Impact on Microscopic Pore Structure and Adsorption Behavior of Carbon Dioxide on Shale under High Pressure Condition
-
摘要: 为了解高压条件下二氧化碳(CO2)对页岩微观孔隙结构改造及吸附行为,以四川盆地焦页6井页岩为研究对象,通过低温N2吸附和重量法等温吸附实验,研究了不同温压条件下CO2处理前后的页岩微观结构特征及CO2在页岩中的吸附行为.研究表明随处理温度升高,CO2作用后的页岩比表面积呈下降趋势,平均孔径和孔体积呈上升趋势,微孔、中孔比例减少,宏孔比例增大.CO2会改变页岩孔隙结构,改变程度与温度呈正相关关系.研究同时表明页岩对CO2的过剩吸附量随压力增大而增加直至达到最大值,后随压力增大而减小;绝对吸附量随压力增大而增加,在40 MPa之后,吸附量趋于稳定.页岩对CO2的吸附行为与温度压力有关,在高压条件下,Langmuir模型依然能较好地拟合CO2在页岩中的吸附.Abstract: In order to understand the transformation of microscopic pore structure and adsorption behavior of carbon dioxide (CO2) on shale under high pressure condition, using low-pressure N2 adsorption analysis and isothermal adsorption instrument based on gravimetric method, the microstructural characteristics before and after CO2 treatment, and the adsorption behavior of CO2 in Jiaoye 6 shale from Jiaoshiba area of Sichuan basin were studied. The results show that the shale specific surface area decreased, and the average pore size and pore volume increased with increasing CO2 treatment temperature. Besides, the proportions of micropore and mesopore decreased, and the proportion of macropore increased with increasing temperature. CO2 could change the pore structure of shale, and the degree of change is positively correlated with temperature. The results also show that the excess adsorption amount of CO2 increased with increasing pressure, reached a maximum value, and then decreased. The absolute adsorption amount of CO2 increased with increasing pressure, and then tended to be stable after 40 MPa. The adsorption behavior of CO2 on shale is related to temperature and pressure. Langmuir model can still fit CO2 adsorption on shale well under high pressure.
-
Key words:
- shale gas /
- supercritical carbon dioxide /
- microscopic pore structure /
- adsorption /
- petroleum geology
-
表 1 四川盆地焦石坝地区焦页6井页岩矿物组分
Table 1. Mineral compositions of Jiaoye 6 shale in Jiaoshiba area of Sichuan basin
井名 深度(m) 全岩矿物组分(%) 粘土矿物组成(%) 石英 斜长石 钾长石 方解石 白云石 黄铁矿 粘土矿物 绿泥石 伊利石 伊/蒙混层 焦页6 2 770.0 53.6 7.7 1.3 2.7 3.5 3.0 22.0 29.0 42.0 29.0 表 2 页岩孔隙结构特征和CO2吸附特征
Table 2. Pore structure and CO2 adsorption characteristics of shale samples
样品 微孔比例(%) 中孔比例(%) 宏孔比例(%) DFT孔体积(10-3cm3·g-1) BET比表面积(m2·g-1) 平均孔径(nm) Langmuir吸附量(mg·g-1) PL (MPa) R2 原始 30 49 21 9.64 13.57 6.35 - - - T=40 ℃ 23 43 34 14.21 11.40 6.51 9.29 1.47 0.992 T=60 ℃ 21 44 35 10.24 12.17 7.42 6.94 1.05 0.994 T=80 ℃ 18 46 36 11.08 10.59 7.82 6.88 0.94 0.997 T=100 ℃ 20 42 38 12.93 10.45 7.39 4.31 0.99 0.998 -
[1] Alemu, B. L., Aagaard, P., Munz, I. A., et al., 2011. Caprock Interaction with CO2: A Laboratory Study of Reactivity of Shale with Supercritical CO2 and Brine. Applied Geochemistry, 26(12): 1975-1989. https://doi.org/10.1016/j.apgeochem.2011.06.028 [2] Anggara, F., Sasaki, K., Rodrigues, S., et al., 2014. The Effect of Megascopic Texture on Swelling of a Low Rank Coal in Supercritical Carbon Dioxide. International Journal of Coal Geology, 125: 45-56. https://doi.org/10.1016/j.coal.2014.02.004 [3] Ao, X., Lu, Y. Y., Tang, J. R., et al., 2017. Investigation on the Physics Structure and Chemical Properties of the Shale Treated by Supercritical CO2. Journal of CO2 Utilization, 20: 274-281. https://doi.org/10.1016/j.jcou.2017.05.028 [4] Athy, L.F., 1930. Density, Porosity and Compaction of Sedimentary Rocks. AAPG Bulletin, 14(1): 1-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b6041494bd398fc31dace86cb77e1788 [5] Brunauer, S., Deming, L. S., Deming, W. E., et al., 1940. On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society, 62(7): 1723-1732. https://doi.org/10.1021/ja01864a025 [6] Chong, L., Myshakin, E. M., 2018. Molecular Simulations of Competitive Adsorption of Carbon Dioxide–Methane Mixture on Illitic Clay Surfaces. Fluid Phase Equilibria, 472: 185-195. https://doi.org/10.1016/j.fluid.2018.05.019 [7] Day, S., Fry, R., Sakurovs, R., 2008. Swelling of Australian Coals in Supercritical CO2. International Journal of Coal Geology, 74(1): 41-52. https://doi.org/10.1016/j.coal.2007.09.006 [8] Do, D. D., Do, H. D., 2003. Pore Characterization of Carbonaceous Materials by DFT and GCMC Simulations: A Review. Adsorption Science & Technology, 21(5): 389-423. https://doi.org/10.1260/026361703769645753 [9] Duan, S., Gu, M., Du, X. D., et al., 2016. Adsorption Equilibrium of CO2 and CH4 and Their Mixture on Sichuan Basin Shale. Energy & Fuels, 30(3): 2248-2256. https://doi.org/10.1021/acs.energyfuels.5b02088 [10] Gasparik, M., Ghanizadeh, A., Bertier, P., et al., 2012. High-Pressure Methane Sorption Isotherms of Black Shales from the Netherlands.Energy & Fuels, 26(8): 4995-5004. https://doi.org/10.1021/ef300405g [11] Gasparik, M., Rexer, T. F. T., Aplin, A. C., et al., 2014. First International Inter-Laboratory Comparison of High-Pressure CH4, CO2 and C2H6 Sorption Isotherms on Carbonaceous Shales. International Journal of Coal Geology, 132: 131-146. https://doi.org/10.1016/j.coal.2014.07.010 [12] Guo, J.L., Li, Z.J., Zhang, Y.Y., et al., 2015. An Experimental Study of the Extraction of Organic Carbon from Shale during the CO2-Water-Rock Interaction Related to Geological CO2 Storage. Earth Science Frontiers, 22(5): 239-246 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201505020 [13] Hol, S., Spiers, C. J., 2012. Competition between Adsorption-Induced Swelling and Elastic Compression of Coal at CO2 Pressures up to 100 MPa. Journal of the Mechanics and Physics of Solids, 60(11): 1862-1882. https://doi.org/10.1016/j.jmps.2012.06.012 [14] Jafféa, R., Gong, Y. M., Furton, K. G., 1997. Temperature Effects on Supercritical Carbon Dioxide Extractions of Hydrocarbons from Geological Samples. Journal of High Resolution Chromatography, 20(11): 586-590. https://doi.org/10.1002/jhrc.1240201104 [15] Jarboe, P.J., Candela, P.A., Zhu, W. L., et al., 2015. Extraction of Hydrocarbons from High-Maturity Marcellus Shale Using Supercritical Carbon Dioxide. Energy Fuels, 29(12): 7897-7909. doi: 10.1021/acs.energyfuels.5b02059 [16] Jiang, Y. D., Luo, Y. H., Lu, Y. Y., et al., 2016. Effects of Supercritical CO2 Treatment Time, Pressure, and Temperature on Microstructure of Shale. Energy, 97: 173-181. https://doi.org/10.1016/j.energy.2015.12.124 [17] Lamberti, V. E., Fosdick, L. D., Jessup, E. R., et al., 2002. A Hands-on Introduction to Molecular Dynamics. Journal of Chemical Education, 79(5): 601. https://doi.org/10.1021/ed079p601 [18] Li, J., Zhou, S.X., Gaus, G., et al., 2018. Characterization of Methane Adsorption on Shale and Isolated Kerogen from the Sichuan Basin under Pressure up to 60 MPa: Experimental Results and Geological Implications. International Journal of Coal Geology, 189: 83-93. https://doi.org/10.1016/j.coal.2018.02.020 [19] Liu, S.X., Zhong, J.H., Ma, Y.S., et al., 2015a. Study of Microscopic Pore Structure and Adsorption Isothermal of Carboniferous Shale, Eastern Qaidam Basin. Journal of China University of Petroleum (Edition of Natural Science), 39(1): 33-42 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sydxxb201501005 [20] Liu, S.X., Zhong, J.H., Ma, Y.S., et al., 2015b. Super-Critical Isothermal Adsorption of Gas in Shale. Coal Geology & Exploration, 43(3): 45-50 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtdzykt201503009 [21] Lu, Y. Y., Ao, X., Tang, J. R., et al., 2016. Swelling of Shale in Supercritical Carbon Dioxide. Journal of Natural Gas Science and Engineering, 30: 268-275. https://doi.org/10.1016/j.jngse.2016.02.011 [22] Luo, X. R., Wang, S. Z., Wang, Z. G., et al., 2015. Adsorption of Methane, Carbon Dioxide and Their Binary Mixtures on Jurassic Shale from the Qaidam Basin in China. International Journal of Coal Geology, 150/151: 210-223. https://doi.org/10.1016/j.coal.2015.09.004 [23] Okamoto, I., Li, X. C., Ohsumi, T., 2005. Effect of Supercritical CO2 as the Organic Solvent on Cap Rock Sealing Performance for Underground Storage. Energy, 30(11-12): 2344-2351. https://doi.org/10.1016/j.energy.2003.10.025 [24] Pan, Z. J., Connell, L. D., 2012. Modelling Permeability for Coal Reservoirs: A Review of Analytical Models and Testing Data. International Journal of Coal Geology, 92: 1-44. https://doi.org/10.1016/j.coal.2011.12.009 [25] Pan, Z. J., Connell, L. D., Camilleri, M., et al., 2010. Effects of Matrix Moisture on Gas Diffusion and Flow in Coal. Fuel, 89(11): 3207-3217. https://doi.org/10.1016/j.fuel.2010.05.038 [26] Sabegh, M. A., Rajaei, H., Esmaeilzadeh, F., et al., 2012. Solubility of Ketoprofen in Supercritical Carbon Dioxide. The Journal of Supercritical Fluids, 72: 191-197. https://doi.org/10.1016/j.supflu.2012.08.008 [27] Sun, H. Y., Zhao, H., Qi, N., et al., 2017. Molecular Insights into the Enhanced Shale Gas Recovery by Carbon Dioxide in Kerogen Slit Nanopores. The Journal of Physical Chemistry C, 121(18): 10233-10241. https://doi.org/10.1021/acs.jpcc.7b02618 [28] Xiao, Z., Deng, H., Hou, W., et al., 2011. Development and Discussion of New Technology of Shale Gas Exploration and Exploitation. Drilling & Production Technology, 34(4): 18-20 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=0d8db018dc9a648825ed15a7456ebb24&encoded=0&v=paper_preview&mkt=zh-cn [29] Xie, W.D., Wang, M., Dai, X.G., 2018. CO2 Adsorption Characteristics and Its Affecting Factors of Lower Silurian, Longmaxi Formation Shale in Southeast Chongqing. Journal of Henan Polytechnic University (Natural Science), 37(6): 81-88 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/jzgxyxb201806011 [30] Yan, J.M., Zhang, Q.Y., 1979. Adsoroption and Coagulation. Science Press, Beijing (in Chinese). [31] Yin, H., Zhou, J. P., Jiang, Y. D., et al., 2016. Physical and Structural Changes in Shale Associated with Supercritical CO2 Exposure. Fuel, 184: 289-303. https://doi.org/10.1016/j.fuel.2016.07.028 [32] Zhang, X. W., Lu, Y. Y., Tang, J. R., et al., 2017. Experimental Study on Fracture Initiation and Propagation in Shale Using Supercritical Carbon Dioxide Fracturing. Fuel, 190: 370-378. https://doi.org/10.1016/j.fuel.2016.10.120 [33] Zhang, X.M., Shi, W.Z., Shu, Z.G., et al., 2015. Calculation Model of Shale Gas Content and Its Application in Fuling Area. Earth Science, 42(7): 1157-1168 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201707012 [34] Zhou, L., Li, M., Zhou, Y.P., 2000. Measurement and Theoretical Analysis of the Adsorption of Supercritical Methane on Super Activated Carbon. Science in China(Series B), 30(1): 49-56 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JBXG200002004.htm [35] Zhou, L., Lü, C.Z., Wang, Y.L., et al., 1999. Physisorption of Gases on Porous Solids at Above-Critical Temperatures. Progress in Chemistry, 11(3): 221-226 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz199903001 [36] Zhou, S.W., Wang, H.Y., Xue, H.Q., et al., 2017. Discussion on the Supercritical Adsorption Mechanism of Shale Gas Based on One-Kondo Lattice Model. Earth Science, 42(8): 1421-1430 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201708020.htm [37] Zhu, Y.S., Song, X.H., Guo, Y.T., et al., 2016. High-Pressure Adsorption Characteristics and Controlling Factors of CH4 and CO2 on Shales from Longmaxi Formation, Chongqing, Sichuan Basin. Natural Gas Geoscience, 27(10): 1942-1952 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201610020 [38] Zou, C.N., Dong, D.Z., Wang, Y.M., et al., 2015. Shale Gas in China: Characteristics, Challenges and Prospects (Ⅰ). Petroleum Exploration and Development, 42(6): 689-701 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK201506002.htm [39] 郭冀隆, 李紫晶, 张阳阳, 等, 2015.地质封存CO2-水-岩作用对页岩有机碳的萃取效应研究.地学前缘, 22(5): 239-246. http://d.old.wanfangdata.com.cn/Periodical/dxqy201505020 [40] 刘圣鑫, 钟建华, 马寅生, 等, 2015a.柴东石炭系页岩微观孔隙结构与页岩气等温吸附研究.中国石油大学学报(自然科学版), 39(1):33-42. http://d.old.wanfangdata.com.cn/Periodical/sydxxb201501005 [41] 刘圣鑫, 钟建华, 马寅生, 等, 2015b.页岩中气体的超临界等温吸附研究.煤田地质与勘探, 43(3): 45-50. http://d.old.wanfangdata.com.cn/Periodical/mtdzykt201503009 [42] 肖洲, 邓虎, 侯伟, 等, 2011.页岩气勘探开发的发展与新技术探讨.钻采工艺, 34(4): 18-20. doi: 10.3969/j.issn.1006-768X.2011.04.006 [43] 谢卫东, 王猛, 代旭光, 2018.渝东南地区下志留统龙马溪组页岩吸附CO2特征及影响因素分析.河南理工大学学报(自然科学版), 37(6):81-88. http://d.old.wanfangdata.com.cn/Periodical/jzgxyxb201806011 [44] 严继民, 张启元, 1979.吸附与凝聚.北京:科学出版社. [45] 张晓明, 石万忠, 舒志国, 等, 2017.涪陵地区页岩含气量计算模型及应用.地球科学, 42(7):1157-1168. doi: 10.3799/dqkx.2017.094 [46] 周理, 李明, 周亚平, 2000.超临界甲烷在高表面活性炭上的吸附测量及其理论分析.中国科学(B辑), 30(1): 49-56. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cb200001008 [47] 周理, 吕昌忠, 王怡林, 等, 1999.述评超临界温度气体在多孔固体上的物理吸附.化学进展, 11(3): 221-226. doi: 10.3321/j.issn:1005-281X.1999.03.001 [48] 周尚文, 王红岩, 薛华庆, 等, 2017.基于One-Kondo格子模型的页岩气超临界吸附机理探讨.地球科学, 42(8): 1421-1430. doi: 10.3799/dqkx.2017.543 [49] 朱阳升, 宋学行, 郭印同, 等, 2016.四川盆地龙马溪组页岩的CH4和CO2气体高压吸附特征及控制因素.天然气地球科学, 27(10): 1942-1952. doi: 10.11764/j.issn.1672-1926.2016.10.1942 [50] 邹才能, 董大忠, 王玉满, 等, 2015.中国页岩气特征、挑战及前景(一).石油勘探与开发, 42(6): 689-701. doi: 10.11698/PED.2015.06.01