• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    莺歌海盆地乐东区片钠铝石特征及其对浅层CO2充注的指示

    刘娜 吴克强 刘立 于雷 孙玉梅

    刘娜, 吴克强, 刘立, 于雷, 孙玉梅, 2019. 莺歌海盆地乐东区片钠铝石特征及其对浅层CO2充注的指示. 地球科学, 44(8): 2695-2703. doi: 10.3799/dqkx.2019.106
    引用本文: 刘娜, 吴克强, 刘立, 于雷, 孙玉梅, 2019. 莺歌海盆地乐东区片钠铝石特征及其对浅层CO2充注的指示. 地球科学, 44(8): 2695-2703. doi: 10.3799/dqkx.2019.106
    Liu Na, Wu Keqiang, Liu Li, Yu Lei, Sun Yumei, 2019. Dawsonite Characteristics and Its Implications on the CO2 in Yinggehai-Huangliu Formation of Ledong Area, Yinggehai Basin. Earth Science, 44(8): 2695-2703. doi: 10.3799/dqkx.2019.106
    Citation: Liu Na, Wu Keqiang, Liu Li, Yu Lei, Sun Yumei, 2019. Dawsonite Characteristics and Its Implications on the CO2 in Yinggehai-Huangliu Formation of Ledong Area, Yinggehai Basin. Earth Science, 44(8): 2695-2703. doi: 10.3799/dqkx.2019.106

    莺歌海盆地乐东区片钠铝石特征及其对浅层CO2充注的指示

    doi: 10.3799/dqkx.2019.106
    基金项目: 

    国家自然科学基金 41202073

    国家自然科学基金 41572082

    中海油综合科研项目 CCL2015RCPS0150RCN

    详细信息
      作者简介:

      刘娜(1984-), 女, 博士, 主要从事储层成岩作用、流体-岩石相互作用的研究

      通讯作者:

      刘立

    • 中图分类号: P588.2

    Dawsonite Characteristics and Its Implications on the CO2 in Yinggehai-Huangliu Formation of Ledong Area, Yinggehai Basin

    • 摘要: 作为天然CO2的示踪矿物,片钠铝石的形成与CO2充注密切相关.莺歌海盆地乐东区乐东X构造莺歌海组-黄流组CO2气藏内发育含片钠铝石砂岩,在开展的岩石学和地球化学研究基础上,确定了研究区片钠铝石的产状和纵向分布特征,分析了形成片钠铝石的“碳来源”和气水条件,进而探讨了与片钠铝石具有成因联系的CO2的成因.乐东X构造含片钠铝石砂岩为细—极细粒长石石英砂岩和岩屑石英砂岩,片钠铝石主要以充填孔隙及交代颗粒的形式产出,是成岩共生序列中形成较晚的自生矿物之一.在纵向上,片钠铝石仅集中发育于高含CO2气层的底部以及其下的水层中,这一分布特征以地质实例的形式证实了片钠铝石的形成需要水的参与.研究区浅层CO2充注后形成的碳酸盐矿物为片钠铝石和铁白云石.片钠铝石的碳氧同位素特征表明形成片钠铝石的“碳”与LDX构造气层中CO2具有相同的碳来源,以无机幔源成因CO2为主.红河断裂以及莺歌海盆地中央坳陷内一系列底辟构造及伴生的垂向裂隙可能为CO2的运移通道.

       

    • 图  1  莺歌海盆地乐东区含片钠铝石砂岩发育位置

      Fig.  1.  Location of dawsonite-bearing sandstones of Ledong, Yinggehai Basin.

      图  2  乐东X构造莺歌海-黄流组含片钠铝石砂岩岩石类型

      Fig.  2.  Sandstone composition diagram for dawsonite-bearing samples

      图  3  自生矿物典型镜下照片

      a.菱铁矿(Sid)呈自形晶分布于碎屑颗粒边缘和次生加大石英(Q2)内侧,1 860.72 m,莺歌海组,偏光显微镜,正交偏光;b.放射状片钠铝石(Daw)交代石英次生加大(Q2),1 841.62 m,莺歌海组,偏光显微镜,正交偏光;c.菊花状片钠铝石集合体(Daw)充填孔隙,1 896.07 m,莺歌海组,偏光显微镜,正交偏光;d.片钠铝石(Daw)交代白云石(Dol),1 860.72 m,莺歌海组,偏光显微镜,正交偏光;e.片钠铝石(Daw)交代白云石(Dol),1 894.84 m,莺歌海组,扫描电镜;f.生长在放射状片钠铝石(Daw)表面的高岭石(Kao),1 894.84 m,莺歌海组,扫描电镜;g.铁白云石(Ank)或呈自形晶充填孔隙,或呈白云石(Dol)镶边,1 894.84 m,莺歌海组,扫描电镜背散射;h.生长在片钠铝石(Daw)内部的铁白云石(Ank),1 894.84 m,莺歌海组,扫描电镜背散射.

      Fig.  3.  Micrographs of diagenetic minerals.

      图  4  莺歌海盆地乐东X构造储层莺歌海组—黄流组地层成岩共生序列

      Fig.  4.  Paragenetic sequence for dawsonite-bearing sandstones in Ledong area, Yinggehai Basin

      图  5  LDX-1井莺歌海—黄流组片钠铝石和铁白云石纵向分布

      Fig.  5.  Plot of volume values versus depth for dawsonite (green triangles) and ankerite (red squares) in LDX-1#

      图  6  莺歌海盆地莺歌海—黄流组片钠铝石碳氧同位素特征

      ①.本次研究;②. Baker et al.(1995)Uysal et al.(2011);③. Golab et al.(2006);④. Ferrini et al.(2003);⑤. Zhao et al.(2018);⑥. Liu et al.(2011);⑦. Ming et al.(2017);⑧. Gao et al.(2009);⑩. Zalba et al.(2011)

      Fig.  6.  Plot of δ13C versus δ18O values for dawsonite

      图  7  南海地区及其周边地区玄武岩年龄分布统计(灰色部分为CO2充注时间范围,出处详见正文)

      Fig.  7.  The collected K-Ar/Ar-Arages for the basaltarounding the Yinggehai Basin.

    • [1] Álvarez-Ayuso, E., Nugteren, H. W., 2005. Synthesis of Dawsonite: A Method to Treat the Etching Waste Streams of the Aluminium Anodising Industry. Water Research, 39(10): 2096-2104. https://doi.org/10.1016/j.watres.2005.03.017
      [2] Baker, J.C., Bai, G.P., Hamilton, P.J., et al., 1995. Continental-scale Magmatic Carbon Dioxide Seepage Recorded by Dawsonite in the Bowen-Gunnedah-Sydney Basin system, Eastern Australia. Journal of Sedimentary research, 65:522-530. https://doi.org/10.1306/D4268117-2B26-11D7-8648000102C1865D
      [3] Dai, J.X., 1995. Abiogenic Gas in Oil-Gas Bearing Basins in China and Its Reservoirs. Natural Gas Industry, 15(3):22-27(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TRQG503.006.htm
      [4] Du, Y.H., 1982. Secondary Dawsonite in Shengli Oil Field, China. Chinese Journal of Geology, 4 :434-437 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX198204013.htm
      [5] Duan, W., Luo, C.F., Liu, J.Z., et al., 2015. Effect of Overpressure Formation on Reservoir Diagenesis and Its Geological Significance to LD Block of Yinggehai Basin. Earth Science, 40(9):1517-1528(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201509007
      [6] Ferrini, V., Martarelli, L., Vito, D.C., et al., 2003. The KomanDawsonite and Realgar-Orpiment Deposit, Northern Albania: Inferences on Processes of Formation. The Canadian Mineralogist, 41(2):413-427. doi: 10.2113/gscanmin.41.2.413
      [7] Gao, Y. Q., Liu, L., Hu, W. X., 2009. Petrology and Isotopic Geochemistry of Dawsonite-Bearing Sandstones in Hailaer Basin, Northeastern China. Applied Geochemistry, 24(9): 1724-1738. https://doi.org/10.1016/j.apgeochem.2009.05.002
      [8] Golab, A. N., Carr, P. F., Palamara, D. R., 2006. Influence of Localised Igneous Activity on Cleat Dawsonite Formation in Late Permian Coal Measures, Upper Hunter Valley, Australia. International Journal of Coal Geology, 66(4): 296-304. https://doi.org/10.1016/j.coal.2005.08.001
      [9] He, J.X., 2003. To Discuss the Cause of CO2 Formation in Yinggehai Basin and to Reply Prefessor Chen Jianyu. Natural Gas Geoscience, 14(5):412-415 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX200305017.htm
      [10] Hellevang, H., Aagaard, P., Oelkers, E. H., et al., 2005. Can Dawsonite Permanently Trap CO2? Environmental Science & Technology, 39(21): 8281-8287. https://doi.org/10.1021/es0504791
      [11] Hoang, N., Flower, M., 1998. Petrogenesis of Cenozoic Basalts from Vietnam: Implication for Origins of a 'Diffuse Igneous Province. Journal of Petrology, 39(3): 369-395. https://doi.org/10.1093/petroj/39.3.369
      [12] Huang, B. J., Xiao, X. M., Li, X. S., et al., 2009. Spatial Distribution and Geochemistry of the Nearshore Gas Seepages and Their Implications to Natural Gas Migration in the Yinggehai Basin, Offshore South China Sea. Marine and Petroleum Geology, 26(6): 928-935. https://doi.org/10.1016/j.marpetgeo.2008.04.009
      [13] Huang, B.J., Li, X.S., Yi, P., et al., 2005. Geochemical Behaviors and Reservoiring History of Natural Gas in Ledong Gas Field in Yinggehai Basin. Oil & Gas Geology, 26(4):524-529 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz200504021
      [14] Huang, S.B., 1996. The Character of Dawsonite in Sandstone Reservoirs of the Fu'ning Formation in Jinhu Sag and Its influence on Reservoir Properties. Petroleum Explorati on and Development, 23(2):32-34 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK602.008.htm
      [15] Jia, D.C., Qiu, X.L., Hu, R.Z., et al., 2003. Geochemical Nature of Mantle Reservoirs and Tectonic Setting of Basalts in Beibu Gulf and Its Adjacent Region. Journal of Tropical Oceanography, 22(2):30-39(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdhy200302004
      [16] Kudrass, H. R., Wiedicke, M., Cepek, P., et al., 1986. Mesozoic and Cainozoic Rocks Dredged from the South China Sea (Reed Bank Area) and Sulu Sea and their Significance for Plate-Tectonic Reconstructions. Marine and Petroleum Geology, 3(1): 19-30. https://doi.org/10.1016/0264-8172(86)90053-x
      [17] Lin, H. F., Fujii, T., Takisawa, R., et al., 2008. Experimental Evaluation of Interactions in Supercritical CO2/Water/Rock Minerals System under Geologic CO2 Sequestration Conditions. Journal of Materials Science, 43(7): 2307-2315. https://doi.org/10.1007/s10853-007-2029-4
      [18] Liu, N., Liu, L., Qu, X. Y., et al., 2011. Genesis of Authigene Carbonate Minerals in the Upper Cretaceous Reservoir, Honggang Anticline, Songliao Basin: A Natural Analog for Mineral Trapping of Natural CO2 Storage. Sedimentary Geology, 237(3/4): 166-178. https://doi.org/10.1016/j.sedgeo.2011.02.012
      [19] Lundvall, F., Kalantzopoulos, G. N., Wragg, D. S., et al., 2019. Characterization and Evaluation of Synthetic Dawsonites as CO2 Sorbents. Fuel, 236: 747-754. https://doi.org/10.13039/501100005416
      [20] Ming, X. R., Liu, L., Yu, L., et al., 2017. Thin-Film Dawsonite in Jurassic Coal Measure Strata of the Yaojie Coalfield, Minhe Basin, China: A Natural Analogue for Mineral Carbon Storage in Wet Supercritical CO2. International Journal of Coal Geology, 180: 83-99. https://doi.org/10.13039/501100004613
      [21] Okuyama, Y., Sasaki, M., Nakanishi, S., et al., 2009. Geochemical CO2 Trapping in Open Aquifer Storage——The Tokyo Bay Model. Energy Procedia, 1(1): 3253-3258. https://doi.org/10.1016/j.egypro.2009.02.110
      [22] Sun, Y.M., Guo, N.Y., 1998. Genesis of CO2 in Yinggehai Basin. China offshore oil and Gas (Geology), 12(3):159-163 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwys201502010
      [23] Tian, D.M., Jiang, T., Zhang, D.J., 2017. Genesis Mechanism and Characteristics of Sbumarine Channel: A Case Study of the First Member of Yinggehai Formation in Ledong Area of Yinggehai Basin. Earth Science, 42(1): 130-141 (in Chinese with English abstract).
      [24] Uysal, I. T., Golding, S. D., Bolhar, R., et al., 2011. CO2 Degassing and Trapping during Hydrothermal Cycles Related to Gondwana Rifting in Eastern Australia. Geochimica et Cosmochimica Acta, 75(19): 5444-5466. https://doi.org/10.1016/j.gca.2011.07.018
      [25] Wang, P. L., Lo, C. H., Chung, S. L., et al., 2000. Onset Timing of Left-Lateral Movement along the Ailao Shan-Red River Shear Zone: 40Ar/39Ar Dating Constraint from the Nam Dinh Area, Northeastern Vietnam. Journal of Asian Earth Sciences, 18(3): 281-292. https://doi.org/10.1016/s1367-9120(99)00064-4
      [26] Wang, Z.F., He, J.X., Zhang, S.L., et al., 2004. Genesis of Carbon Dioxide and Geological Significance for Carbon Dioxide Infilling and Oil Displacement in the Northern Marginal Basin of South China Sea. Acta Petrolei Sinica, 25(5): 48-53 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb200405010
      [27] Xie, Y.H., Zhang, Y.Z., Xu, X.D., et al., 2014. Natural Gas Origin and Accumulation Model in Major and Excellent Gas Fields With High Temperature and Overpressure in Yinggehai Basin: A Case of DF13-2 Gas Field. China Offshore Oil and Gas, 26(2): 1-5, 34 (in Chinese with English abstract).
      [28] You, L., Liu, C., Zhong, J., et al., 2017. Petrography-Geochemistry and Source Significance of Submarine Fan from West Area of Qiongdongnan Basin. Earth Science, 42(9): 1531-1540(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201709007
      [29] Yu, M., Liu, L., Yang, S. Y., et al., 2016. Experimental Identification of CO2-Oil-Brine-Rock Interactions: Implications for CO2 Sequestration after Termination of a CO2-EOR Project. Applied Geochemistry, 75: 137-151. https://doi.org/10.1016/j.apgeochem.2016.10.018
      [30] Zalba, P.E., Conconi, M.S., Morosi, M., et al., 2011. Dawsonite in Tuffs and Litharenites of the Cerro Castaño Member, Cerro Barcino Formation, Chubut roup (Cenomanian), AltaresLos, Patagonia, Argentina. The Canadian Mineralogist, 49:503-520. https://doi.org/10.3749/canmin.49.2.503
      [31] Zhao, S., Liu, L., Liu, N., 2018. Petrographic and Stable Isotopic Evidences of CO2-Induced Alterations in Sandstones in the Lishui Sag, East China Sea Basin, China. Applied Geochemistry, 90: 115-128. https://doi.org/10.13039/501100004613
      [32] Zhou, P. B., Mukasa, S. B., 1997. Nd-Sr-Pb Isotopic, and Major- and Trace-Element Geochemistry of Cenozoic Lavas from the Khorat Plateau, Thailand: Sources and Petrogenesis. Chemical Geology, 137(3/4): 175-193. https://doi.org/10.1016/s0009-2541(96)00162-3
      [33] Zhu, B.Q., Wang, H.F., 1989. Nd-Sr-Pb Isotopic and Chemical Evidence For the Volcanism With MORB-OIB Sourch Characteristics in the Leiqiong Area, China. Geochimica, 3:193-201(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQHX198903000.htm
      [34] 戴金星, 1995.中国含油气盆地的无机成因气及其气藏.天然气工业, 15(3):22-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500775122
      [35] 杜韫华, 1982.一种次生的片钠铝石.地质科学, 4 :434-437. http://www.cnki.com.cn/Article/CJFDTotal-DZKX198204013.htm
      [36] 段威, 罗程飞, 刘建章, 等, 2015.莺歌海盆地LD区块地层超压对储层成岩作用的影响极其地质意义.地球科学, 40(9):1517-1528. http://www.earth-science.net/WebPage/Article.aspx?id=3155
      [37] 何家雄, 2003.再论莺歌海盆地CO2成因问题-兼答陈建渝教授.天然气地球科学, 14(5):412-415. doi: 10.3969/j.issn.1672-1926.2003.05.017
      [38] 黄保家, 李绪深, 易平, 等, 2005.莺歌海盆地乐东气田天然气地化特征和成藏史.石油与天然气地质. 26(4):524-529. doi: 10.3321/j.issn:0253-9985.2005.04.021
      [39] 黄善炳, 1996.金湖凹陷阜宁组砂岩中片钠铝石特征及对物性影响, 石油勘探与开发, 23 (2):32-34. doi: 10.3321/j.issn:1000-0747.1996.02.009
      [40] 贾大成, 丘学林, 胡瑞忠, 等, 2003.北部湾玄武岩地幔源区性质的地球化学示踪及其构造环境.热带海洋学报, 22(2):30-39. doi: 10.3969/j.issn.1009-5470.2003.02.004
      [41] 孙玉梅, 郭廼嬿, 1998.莺歌海盆地CO2气成因探讨.中海海上油气(地质), 12(3):159-163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800756394
      [42] 田冬梅, 姜涛, 张道军, 等, 2017.海底水道特征及其成因机制:以莺歌海盆地乐东区莺歌海一段为例.地球科学, 42(1): 130-141. http://www.earth-science.net/WebPage/Article.aspx?id=3420
      [43] 王振峰, 何家雄, 张树林, 等, 2004.南海北部边缘盆地CO2成因及充注驱油的石油地质意义.石油学报, 25(5):48-53. http://d.old.wanfangdata.com.cn/Periodical/syxb200405010
      [44] 谢玉洪, 张迎朝, 徐新德, 等.2014.莺歌海盆地高温超压大型优质气田天然气成因与成藏模式—以东方13-2优质整装大气田为例.中国海上油气, 26(2):1-5, 34.
      [45] 尤丽, 刘才, 钟佳, 等, 2017.琼东南盆地西区梅山组海底扇岩相-地球化学特征及源区意义.地球科学, 42(9): 1531-1540. http://www.earth-science.net/WebPage/Article.aspx?id=3646
      [46] 朱炳泉, 王慧芬, 1989.雷琼地区MORB-OIB过渡型地幔源火山作用的Nd-Sr-Pb同位素证据.地球化学, 3:193-201. doi: 10.3321/j.issn:0379-1726.1989.03.001
    • 加载中
    图(7)
    计量
    • 文章访问数:  4332
    • HTML全文浏览量:  1861
    • PDF下载量:  19
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-02-01
    • 刊出日期:  2019-08-15

    目录

      /

      返回文章
      返回