou, C.N., Zhu, R.K, et al., 2011.Reservoir Diagenetic Facies of the Upper Triassic Xujiahe Formation in the Central Sichuan Basin. Acta Petrolei Sinica, 2011, 32(2):257-264(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201102011.htm [24] Zeng, X.M., Yu, J., Pan, Y., et al., 2016. Porosity Evolution and Diagenetic Facies Study of Submarine Fan Reservoir in North Slope of Lingshui Sag. Acta Sedmentologica Sinica.34(6):1198-1207(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201606018 [25] 段威, 罗程飞, 刘建章, 等, 2015.莺歌海盆地LD区块地层超压对储层成岩作用的影响及其地质意义.地球科学, 40(9): 1517-1528. http://www.earth-science.net/WebPage/Article.aspx?id=3155 [26] 范彩伟, 李绪深, 刘昆, 等, 2016.琼东南盆地乐东、陵水凹陷中新统岩性地层圈闭成藏条件.中国海上油气, 28(2):53-59. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201602006 [27] 冯冲, 黄志龙, 童传新, 等, 2013.莺歌海盆地地层压力演化特征及其与天然气运聚成藏的关系.吉林大学学报(地球科学版), 43(5): 1341-1350. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201305004 [28] 高媛, 曲希玉, 杨希冰, 等, 2018.琼东南盆地乐东-陵水凹陷中新统储层流体包裹体特征及成藏期研究.海相油气地质, 23(1): 83-90. doi: 10.3969/j.issn.1672-9854.2018.01.010 [29] 郭潇潇, 徐新德, 熊小峰, 等, 2017.莺歌海盆地中深层天然气成藏特征与有利勘探领域.天然气地球科学, 28(12): 1864-1872. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201712009 [30] 黄志龙, 朱建成, 马剑, 等, 2015.莺歌海盆地东方区高温高压带黄流组储层特征及高孔低渗成因.石油与天然气地质, 36(2): 288-296. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201502014 [31] 李忠, 罗威, 曾冰艳, 等, 2018.盆地多尺度构造驱动的流体-岩石作用及成储效应.地球科学, 43(10):3498-3510. http://www.earth-science.net/WebPage/Article.aspx?id=3992 [32] 刘建章, 王存武, 2004.莺-琼盆地热流体及油气地质意义.天然气勘探与开发.27(1): 12-15. doi: 10.3969/j.issn.1673-3177.2004.01.004 [33] 寿建峰, 张惠良, 沈扬, 等, 2006.中国油气盆地砂岩储层的成岩压实机制分析.岩石学报, 22(8): 2065-2170. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200608006 [34] 苏龙, 郑建京, 王琪, 等, 2012.琼东南盆地超压研究进展及形成机制.天然气地球科学, 23(4):662-672. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201204007 [35] 王华, 周立宏, 韩国猛, 等, 2018.陆相湖盆大型重力流发育的成因机制及其优质储层特征研究:以歧口凹陷沙河街组一段为例.地球科学, 43(10):3423-3444. http://www.earth-science.net/WebPage/Article.aspx?id=3987 [36] 王振峰, 裴健翔, 郝德峰, 等, 2015.莺-琼盆地中新统大型重力流储集体发育条件、沉积特征及天然气勘探有利方向.中国海上油气, 27(4): 13-21. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201504002 [37] 谢玉洪, 李绪深, 童传新, 等, 2015.莺歌海盆地中央底辟带高温高压天然气富集条件、分布规律和成藏模式.中国海上油气, 27(4): 1-12. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201504001 [38] 谢玉洪, 李绪深, 徐新德, 等, 2016.莺琼盆地高温高压领域天然气成藏与勘探大突破.中国石油勘探, 21(4): 19-29. doi: 10.3969/j.issn.1672-7703.2016.04.003 [39] 谢玉洪, 张迎朝, 李绪深, 等, 2012.莺歌海盆地高温超压气藏控藏要素与成藏模式.石油学报, 33(4): 601-609. http://d.old.wanfangdata.com.cn/Periodical/syxb201204009 [40] 曾小明, 于佳, 潘燕, 等, 2016.陵水凹陷北坡海底扇孔隙演化和成岩相研究.沉积学报, 34(6): 1198-1207. http://d.old.wanfangdata.com.cn/Periodical/cjxb201606018 [41] 曾治平, 郝芳, 宋国奇, 等, 2010.车镇凹陷套尔河洼陷古地层压力演化与油气幕式成藏.石油与天然气地质, 31(2): 193-205. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201002009 [42] 张伙兰, 裴健翔, 张迎朝, 等, 2013.莺歌海盆地东方区中深层黄流组超压储集层特征.石油勘探与开发, 40(3): 284-295. http://d.old.wanfangdata.com.cn/Periodical/syktykf201303004 [43] 张响响, 邹才能, 朱如凯, 等, 2011.川中地区上三叠统须家河组储层成岩相.石油学报, 32(2):257-264. http://d.old.wanfangdata.com.cn/Periodical/syxb201102010