Review on Orogenic Gold Deposits
-
摘要: 造山型金矿指与大洋板块俯冲和陆块拼贴有关、产在汇聚板块边界变质地体内部或者边缘受韧-脆性断裂构造控制的, 成矿流体以低盐度H2O-CO2-CH4为主要特征的, 成矿深度(2~20 km)和温度(200~650℃)及其相应的蚀变矿化组合有较大变化的系列金矿床.造山型金矿形成与超大陆聚合时限具有一致性.由于围岩类型和控矿构造多样性、地球化学特征具有多解性、金属源区和演化的不确定性以及成矿就位和物质起源的空间差距, 造山型金矿成因模式有以下两个主要观点.第一种为大陆地壳变质流体成因模式, 认为造山型金矿形成于造山作用同变质阶段, 并随岩石圈演化矿床的物质来源发生变化;富金流体的释放由上地壳岩石绿片岩相到角闪岩相的进变质作用导致, 该过程中的黄铁矿向磁黄铁矿转变释放了大量的金, 这种模式被广泛运用于赋存在绿片岩相中的显生宙造山型金矿.然而越来越多的实例证实造山型金矿主要形成于峰期变质的退变质阶段或者与区域变质没有任何关系, 变质流体成因模式受到了强烈质疑;与大陆地壳变质模式相对立的是幔源流体模式, 其认为流体起源于俯冲洋壳脱水或富集地幔再活化, 不同时代和地区的成矿流体具有一致性;尽管该模式不符合传统的平衡条件下的相变原理, 但是基于幔源流体的存在及其浅部运移的大量观测, 初步认为成矿流体是在超临界和非平衡条件下完成了金属的幔→壳迁移.中国造山型金矿分布于江南造山带志留纪、天山-阿尔泰二叠纪、华北克拉通北缘三叠-侏罗纪、特提斯造山带二叠-侏罗纪、华南板块晚三叠世-侏罗纪、华北克拉通东南缘白垩纪、青藏高原及周缘古近纪等七大成矿带, 主要受到了显生宙不同时代造山作用的控制, 成矿时代晚于变质峰期, 重要成矿带大型矿集区(胶东、哀牢山、扬子西缘)的实例解剖均支持幔源流体成因模式.Abstract: The orogenic gold deposits show features as follows:relation to oceanic plate subduction and terrane accretion, hosted by metamorphic massif along convergent plate boundaries, controlled by ductile to brittle shear zones, low salinity and H2O-CO2-CH4 dominating ore fluid, wide formation depths varying from about 2 to 20 km and formation temperatures ranging within 200-650℃, temperature-dependent alteration and ore mineral assemblages. Orogenic gold deposits formed coevally to the time of cycled convergences of supercontinents. Due to the diversity of wall rock types and ore-controlling structures, ambiguity of ore geochemistry, uncertainty of fluid and metal sources and their evolutions, and disparity between source regions and ore deposition locations, two distinct origin models were proposed for orogenic gold deposits. The first is metamorphic fluid model, in which the deposits formed in prograde metamorphism of orogeny with different source from evolving regional upper crust. The auriferous fluid is considered to release from greenschist-to amphibolite-facies prograde metamorphism of upper crustal rocks, during which gold and other metals are liberated from transformation of pyrite to pyrrhotite. This model was universally applied to Phanerozoic orogenic gold deposit shosted by greenschist-facies terranes. However, it was recognized that most orogenic gold deposits formed in retrogression stage subsequent to peak metamorphism or without any spatial-temporal link to regional metamorphism, which challenged the metamorphic fluid model. Thus the mantle fluid model, which indicates that ore fluids for orogenic gold deposits are derived from devolatilization of subducted oceanic plate or fertile mantle, was proposed. Although the mantle fluid model is not compatible with the petrological diagram in phase equilibrium condition, the extensive proofs for the existence of mantle fluids and their appearance near surface support that mantle fluids are capable to transport to upper crustal levels under supercritical conditions and phase unequilibrium. The Chinese orogenic gold deposits are divided into seven gold belts:Silurian belt along Jiangnan orogen, Permian belt in Tianshan and Altay orogen, Triassic to Jurassic one along northern margin of North China craton (Solonker orogen), Triassic to Jurassic one within Paleo-Tethyan orogens, Jurassic one along southern margin of South China block possibly controlled by the Paleo-Tethyan closure, Cretaceous one along southern margins of North China craton, and Paleogene one in Tibetan Plateau and its margins. Orogenic gold deposits in China formed in Phanerozoic in association with various orogeny, with ore-forming ages post dating peak metamorphism. Case studies on gold districts in these belts, such as Jiaodong, Ailaoshan, and western margin of Yangtze craton, all favored the mantle fluid model.
-
Key words:
- orogenic gold deposit /
- mantle fluid /
- metamorphic fluid /
- structural control /
- tectonic setting /
- deposits
-
图 1 地壳连续成矿模式示意
据Groves (1993)和Groves et al.(1998)
Fig. 1. Schematic distribution and characteristics of orogenic gold deposits in continuum model
图 2 造山型金矿成矿大地构造背景
a.俯冲带上增生楔和岩浆弧带,据Goldfarb et al.(2005);b.洋脊俯冲背景下的倒转弧后盆地,据Tomkins (2010);c.俯冲板片回返与克拉通破坏,据Goldfarb and Groves (2015);d.富集岩石圈地幔拆沉与大型穹窿,据Zhao et al.(2019)
Fig. 2. Geotectonic background for metallogenesis of orogenic gold deposits
图 3 全球造山型金矿形成时代分布及地壳生长模式统计
Fig. 3. Statistics of formation ages for global orogenic gold deposits in earth history
图 4 造山型金矿构造控矿示意
a.褶皱转折端控矿示意图,据Cox et al.(1991)修改;b.断裂弯曲转折端控矿示意图,据Yang et al.(2018b)修改;c.剪切带张性或压性衔接部位控矿示意图,据Hodkiewicz et al.(2009)修改;d.剪切带或断裂转折端控矿,据Weinberg et al.(2004)修改
Fig. 4. Schematic diagrams of structural control on orogenic deposits
图 5 (a) 假定的绿片岩相以上进变质区域流体压力剖面;(b)完整岩石脆性破裂模式图;(c)格里菲斯-库伦岩石破裂准则;(d) log(aK+/aH+) vs. log(aNa+/aH+)相图
图a. λv为流体压力因子,λv=pf(流体压力) /σv(岩石垂向应力)(据Sibson,2004);b.展示流体因子和差应力改变可诱发岩石破裂.差应力大于等于5.7倍岩石抗张强度时,岩石产生剪裂隙;差应力小于等于4倍岩石抗张强度时,岩石将产生张裂隙;差应力介于4倍和5.7倍岩石抗张强度时,岩石将产生混合的张剪裂隙(据Cox,2019);c.黄色、蓝色、灰色颜色代表花岗岩原岩、软化花岗岩、断裂活化的莫尔圆和包络线(剧Sibson and Scott, 1998);d.指示蚀变过程矿物转化,据Yang et al. (2018b)修改;黑色波浪线代表胶东新立金矿蚀变反应路径,G代表反应前后吉布斯自由能变化
Fig. 5. (a) Hypothetical fluid⁃pressure profile through the carapace to a region undergoing prograde metamorphism defining the seismogenic zone; (b) schematic illustration of a brittle failure mode diagram for intact rock failure; (c) composite Griffith⁃ Coulomb failure envelopes for intact rock (long dash line) with tensile strength; (d) isothermal⁃isobaric log(aK+/aH+) vs. log(aNa+/aH+) diagram
图 6 变质流体成因模式示意图
a.变质峰期前成矿,据Phillips and Powell (2009);b.绿片岩相—角闪岩相进变质脱水,据Phillips and Powell (2010);c.500~650 ℃为主要脱水区间,据Zhong et al.(2015);d.变质体系有水>650~700 ℃情况下引起部分熔融,据Phillips and Powell (2009);NCKFMASH代表着Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O初始组分体系
Fig. 6. Schematic graphs for metamorphic fluid model
图 7 地幔流体成因模式示意
a.俯冲带大洋地壳脱水和回返模式,据Peacock (1990)和Groves et al.(2019);b.克拉通破坏富集地幔脱气模式,指示交代岩石圈地幔为流体和金属来源,据Goldfarb and Santosh(2014)和Deng et al.(2015c);c.岩石圈拆沉富集地幔脱气模式,指示交代富集岩石圈地幔作为流体储库,据Zhao et al.(2019)
Fig. 7. Schematic illustrations of mantle fluid model
图 8 中国造山型金矿成矿带划分
据Deng and Wang (2016);典型造山型金矿带分布:a.Zr/U⁃Pb;b.Mol/Re⁃Os;c.Py/Re⁃Os;d.Apy, Re⁃Os;e.Ser/Ar⁃Ar;f.Ms/Ar⁃Ar;g.Phl/ Ar⁃Ar;h.Bt/Ar⁃Ar;i.Kfs/Ar⁃Ar;j.scheelite/Sm⁃Nd;k.Ser/Rb⁃Sr
Fig. 8. Chinese orogenic gold belts divided by orogens and their forming ages
图 9 中国造山型金成矿与超高压变质时代对比
Fig. 9. Age contrasts between Chinese orogenic gold deposits and ultra⁃high pressure metamorphism
图 10 矿床古地磁研究限定成矿与剪切时代
据Gao et al.(2018);a.印支地块不同地区130~20 Ma期间的古纬度值:28.4°±1.1°N与19.0°±3.6°N分别代表印支地块130~40 Ma和20 Ma的平均古纬度值;b.印支地块不同地区相对于东亚稳定区的纬向滑移量:-7.5°±5.5°为印支地块自40 Ma到20 Ma期间的平均南向滑移量;c、d.印支地块相对于华南板块在40 Ma和20 Ma的古地理位置
Fig. 10. Deposit paleomagnetism data constrain mineralization and shearing ages
-
[1] Andersen, T., Neumann, E.R., 2001.Fluid Inclusions in Man-tle Xenoliths. Lithos, 55(1):301-320. https://doi.org/10.1016/s0024-4937(00)00049-9 [2] Barley, M. E., Groves, D. I., 1992. Supercontinent Cycles and the Distribution of Metal Deposits through Time.Geolo-gy, 20(4):291-294. doi: 10.1130/0091-7613(1992)020<0291:SCATDO>2.3.CO;2 [3] Bath, A.B., Walshe, J.L., Cloutier, J., et al., 2013.Biotite and Apatite as Tools for Tracking Pathways of Oxidized Flu-ids in the Archean East Repulse Gold Deposit, Australia.Economic Geology, 108(4):667-690. https://doi.org/10.2113/econgeo.108.4.667 [4] Bell, R.M., Kolb, J., Waight, T.E., 2018.Assessment of Litho-logical, Geochemical and Structural Controls on Gold Distribution in the Nalunaq Gold Deposit, South Green-land Using Three-Dimensional Implicit Modelling.Geo-logical Society, London, Special Publications, 453(1):385-405. https://doi.org/10.1144/sp453.2 [5] Bi, X. W., Hu, R. Z., He, M. Y., 1997. Characteristics of Ore-Forming Fluid of Three Gold Deposits in Ailaoshan Gold Mineralization Belt. Acta Mineralogica Sinica, 17(4):435-441 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700341920 [6] Bierlein, F.P., Crowe, D.E., 2000.Phanerozoic Orogenic Lode Gold Deposits. Reviews in Economic Geology, 13:103-139. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025021918/ [7] Bierlein, F.P., Groves, D.I., Goldfarb, R.J., et al., 2006.Litho-spheric Controls on the Formation of Provinces Hosting Giant Orogenic Gold Deposits.Mineralium Deposita, 40(8):874-886. https://doi.org/10.1007/s00126-005-0046-2 [8] Bierlein, F. P., Maher, S., 2001. Orogenic Disseminated Gold in Phanerozoic Fold Belts:Examples from Victoria, Aus-tralia and Elsewhere. Ore Geology Reviews, 18(1-2):113-148. https://doi.org/10.1016/s0169-1368(01) 00019-1 doi: 10.1016/s0169-1368(01)00019-1 [9] Bierlein, F. P., Pisarevsky, S., 2008. Plume-Related Oceanic Plateaus as a Potential Source of Gold Mineralization.Economic Geology, 103(2):425-430. https://doi.org/10.2113/gsecongeo.103.2.425 [10] Blenkinsop, T. G., Doyle, M. G., 2014. Structural Controls on Gold Mineralization on the Margin of the Yilgarn Cra-ton, Albany-Fraser Orogen:The Tropicana Deposit, Western Australia. Journal of Structural Geology, 67:189-204. https://doi.org/10.1016/j.jsg.2014.01.013 [11] Bouchot, V., Ledru, P., Lerouge, C., et al., 2005. Late Va-riscan Mineralizing Systems Related to Orogenic Pro-cesses:The French Massif Central. Ore Geology Re-views, 27(1-4):169-197. https://doi.org/10.1016/j.oregeorev.2005.07.017 [12] Breeding, C. M., Ague, J. J., 2002. Slab-Derived Fluids and Quartz-Vein Formation in an Accretionary Prism, Otago Schist, New Zealand.Geology, 30(6):499-502. doi: 10.1130/0091-7613(2002)030<0499:SDFAQV>2.0.CO;2 [13] Browning, P., Groves, D.I., Blockley, J.G., et al., 1987.Lead Isotope Constraints on the Age and Source of Gold Min-eralization in the Archean Yilgarn Block, Western Aus-tralia. Economic Geology, 82(4):971-986. https://doi.org/10.2113/gsecongeo.82.4.971 [14] Bucher, K., Grapes, R., 2011.Metamorphism of Pelitic Rocks(Metapelites). Petrogenesis of Metamorphic Rocks.Springer, Heidelberg, Berlin, 257-313. [15] Bureau, H., Keppler, H., 1999. Complete Miscibility between Silicate Melts and Hydrous Fluids in the Upper Mantle:Experimental Evidence and Geochemical Implications.Earth and Planetary Science Letters, 165(2):187-196. https://doi.org/10.1016/s0012-821x(98)00266-0 [16] Burnard, P. G., Polya, D. A., 2004. Importance of Mantle De-rived Fluids during Granite Associated Hydrothermal Circulation:He and Ar Isotopes of Ore Minerals from Panasqueira. Geochimica et Cosmochimica Acta, 68(7):1607-1615. https://doi.org/10.1016/j.gca.2003.10.008 [17] Cao, S. Y., Liu, J. L., Leiss, B., et al., 2011. Oligo-Miocene Shearing along the Ailao Shan-Red River Shear Zone:Constraints from Structural Analysis and Zircon U/Pb Geochronology of Magmatic Rocks in the Diancang Shan Massif, SE Tibet, China. Gondwana Research, 19(4):975-993. https://doi.org/10.1016/j.gr.2010.10.006 [18] Carrier, A., Jebrak, M., Angelier, J., et al., 2000. The Silidor Deposit, Rouyn-Noranda District, Abitibi Belt:Geology, Structural Evolution, and Paleostress Modeling of an Au Quartz Vein-Type Deposit in an Archean Trondhjemite.Economic Geology, 95(5):1049-1065. [19] Chen, M.H., Mao, J.W., Bierlein, F.P., et al., 2011.Structural Features and Metallogenesis of the Carlin-Type Jinfeng(Lannigou) Gold Deposit, Guizhou Province, China. Ore Geology Reviews, 43(1):217-234. https://doi.org/10.1016/j.oregeorev.2011.06.009 [20] Chen, Y. J., Pirajno, F., Lai, Y., et al., 2004. Metallogenic Time and Tectonic Setting of the Jiaodong Gold Prov-ince, Eastern China.Acta Petrologica Sinica, 20(4):907-922 (in Chinese with English abstract). [21] Chen, Y. J., Pirajno, F., Qi, J. P., 2008. The Shanggong Gold Deposit, Eastern Qinling Orogen, China:Isotope Geo-chemistry and Implications for Ore Genesis. Journal of Asian Earth Sciences, 33(3-4):252-266. https://doi.org/10.1016/j.jseaes.2007.12.002 [22] Chen, Y.J., Zhai, M.G., Jiang, S.Y., 2009.Significant Achieve-ments and Open Issues in Study of Orogenesis and Metallogenesis Surrounding the North China Continent. Acta Petrologica Sinica, 25(11):2695-2726(in Chinese with English abstract). [23] Christie, A. B., Brathwaite, R. L., 2003. Hydrothermal Altera-tion in Metasedimentary Rock-Hosted Orogenic Gold Deposits, Reefton Goldfield, South Island, New Zealand. Mineralium Deposita, 38(1):87-107. https://doi.org/10.1007/s00126-002-0280-9 [24] Connolly, J.A.D., Cesare, B., 1993.C-O-H-S Fluid Composi-tion and Oxygen Fugacity in Graphitic Metapelites.Jour-nal of Metamorphic Geology, 11(3):379-388. https://doi.org/10.1111/j.1525-1314.1993.tb00155.x [25] Cox, S. F., 2010. The Application of Failure Mode Diagrams for Exploring the Roles of Fluid Pressure and Stress States in Controlling Styles of Fracture-Controlled Per-meability Enhancement in Faults and Shear Zones.Geo-fluids, 10:217-233. https://doi.org/10.1111/j.1468-8123.2010.00281.x [26] Cox, S.F., 2016.Injection-Driven Swarm Seismicity and Per-meability Enhancement:Implications for the Dynamics of Hydrothermal Ore Systems in High Fluid-Flux, Over-pressuredFaulting Regimes:An Invited Paper. Economic Geology, 111(3):559-587. https://doi.org/10.2113/econgeo.111.3.559 [27] Cox, S.F., 2019.The Dynamics of Permeability Enhancement and Fluid Flow in Overpressured, Fracture Controlled Hydrothermal Systems. Economic Geology(in press). [28] Cox, S.F., Etheridge, M.A., Cas, R.A.F., et al., 1991.Defor-mational Style of the Castlemaine Area, Bendigo-Bal-larat Zone:Implications fore Volution of Crustal Struc-ture in Central Victoria.Australian Journal of Earth Sci-ences, 38(2):151-170. doi: 10.1080/08120099108727963 [29] Dai, J.G., Wang, C.S., Li, Y.L., 2012.Relicts of the Early Cre-taceous Seamounts in the Central-Western Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Asian Earth Sciences, 53:25-37. https://doi.org/10.1016/j.jseaes.2011.12.024 [30] Davis, G.A., Darby, B.J., Zheng, Y.D., et al., 2002.Geometric and Temporal Evolution of an Extensional Detachment Fault, Hohhot Metamorphic Core Complex, Inner Mon-golia, China.Geology, 30(11):1003-1006. doi: 10.1130/0091-7613(2002)030<1003:GATEOA>2.0.CO;2 [31] De Boorder, H., 2012. Spatial and Temporal Distribution of the Orogenic Gold Deposits in the Late Palaeozoic Va-riscides and Southern Tianshan:How Orogenic are They?Ore Geology Reviews, 46:1-31. https://doi.org/10.1016/j.oregeorev.2012.01.002 [32] Deng, J., Liu, X.F., Wang, Q.F., et al., 2015a.Origin of the Ji-aodong-Type Xinli Gold Deposit, Jiaodong Peninsula, China:Constraints from Fluid Inclusion and C-D-O-S-Sr Isotope Compositions. Ore Geology Reviews, 65:674-686. https://doi.org/10.1016/j.oregeorev.2014.04.018 [33] Deng, J., Wang, Q.F., Li, G.J., et al., 2015b.Structural Con-trol and Genesis of the Oligocene Zhenyuan Orogenic Gold Deposit, SW China.Ore Geology Reviews, 65:42-54. https://doi.org/10.1016/j.oregeorev.2014.08.002 [34] Deng, J., Wang, C.M., Bagas, L., et al., 2015c.Cretaceous-Ce-nozoic Tectonic History of the Jiaojia Fault and Gold Min-eralization in the Jiaodong Peninsula, China:Constraints from Zircon U-Pb, Illite K-Ar, and Apatite Fission Track Thermochronometry. Mineralium Deposita, 50(8):987-1006. https://doi.org/10.1007/s00126-015-0584-1 [35] Deng, J., Wang, Q. F., 2016. Gold Mineralization in China:Metallogenic Provinces, Deposit Types and Tectonic Framework.Gondwana Research, 36:219-274. https://doi.org/10.1016/j.gr.2015.10.003 [36] Deng, J., Wang, Q.F., Li, G.J., et al., 2014a.Tethys Tectonic Evolution and Its Bearing on the Distribution of Impor-tant Mineral Deposits in the Sanjiang Region, SW China. Gondwana Research, 26(2):419-437. https://doi.org/10.1016/j.gr.2013.08.002 [37] Deng, J., Wang, Q.F., Li, G.J., et al., 2014b.CenozoicTectono-Magmatic and Metallogenic Processes in the Sanjiang Region, Southwestern China. Earth-Science Reviews, 138:268-299. https://doi.org/10.1016/j.earsci-rev.2014.05.015 [38] Deng, J., Yuan, W. M., Carranza, E. J. M., et al., 2014c. Geo-chronology and Thermochronometry of the Jiapigou Gold Belt, Northeastern China:New Evidence for Multi-ple Episodes of Mineralization. Journal of Asian Earth Sciences, 89:10-27. doi: 10.1016/j.jseaes.2014.03.013 [39] Deng, J., Wang, Q. F., Wan, L., et al., 2009a. Self-Similar Fractal Analysis of Gold Mineralization of Dayinge-zhuang Disseminated-Veinlet Deposit in Jiaodong Gold Province, China. Journal of Geochemical Exploration, 102(2):95-102. doi: 10.1016/j.gexplo.2009.03.003 [40] Deng, J., Yang, L.Q., Gao, B.F., et al., 2009b.Fluid Evolution and Metallogenic Dynamics during Tectonic Regime Transition:Example from the Jiapigou Gold Belt in Northeast China. Resource Geology, 59(2):140-152. https://doi.org/10.1111/j.1751-3928.2009.00086.x [41] Deng, J., Wang, Q. F., Wan, L., et al., 2011. A Multifractal Analysis of Mineralization Characteristics of the Day-ingezhuang Disseminated-Veinlet Gold Deposit in the Ji-aodong Gold Province of China. Ore Geology Reviews, 40(1):54-64. doi: 10.1016/j.oregeorev.2011.05.001 [42] Deng, J., Wang, Q. F., Yang, L. Q., et al., 2010a. Delineation and Explanation of Geochemical Anomalies Using Frac-tal Models in the Heqing Area, Yunnan Province, China.Journal of Geochemical Exploration, 105(3):95-105. https://doi.org/10.1016/j.gexplo.2010.04.005 [43] Deng, J., Yang, L.Q., Sun, Z.S., et al., 2010b.A Metallogenic Model of Gold Deposits of the Jiaodong Granite-Green-stone Belt. Acta Geologica Sinica (English Edition), 77(4):537-546. doi: 10.1111/acgs.2003.77.issue-4 [44] Deng, J., Yang, L.Q., Wang, C.M., 2011.Research Advances of Superimposed Orogenesis and Metallogenesis in the Sanjiang Tethys. Acta Petrologica Sinica, 27(9):2501-2509(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201109001 [45] Ding, Q. F., Jiang, S. Y., Sun, F. Y., 2014. Zircon U-Pb Geo-chronology, Geochemical and Sr-Nd-Hf Isotopic Compo-sitions of the Triassic Granite and Diorite Dikes from the Wulonggou Mining Area in the Eastern Kunlun Orogen, NW China:Petrogenesis and Tectonic Implications.Lith-os, 205:266-283. https://doi.org/10.1016/j.lith-os.2014.07.015 [46] Drummond, B. J., Goleby, B. R., Swager, C. P., et al., 1993. Constraints on Archean Crustal Composition and Struc-ture Provided by Deep Seismic Sounding in the Yilgarn Block.Ore Geology Reviews, 8(1-2):117-124. doi: 10.1016/0169-1368(93)90030-3 [47] Du, J. X., Zhang, L. F., Bader, T., et al., 2014. Metamorphic Evolution of Ultrahigh-Pressure Rocks from Chinese Southwestern Tianshan and a Possible Indicator of UHP-Metamorphism Using Garnet Composition in Low-T Eclogites. Journal of Asian Earth Sciences, 91:69-88. https://doi.org/10.1016/j.jseaes.2014.04.010 [48] Dziggel, A., Poujol, M., Otto, A., et al., 2010.New U-Pb and 40Ar/39Ar Ages from the Northern Margin of the Barber-ton Greenstone Belt, South Africa:Implications for the Formation of Mesoarchaean Gold Deposits.Precambrian Research, 179(1-4):206-220. https://doi.org/10.1016/j.precamres.2010.03.006 [49] Eisenlohr, B.N., Groves, D.I., Partington, G.A., 1989.Crustal-Scale Shear Zones and Their Significance to Archaean Gold Mineralization in Western Australia. Mineralium Deposita, 24(1):1-8. [50] Elmer, F. L., White, R. W., Powell, R., 2006. Devolatilization of Metabasic Rocks during Greenschist-Amphibolite Fa-cies Metamorphism.Journal of Metamorphic Geology, 24(6):497-513. https://doi.org/10.1111/j.1525-1314.2006.00650.x [51] Evans, K. A., 2010. A Test of the Viability of Fluid-Wall Rock Interaction Mechanisms for Changes in Opaque Phase Assemblage in Metasedimentary Rocks in the Kambalda-St.Ives Goldfield, Western Australia.Minera-lium Deposita, 45(2):207-213. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e8035f85235bfc0cfccb29c53ca5524a [52] Evans, K.A., Phillips, G.N., Powell, R., 2006.Rock-Buffering of Auriferous Fluids in Altered Rocks Associated with the Golden Mile-Style Mineralization, Kalgoorlie Gold Field, Western Australia. Economic Geology, 101(4):805-817. https://doi.org/10.2113/gsecongeo.101.4.805 [53] Fan, H.R., Zhai, M.G., Xie, Y.H., et al., 2003.Ore-Forming Fluids Associated with Granite-Hosted Gold Mineraliza-tion at the Sanshandao Deposit, Jiaodong Gold Province, China.Mineralium Deposita, 38(6):739-750. https://doi.org/10.1007/s00126-003-0368-x [54] Finch, E.G., Tomkins, A.G., 2017.Pyrite-Pyrrhotite Stability in a Metamorphic Aureole:Implications for Orogenic Gold Genesis. Economic Geology, 112(3):661-674. https://doi.org/10.2113/econgeo.112.3.661 [55] Finlay, A. J., Selby, D., Osborne, M. J., et al., 2010. Fault-Charged Mantle-Fluid Contamination of United King-dom North Sea Oils:Insights from Re-Os Isotopes.Geol-ogy, 38(11):979-982. https://doi.org/10.1130/g31201.1 [56] Fridovsky, V. Y., 2017. Structural Control of Orogenic Gold Deposits of the Verkhoyansk-Kolyma Folded Region, Northeast Russia. Ore Geology Reviews, 103:38-55. https://doi.org/10.1016/j.oregeorev.2017.01.006 [57] Fu, B., Touret, J.L.R., 2014.From Granulite Fluids to Quartz-Carbonate Megashear Zones:The Gold Rush.Geoscience Frontiers, 5(5):747-758. https://doi.org/10.1016/j.gsf.2014.03.013 [58] Gao, L., Wang, Q. F., Deng, J., et al., 2018. Relationship be-tween Orogenic Gold Mineralization and Crustal Shear-ing along Ailaoshan-Red River Belt, Southeastern Tibet-an Plateau:New Constraint from Paleomagnetism. Geo-chemistry, Geophysics, Geosystems, 19(7):2225-2242. https://doi.org/10.1029/2018gc007493 [59] Gebre-Mariam, M., Hagemann, S. G., Groves, D. I., 1995. A Classification Scheme for Epigenetic Archaean Lode-Gold Deposits.Mineralium Deposita, 30(5):408-410. [60] Goldfarb, R.J., Baker, T., Dube, B., et al., 2005.Distribution, Character, and Genesis of Gold Deposits in Metamorphic Belts.In: Hedenquist, J.W., Thompson, J.F.H., Goldfarb, J., eds., Economic Geology 100th Anniversary Volume. Society of Economic Geologists, Littleton, Colorado, USA, 407-450. [61] Goldfarb, R.J., Groves, D.I., 2015.Orogenic Gold:Common or Evolving Fluid and Metal Sources through Time.Lithos, 233:2-26. https://doi.org/10.1016/j.lithos.2015.07.011 [62] Goldfarb, R.J., Groves, D.I., Gardoll, S., 2001.Orogenic Gold and Geologic Time:A Global Synthesis.Ore Geology Re-views, 18(1-2):1-75. https://doi.org/10.1016/s0169-1368(01)00016-6 [63] Goldfarb, R. J., Hart, C., Davis, G., et al., 2007. East Asian Gold:Deciphering the Anomaly of Phanerozoic Gold in Precambrian Cratons. Economic Geology, 102(3):341-345. https://doi.org/10.2113/gsecongeo.102.3.341 [64] Goldfarb, R. J., Santosh, M., 2014. The Dilemma of the Jia-odong Gold Deposits:Are They Unique? Geoscience Frontiers, 5(2):139-153. https://doi.org/10.1016/j.gsf.2013.11.001 [65] Griffin, W.L., Begg, G.C., O'Reilly, S.Y., 2013.Continental-Root Control on the Genesis of Magmatic Ore Deposits. Nature Geoscience, 6(11):905-910. https://doi.org/10.1038/ngeo1954 [66] Groves, D., Barnicoat, A. C., Barley, M., et al., 1992. Sub-Greenschist to Granulite-Hosted Archaean Lode-Gold Deposits of the Yilgarn Craton: A Depositional Continu-um from Deep-Sourced Hydrothermal Fluids in Crustals-cale Plumbing Systems. Geology Department (Key Cen-tre) and University Extension. The University of West-ern Australia Publication, Perth, Australia, 325-338. [67] Groves, D. I., 1993. The Crustal Continuum Model for Late-Archaean Lode-Gold Deposits of the Yilgarn Block, Western Australia. Mineralium Deposita, 28(6):366-374. doi: 10.1007/BF02431596 [68] Groves, D.I., Condie, K.C., Goldfarb, R.J., et al., 2005.100th Anniversary Special Paper:Secular Changes in Global Tectonic Processes and Their Influence on the Temporal Distribution of Gold-Bearing Mineral Deposits.Econom-ic Geology, 100(2):203-224. https://doi.org/10.2113/gsecongeo.100.2.203 [69] Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., et al., 1998. Orogenic Gold Deposits:A Proposed Classification in the Context of Their Crustal Distribution and Relationship to Other Gold Deposit Types.Ore Geology Reviews, 13(1-5):7-27. https://doi.org/10.1016/s0169-1368(97) 00012-7 doi: 10.1016/s0169-1368(97)00012-7 [70] Groves, D.I., Goldfarb, R.J., Robert, F., et al., 2003.Gold De-posits in Metamorphic Belts:Overview of Current Under-standing, Outstanding Problems, Future Research, and Exploration Significance. Economic Geology, 98(1):1-29. https://doi.org/10.2113/gsecongeo.98.1.1 [71] Groves, D.I., Santosh, M., 2015.Province-Scale Commonali-ties of Some World-Class Gold Deposits:Implications for Mineral Exploration.Geoscience Frontiers, 6(3):389-399. https://doi.org/10.1016/j.gsf.2014.12.007 [72] Groves, D. I., Santosh, M., 2016. The Giant Jiaodong Gold Province:The Key to a Unified Model for Orogenic Gold Deposits? Geoscience Frontiers, 7(3):409-417. doi: 10.1016/j.gsf.2015.08.002 [73] Groves, D. I., Santosh, M., Deng, J., et al., 2019. A Holistic Model for the Origin of Orogenic Gold Deposits and Its Implications for Exploration.Mineralium Deposita.https: //doi.org/10.1007/s00126-019-0087-5. [74] Groves, D.I., Santosh, M., Goldfarb, R.J., et al., 2018.Struc-tural Geometry of Orogenic Gold Deposits:Implications for Exploration of World-Class and Giant Deposits.Geo-science Frontiers, 9(4):1163-1177. doi: 10.1016/j.gsf.2018.01.006 [75] Gumiel, P., Sanderson, D. J., Arias, M., et al., 2010. Analysis of the Fractal Clustering of Ore Deposits in the Spanish Iberian Pyrite Belt. Ore Geology Reviews, 38(4):307-318. https://doi.org/10.1016/j.oregeorev.2010.08.001 [76] Guo, Z.F., Wilson, M., Zhang, M.L., et al., 2013.Post-Colli-sional, K-Rich Mafic Magmatism in South Tibet:Con-straints on Indian Slab-to-Wedge Transport Processes and Plateau Uplift.Contributions to Mineralogy and Pe-trology, 165(6):1311-1340. https://doi.org/10.1007/s00410-013-0860-y [77] Haddad-Martim, P.M., Carranza, E.J.M., de Souza Filho, C.R., 2018. The Fractal Nature of Structural Controls on Ore Formation:The Case of the Iron Oxide Copper-Gold Deposits in the Carajás Mineral Province, Brazilian Ama-zon.Economic Geology, 113(7):1499-1524. https://doi.org/10.5382/econgeo.2018.4600 [78] Harrison, T.M., Yin, A., Grove, M., et al., 2000.The Zedong Window:A Record of Superposed Tertiary Convergence in Southeastern Tibet. Journal of Geophysical Research:Solid Earth, 105(B8):19211-19230. https://doi.org/10.1029/2000jb900078 [79] Hart, C., 2005. Classifying, Distinguishing and Exploring for Intrusion-Related Gold Systems.The Gangue, 87(1):9. [80] Helt, K. M., Williams-Jones, A. E., Clark, J. R., et al., 2014. Constraints on the Genesis of the Archean Oxidized, Intru-sion-Related Canadian Malartic Gold Deposit, Quebec, Canada. Economic Geology, 109(3):713-735. https://doi.org/10.2113/econgeo.109.3.713 [81] Hodkiewicz, P.F., Groves, D.I., Davidson, G.J., et al., 2009. Influence of Structural Setting on Sulphur Isotopes in Ar-chean Orogenic Gold Deposits, Eastern Goldfields Prov-ince, Yilgarn, Western Australia. Mineralium Deposita, 44(2):129-150. https://doi.org/10.1007/s00126-008-0211-5 [82] Hou, Z. Q., Cook, N. J., 2009. Metallogenesis of the Tibetan Collisional Orogen:A Review and Introduction to the Special Issue. Ore Geology Reviews, 36(1-3):2-24. https://doi.org/10.1016/j.oregeorev.2009.05.001 [83] Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015.Lithospheric Ar-chitecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6):1541-1575. https://doi.org/10.2113/econgeo.110.6.1541 [84] Hou, Z.Q., Zaw, K., Pan, G.T., et al., 2007.Sanjiang Tethyan Metallogenesis in S.W.China:Tectonic Setting, Metallo-genic Epochs and Deposit Types.Ore Geology Reviews, 31(1-4):48-87. https://doi.org/10.1016/j.oregeorv.2004.12.007 [85] Hronsky, J.M.A., Groves, D.I., Loucks, R.R., et al., 2012.A Unified Model for Gold Mineralisation in Accretionary Orogens and Implications for Regional-Scale Explora-tion Targeting Methods. Mineralium Deposita, 47(4):339-358. https://doi.org/10.1007/s00126-012-0402-y [86] Hyndman, R.D., McCrory, P.A., Wech, A., et al., 2015.Cas-cadia Subducting Plate Fluids Channelled to Fore-Arc-Mantle Corner:ETS and Silica Deposition. Journal of Geophysical Research:Solid Earth, 120(6):4344-4358. https://doi.org/10.1002/2015jb011920 [87] Jia, S. S., Wang, E. D., Fu, J. F., et al., 2018. Indosinian Gold Mineralization and Magmatic-Hydrothermal Evolution of the Hadamengou Gold Deposit at the Northern Margin of the North China Craton:Constraints from K-Feldspar Laser 40Ar/39Ar Dating.Journal of Geochemical Explora-tion, 190:314-324. https://doi.org/10.1016/j.gexp-lo.2018.04.002 [88] Jiang, S.H., Nie, F.J., Hu, P., et al., 2009.Mayum:An Orogen-ic Gold Deposit in Tibet, China.Ore Geology Reviews, 36(1-3):160-173. https://doi.org/10.1016/j.oregeor-ev.2009.03.006 [89] Katayama, I., Terada, T., Okazaki, K., et al., 2012. Episodic Tremor and Slow Slip Potentially Linked to Permeabili-ty Contrasts at the Moho.Nature Geoscience, 5(10):731-734. https://doi.org/10.1038/ngeo1559 [90] Kawano, S., Katayama, I., Okazaki, K., 2011.Permeability An-isotropy of Serpentinite and Fluid Pathways in a Subduc-tion Zone. Geology, 39(10):939-942. https://doi.org/10.1130/g32173.1 [91] Kennedy, B.M., 1997.Mantle Fluids in the San Andreas Fault System, California.Science, 278(5341):1278-1281. doi: 10.1126/science.278.5341.1278 [92] Kennedy, B.M., van Soest, M.C., 2007.Flow of Mantle Fluids through the Ductile Lower Crust:Helium Isotope Trends.Science, 318(5855):1433-1436. doi: 10.1126/science.1147537 [93] Kerrich, R., Fyfe, W. S., 1981. The Gold:Carbonate Associa-tion, Source of CO2, and CO2 Fixation Reactions in Ar-chaean Lode Deposits. Chemical Geology, 33(1-4):265-294. doi: 10.1016/0009-2541(81)90104-2 [94] Kerrich, R., Goldfarb, R., Groves, D., et al., 2000.The Characteristics, Origins, and Geodynamic Settings of Supergi-ant Gold Metallogenic Provinces.Science in China(Series D), 43(Suppl.1):1-68. [95] Kerrich, R., Wyman, D., 1990. Geodynamic Setting of Meso-thermal Gold Deposits:An Association with Accretion-ary Tectonic Regimes.Geology, 18(9):882-825. doi: 10.1130/0091-7613(1990)018<0882:GSOMGD>2.3.CO;2 [96] Klein-Ben David, O., Pettke, T., Kessel, R., 2011.Chromium Mobility in Hydrous Fluids at Upper Mantle Conditions.Lithos, 125(1-2):122-130. doi: 10.1016/j.lithos.2011.02.002 [97] Klemperer, S. L., Kennedy, B. M., Sastry, S. R., et al., 2013. Mantle Fluids in the Karakoram Fault:Helium Isotope Evidence.Earth and Planetary Science Letters, 366:59-70. https://doi.org/10.1016/j.epsl.2013.01.013 [98] Knight, J.T., Groves, D.I., Ridley, J.R., 1993.The Coolgardie Goldfied, Western Australia:District-Scale Controls on an Archaean Gold Camp in an Amphibolite Facies Ter-rane.Mineralium Deposita, 28(6):436-456. doi: 10.1007/BF02431601 [99] Knight, J. T., Ridley, J. R., Groves, D. I., 2000. The Archean Amphibolite Facies Coolgardie Goldfield, Yilgarn Cra-ton, Western Australia:Nature, Controls, and Gold Field-Scale Patterns of Hydrothermal Wall-Rock Alteration.Economic Geology, 95(1):49-84. https://doi.org/10.2113/gsecongeo.95.1.49 [100] Kolb, J., Dziggel, A., Bagas, L., 2015. Hypozonal Lode Gold Deposits:A Genetic Concept Based on a Review of the New Consort, Renco, Hutti, Hira Buddini, Navachab, Nevoria and the Granites Deposits. Precambrian Re-search, 262:20-44. https://doi.org/10.1016/j.pre-camres.2015.02.022 [101] Kolb, J., Kisters, A.F.M., Hoernes, S., et al., 2000.The Ori-gin of Fluids and Nature of Fluid-Rock Interaction in Mid-Crustal Auriferous Mylonites of the Renco Mine, South-ern Zimbabwe. Mineralium Deposita, 35(2-3):109-125. https://doi.org/10.1007/s001260050010 [102] Kolb, J., Meyer, M.F., 2002.Fluid Inclusion Record of the Hy-pozonal Orogenic Renco Gold Deposit (Zimbabwe) dur-ing the Retrograde P-T Evolution.Contributions to Min-eralogy and Petrology, 143(4):495-509. https://doi.org/10.1007/s00410-002-0360-y [103] Kolb, J., Rogers, A., Meyer, F. M., 2005. Relative Timing of Deformation and Two-Stage Gold Mineralization at the Hutti Mine, Dharwar Craton, India. Mineralium Deposi-ta, 40(2):156-174. doi: 10.1007/s00126-005-0475-y [104] Kontak, D.J., Smith, P.K., Kerrich, R., et al., 1990.Integrated Model for Meguma Group Lode Gold Deposits, Nova Scotia, Canada.Geology, 18(3):238-242. doi: 10.1130/0091-7613(1990)018<0238:IMFMGL>2.3.CO;2 [105] LaFlamme, C., Jamieson, J.W., Fiorentini, M.L., et al., 2018. Investigating Sulfur Pathways through the Lithosphere by Tracing Mass Independent Fractionation of Sulfur to the Lady Bountiful Orogenic Gold Deposit, Yilgarn Cra-ton. Gondwana Research, 58:27-38. https://doi.org/10.1016/j.gr.2018.02.005 [106] Large, R.R., Bull, S.W., Maslennikov, V.V., 2011.A Carbo-naceous Sedimentary Source-Rock Model for Carlin-Type and Orogenic Gold Deposits. Economic Geology, 106(3):331-358. https://doi.org/10.2113/econ-geo.106.3.331 [107] Large, R. R., Danyushevsky, L., Hollit, C., et al., 2009. Gold and Trace Element Zonation in Pyrite Using a Laser Im-aging Technique:Implications for the Timing of Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits.Economic Geology, 104(5):635-668. https://doi.org/10.2113/gsecongeo.104.5.635 [108] Large, R.R., Maslennikov, V.V., Robert, F., et al., 2007.Mul-tistage Sedimentary and Metamorphic Origin of Pyrite and Gold in the Giant Sukhoi Log Deposit, Lena Gold Province, Russia. Economic Geology, 102(7):1233-1267. https://doi.org/10.2113/gsecongeo.102.7.1233 [109] Lawrence, D. M., Treloar, P. J., Rankin, A. H., et al., 2013. The Geology and Mineralogy of the Loulo Mining Dis-trict, Mali, West Africa:Evidence for Two Distinct Styles of Orogenic Gold Mineralization.Economic Geolo-gy, 108(2):199-227. https://doi.org/10.2113/econ-geo.108.2.199 [110] Lebrun, E., Miller, J., Thébaud, N., et al., 2017. Structural Controls on an Orogenic Gold System:The World-Class Siguiri Gold District, Siguiri Basin, Guinea, West Africa.Economic Geology, 112(1):73-98. https://doi.org/10.2113/econgeo.112.1.73 [111] Li, H. J., Wang, Q. F., Deng, J., et al., 2019a. Alteration and Mineralization Styles of the Orogenic Disseminated Zhenyuan Gold Deposit, Southeastern Tibet: Contrast with Carlin Gold Deposit. Geoscience Frontiers. https://doi.org/10.1016/j.gsf.2019.01.008 [112] Li, H.J., Wang, Q.F., Groves, D.I., et al., 2019b.Alteration of Eocene Lamprophyres in the Zhenyuan Orogenic Gold Deposit, Yunnan Province, China:Composition and Evo-lution of Ore Fluids.Ore Geology Reviews, 107:1068-1083. https://doi.org/10.1016/j.oregeorev.2019.03.032 [113] Li, H. J., Wang, Q. F., Yang, L., et al., 2017. Orogenic Gold Deposits Formed in Tibetan Collisional Orogen Setting:Geotectonic Setting, Geological and Geochemical Fea-tures.Acta Petrologica Sinica, 33(7):2189-2201 (in Chi-nese with English abstract). [114] Li, J.F., Xia, B., Liu, L.W., et al., 2009.SHRIMP U-Pb Dat-ing for the Gabbro in Qunrang Ophiolite, Tibet:The Geochronology Constraint for the Development of Eastern Tethys Basin. Geotectonica et Metallogenia, 33(2):294-298. [115] Li, J. W., Bi, S. J., Selby, D., et al., 2012a. Giant Mesozoic Gold Provinces Related to the Destruction of the North China Craton. Earth and Planetary Science Letters, 349-350:26-37. https://doi.org/10.1016/j.epsl.2012.06.058 [116] Li, J.W., Li, Z.K., Zhou, M.F., et al., 2012b.The Early Creta-ceous Yangzhaiyu Lode Gold Deposit, North China Cra-ton:A Link between Craton Reactivation and Gold Vein-ing.Economic Geology, 107(1):43-79. [117] Li, J. W., Vasconcelos, P. M., Zhou, M. F., et al., 2006. Geo-chronology of the Pengjiakuang and Rushan Gold Depos-its, Eastern Jiaodong Gold Province, Northeastern China:Implications for Regional Mineralization and Geodynam -ic Setting.Economic Geology, 101(5):1023-1038. https://doi.org/10.2113/gsecongeo.101.5.1023 [118] Li, L., Santosh, M., Li, S. R., 2015. The 'Jiaodong Type' Gold Deposits:Characteristics, Origin and Prospecting. Ore Geology Reviews, 65:589-611. https://doi.org/10.1016/j.oregeorev.2014.06.021 [119] Li, Q.L., Chen, F.K., Yang, J.H., et al., 2008.Single Grain Py-rite Rb-Sr Dating of the Linglong Gold Deposit, Eastern China. Ore Geology Reviews, 34(3):263-270. https://doi.org/10.1016/j.oregeorev.2007.10.003 [120] Li, S.H., Zhang, J., Deng, J., et al., 2011.The Characteristics of Ore-Forming Fluid and Genetic Type of the Chang'an Gold Deposit in Southern Ailaoshan Metallogenic Belt.Acta Petrologica Sinica, 27(12):3777-3786(in Chi-nese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201112021 [121] Li, X. F., Mao, J. W., Wang, C. Z., et al., 2007. The Daduhe Gold Field at the Eastern Margin of the Tibetan Plateau:He, Ar, S, O, and H Isotopic Data and Their Metallogen-ic Implications. Ore Geology Reviews, 30(3-4):244-256. https://doi.org/10.1016/j.oregeorev.2005.10.005 [122] Liang, Y.H., Sun, X.M., Shi, G.Y., et al., 2011.Ore-Forming Fluid Geochemistry and Genesis of Laowangzhai Large Scale Orogenic Gold Deposit in Ailaoshan Gold Belt, Yunnan Province, China.Acta Petrologica Sinica, 27(9):2533-2540 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201109004 [123] Lin, T.H., Chung, S.L., Chiu, H.Y., et al., 2012.Zircon U-Pb and Hf Isotope Constraints from the Ailao Shan-Red River Shear Zone on the Tectonic and Crustal Evolution of Southwestern China. Chemical Geology, 291(1):23-37. https://doi.org/10.1016/j.chemgeo.2011.11.011 [124] Liu, J.J., Liu, C.H., Carranza, E.J.M., et al., 2015a.Geological Characteristics and Ore-Forming Process of the Gold De-posits in the Western Qinling Region, China. Journal of Asian Earth Sciences, 103:40-69. https://doi.org/10.1016/j.jseaes.2014.11.012 [125] Liu, H.C., Wang, Y.J., Cawood, P.A., et al., 2015b.Record of Tethyan Ocean Closure and Indosinian Collision along the Ailaoshan Suture Zone (SW China). Gondwana Re-search, 27(3):1292-1306. https://doi.org/10.1016/j.gr.2013.12.013 [126] Liu, W., Fei, P.X., 2006.Methane-Rich Fluid Inclusions from Ophiolitic Dunite and Post-Collisional Mafic-Ultramafic Intrusion:The Mantle Dynamics underneath the Palaeo -Asian Ocean through to the Post-Collisional Period.Earth and Planetary Science Letters, 242(3-4):286-301. https://doi.org/10.1016/j.epsl.2005.11.059 [127] MacKenzie, D. J., Craw, D., Begbie, M., 2007. Mineralogy, Geochemistry, and Structural Controls of a Disseminated Gold-Bearing Alteration Halo around the Schist-Hosted Bullendale Orogenic Gold Deposit, New Zealand. Jour-nal of Geochemical Exploration, 93(3):160-176. doi: 10.1016/j.gexplo.2007.04.001 [128] Malpas, J., Zhou, M. F., Robinson, P. T., et al., 2003. Geo-chemical and Geochronological Constraints on the Origin and Emplacement of the Yarlung Zangbo Ophiolites, Southern Tibet.Geological Society, London, Special Pub-lications, 218(1):191-206. https://doi.org/10.1144/gsl.sp.2003.218.01.11 [129] Mao, J.W., Pirajno, F., Xiang, J.F., et al., 2011.Mesozoic Mo-lybdenum Deposits in the East Qinling-Dabie Orogenic Belt:Characteristics and Tectonic Settings.Ore Geology Reviews, 43(1):264-293. https://doi.org/10.1016/j.ore-georev.2011.07.009 [130] Mao, J.W., Qiu, Y.M., Goldfarb, R.J., et al., 2002.Geology, Distribution, and Classification of Gold Deposits in the Western Qinling Belt, Central China.Mineralium Deposi-ta, 37(3-4):352-377. doi: 10.1007/s00126-001-0249-0 [131] Mao, J.W., Wang, Y.T., Li, H.M., et al., 2008.The Relation-ship of Mantle-Derived Fluids to Gold Metallogenesis in the Jiaodong Peninsula:Evidence from D-O-C-S Isotope Systematics. Ore Geology Reviews, 33(3-4):361-381. https://doi.org/10.1016/j.oregeorev.2007.01.003 [132] Mao, J.W., Xie, G.Q., Li, X.F., et al., 2004.Mesozoic Large Scale Mineralization and Multiple Lithospheric Exten-sion in South China.Earth Science Frontiers, 11(1):45-55(in Chinese with English abstract). [133] Mao, J. W., Xie, G. Q., Zhang, Z. H., et al., 2005. Mesozoic Large-Scale Metallogenic Pulses in North China and Corresponding Geodynamic Settings. Acta Petrologica Sinica, 21(1):169-188(in Chinese with English ab-stract). [134] McNaughton, N. J., Groves, D. I., Witt, W. K., 1993. The Source of Lead in Archaean Lode Gold Deposits of the Menzies-Kalgoorlie-Kambalda Region, Yilgarn Block, Western Australia. Mineralium Deposita, 28(6):495-502. doi: 10.1007/BF02431605 [135] Mernagh, T.P., Bierlein, F.P., 2008.Transport and Precipita-tion of Gold in Phanerozoic Metamorphic Terranes from Chemical Modeling of Fluid-Rock Interaction.Economic Geology, 103(8):1613-1640. https://doi.org/10.2113/gsecongeo.103.8.1613 [136] Morelli, R., Creaser, R.A., Seltmann, R., et al., 2007.Age and Source Constraints for the Giant Muruntau Gold Depos-it, Uzbekistan, from Coupled Re-Os-He Isotopes in Arse-nopyrite.Geology, 35(9):795-798. doi: 10.1130/G23521A.1 [137] Müller, D., Groves, D. I., 1997. Indirect Associations between Lamprophyres and Gold-Copper Deposits.In: Müller, D., Groves, D.I., eds., Potassic Igneous Rocks and Associat-ed Gold-Copper Mineralization.Springer, Berlin, Heidel-berg, 143-166. [138] Munro, M. A., Ord, A., Hobbs, B. E., 2018. Spatial Organiza-tion of Gold and Alteration Mineralogy in Hydrothermal Systems:Wavelet Analysis of Drillcore from Sunrise Dam Gold Mine, Western Australia.Geological Society, London, Special Publications, 453(1):165-204. https://doi.org/10.1144/sp453.10 [139] Nesbitt, B.E., 1991.Phanerozoic Gold Deposits in Tectonical-ly Active Continental Margins. In: Nesbitt, B. E., ed., Gold Metallogeny and Exploration. Springer, Boston, MA, 104-132. [140] Peacock, S.A., 1990.Fluid Processes in Subduction Zones.Sci-ence, 248(4953):329-337. https://doi.org/10.1126/sci-ence.248.4953.329 [141] Peacock, S.M., Christensen, N.I., Bostock, M.G., et al., 2011.High Pore Pressures and Porosity at 35 km Depth in the Cascadia Subduction Zone. Geology, 39(5):471-474. https://doi.org/10.1130/g31649.1 [142] Phillips, G.N., Powell, R., 1993.Link between Gold Provinces. Economic Geology, 88(5):1084-1098. https://doi.org/10.2113/gsecongeo.88.5.1084 [143] Phillips, G.N., Powell, R., 2009.Formation of Gold Deposits:Review and Evaluation of the Continuum Model.Earth-Science Reviews, 94(1-4):1-21. https://doi.org/10.1016/j.earscirev.2009.02.002 [144] Phillips, G.N., Powell, R., 2010.Formation of Gold Deposits:A Metamorphic Devolatilization Model.Journal of Meta-morphic Geology, 28(6):689-718. doi: 10.1111/(ISSN)1525-1314 [145] Phillips, G. N., Powell, R., 2015. A Practical Classification of Gold Deposits, with a Theoretical Basis. Ore Geology Reviews, 65:568-573. https://doi.org/10.1016/j. ore-georev.2014.04.006 doi: 10.1016/j.ore-georev.2014.04.006 [146] Pili, É., Kennedy, B. M., Conrad, M. E., et al., 2011. Isotopic Evidence for the Infiltration of Mantle and Metamorphic CO2-H2O Fluids from below in Faulted Rocks from the San Andreas Fault System. Chemical Geology, 281(3-4):242-252. https://doi.org/10.1016/j. chem-geo.2010.12.011 doi: 10.1016/j.chem-geo.2010.12.011 [147] Pitcairn, I.K., Craw, D., Teagle, D.A.H., 2015.Metabasalts as Sources of Metals in Orogenic Gold Deposits.Minerali-um Deposita, 50(3):373-390. doi: 10.1007/s00126-014-0547-y [148] Pitcairn, I.K., Teagle, D.A.H., Craw, D., et al., 2006.Sources of Metals and Fluids in Orogenic Gold Deposits:Insights from the Otago and Alpine Schists, New Zealand. Eco-nomic Geology, 101(8):1525-1546. https://doi.org/10.2113/gsecongeo.101.8.1525 [149] Ridley, J. R., Diamond, L. W., 2000. Fluid Chemistry of Oro-genic Lode Gold Deposits and Implications for Genetic Models.Reviews in Economic Geology, 13:141-162. [150] Romer, R.L., Kroner, U., 2018.Paleozoic Gold in the Appala-chians and Variscides. Ore Geology Reviews, 92:475-505. https://doi.org/10.1016/j.oregeorev.2017.11.021 [151] Rospabé, M., Ceuleneer, G., Benoit, M., et al., 2017.Origin of the Dunitic Mantle-Crust Transition Zone in the Oman Ophiolite:The Interplay between Percolating Magmas and High-Temperature Hydrous Fluids.Geology, 45(5):471-474. https://doi.org/10.1130/g38778.1 [152] Saager, R., Meyer, M., Muff, R., 1982. Gold Distribution in Supracrustal Rocks from Archean Greenstone Belts of Southern Africa and from Paleozoic Ultramafic Complex-es of the European Alps; Metallogenic and Geochemical Implications. Economic Geology, 77(1):1-24. https://doi.org/10.2113/gsecongeo.77.1.1 [153] Sack, P.J., Large, R.R., Gregory, D.D., 2018.Geochemistry of Shale and Sedimentary Pyrite as a Proxy for Gold Fertili-ty in the Selwyn Basin Area, Yukon.Mineralium Deposi-ta, 53(7):997-1018. https://doi.org/10.1007/s00126 -018-0793-5 doi: 10.1007/s00126-018-0793-5 [154] Safonov, Y.G., 2010.Topical Issues of the Theory of Gold De-posit Formation. Geology of Ore Deposits, 52(6):438-458. doi: 10.1134/S1075701510060024 [155] Sarma, D. S., Fletcher, I. R., Rasmussen, B., et al., 2011. Ar-chaean Gold Mineralization Synchronous with Late Cra-tonization of the Western Dharwar Craton, India:2.52 Ga U-Pb Ages of Hydrothermal Monazite and Xenotime in Gold Deposits.Mineralium Deposita, 46(3):273-288. doi: 10.1007/s00126-010-0326-3 [156] Sausse, J., Jacquot, E., Fritz, B., et al., 2001. Evolution of Crack Permeability during Fluid-Rock Interaction.Exam-ple of the Brézouard Granite (Vosges, France). Tectono-physics, 336(1-4):199-214. https://doi.org/10.1016/s0040-1951(01)00102-0 [157] Schrauder, M., Navon, O., 1994. Hydrous and Carbonatitic Mantle Fluids in Fibrous Diamonds from Jwaneng, Bo-tswana. Geochimica et Cosmochimica Acta, 58(2):761-771. https://doi.org/10.1016/0016-7037(94)90504-5 [158] Selvaraja, V., Caruso, S., Fiorentini, M.L., et al., 2017.Atmo-spheric Sulfur in the Orogenic Gold Deposits of the Ar-chean Yilgarn Craton, Australia. Geology, 45(8):691-694. [159] Seno, T., Kirby, S. H., 2014. Formation of Plate Boundaries:The Role of Mantle Volatilization. Earth-Science Re-views, 129:85-99. https://doi.org/10.1016/j. earsciev.2013.10.011 doi: 10.1016/j.earsciev.2013.10.011 [160] Sibson, R. H., 1996. Structural Permeability of Fluid-Driven Fault-Fracture Meshes. Journal of Structural Geology, 18(8):1031-1042. https://doi.org/10.1016/0191-8141(96)00032-6 [161] Sibson, R.H., 2001.Seismogenic Framework for Ore Deposi-tion.Reviews in Economic Geology, 14:25-50. [162] Sibson, R. H., 2004. Controls on Maximum Fluid Overpres-sure Defining Conditions for Mesozonal Mineralisation.Journal of Structural Geology, 26(6-7):1127-1136. https://doi.org/10.1016/j.jsg.2003.11.003 [163] Sibson, R.H., 2013.Stress Switching in Subduction Forearcs:Implications for Overpressure Containment and Strength Cycling on Megathrusts. Tectonophysics, 600:142-152. https://doi.org/10.1016/j.tecto.2013.02.035 [164] Sibson, R. H., Robert, F., Poulsen, K. H., 1988. High-Angle Reverse Faults, Fluid-Pressure Cycling, and Mesother-mal Gold-Quartz Deposits.Geology, 16(6):551-555. doi: 10.1130/0091-7613(1988)016<0551:HARFFP>2.3.CO;2 [165] Sibson, R. H., Scott, J., 1998. Stress/Fault Controls on the Containment and Release of Overpressured Fluids:Ex-amples from Gold-Quartz Vein Systems in Juneau, Alas-ka; Victoria, Australia and Otago, New Zealand.Ore Ge-ology Reviews, 13(1-5):293-306. https://doi.org/10.1016/s0169-1368(97)00023-1 [166] Sillitoe, R.H., 1991.Intrusion-Related Gold Deposits.In: Silli-toe, R. H., ed., Gold Metallogeny and Exploration.Springer, Boston, MA, 165-209. [167] Sillitoe, R. H., 2008. Major Gold Deposits and Belts of the North and South American Cordillera:Distribution, Tec-tonomagmatic Settings, and Metallogenic Consider-ations.Economic Geology, 103(4):663-687. doi: 10.2113/gsecongeo.103.4.663 [168] Sillitoe, R. H., Thompson, J. F. H., 1998. Intrusion-Related Vein Gold Deposits:Types, Tectono-Magmatic Settings and Difficulties of Distinction from Orogenic Gold De-posits. Resource Geology, 48(4):237-250. https://doi.org/10.1111/j.1751-3928.1998.tb00021.x [169] Song, Y., Jiang, S. H., Bagas, L., et al., 2016. The Geology and Geochemistry of Jinchangyu Gold Deposit, North China Craton:Implications for Metallogenesis and Geo-dynamic Setting. Ore Geology Reviews, 73:313-329. https://doi.org/10.1016/j.oregeorev.2014.10.031 [170] Spence-Jones, C.P., Jenkin, G.R.T., Boyce, A.J., et al., 2018.Tellurium, Magmatic Fluids and Orogenic Gold:An Ear-ly Magmatic Fluid Pulse at Cononish Gold Deposit, Scotland. Ore Geology Reviews, 102:894-905. https://doi.org/10.1016/j.oregeorev.2018.05.014 [171] Standish, C.D., Dhuime, B., Chapman, R.J., et al., 2014.The Genesis of Gold Mineralisation Hosted by Orogenic Belts:A Lead Isotope Investigation of Irish Gold Depos-its. Chemical Geology, 378-379:40-51. https://doi.org/10.1016/j.chemgeo.2014.04.012 [172] Steadman, J.A., Large, R.R., 2016.Synsedimentary, Diagenet-ic, and Metamorphic Pyrite, Pyrrhotite, and Marcasite at the Homestake BIF -Hosted Gold Deposit, South Dako-ta, USA:Insights on Au-As Ore Genesis from Textural and LA -ICP -MS Trace Element Studies.Economic Ge-ology, 111(7):1731-1752. https://doi.org/10.2113/econgeo.111.7.1731 [173] Steadman, J.A., Large, R.R., Meffre, S., et al., 2013.Age, Ori-gin and Significance of Nodular Sulfides in 2 680 Ma Carbonaceous Black Shale of the Eastern Goldfields Su-perterrane, Yilgarn Craton, Western Australia. Precam-brian Research, 230:227-247. https://doi.org/10.1016/j.precamres.2013.02.013 [174] Streit, J. E., Cox, S. F., 2001. Fluid Pressures at Hypocenters of Moderate to Large Earthquakes.Journal of Geophysi-cal Research:Solid Earth, 106(B2):2235-2243. https://doi.org/10.1029/2000jb900359 [175] Stüwe, K., 1998. Heat Sources of Cretaceous Metamorphism in the Eastern Alps:A Discussion. Tectonophysics, 287(1-4):251-269. https://doi.org/10.1016/s0040-1951(98)80072-3 [176] Sun, X. M., Wei, H. X., Zhai, W., et al., 2014. Bangbu:The Largest Cenozic Orogenic Gold Deposit in Southern Ti-bet, China. Acta Geologica Sinica (English Edition), 88(Suppl.2):788-789. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201006004 [177] Sun, X. M., Wei, H. X., Zhai, W., et al., 2016. Fluid Inclusion Geochemistry and Ar-Ar Geochronology of the Cenozoic Bangbu Orogenic Gold Deposit, Southern Tibet, China.Ore Geology Reviews, 74:196-210. https://doi.org/10.1016/j.oregeorev.2015.11.021 [178] Sun, X. M., Zhang, Y., Xiong, D. X., et al., 2009. Crust and Mantle Contributions to Gold-Forming Process at the Daping Deposit, Ailaoshan Gold Belt, Yunnan, China.Ore Geology Reviews, 36(1-3):235-249. https://doi.org/10.1016/j.oregeorev.2009.05.002 [179] Tang, J., Zheng, Y.F., Wu, Y.B., et al., 2007.Geochronology and Geochemistry of Metamorphic Rocks in the Jiaobei Terrane:Constraints on Its Tectonic Affinity in the Sulu Orogen.Precambrian Research, 152(1-2):48-82. https://doi.org/10.1016/j.precamres.2006.09.001 [180] Tang, L., Santosh, M., 2018.Neoarchean Granite-Greenstone Belts and Related Ore Mineralization in the North China Craton:An Overview. Geoscience Frontiers, 9(3):751-768. doi: 10.1016/j.gsf.2017.04.002 [181] Tomkins, A.G., 2010.Windows of Metamorphic Sulfur Liber-ation in the Crust:Implications for Gold Deposit Genesis.Geochimica et Cosmochimica Acta, 74(11):3246-3259. https://doi.org/10.1016/j.gca.2010.03.003 [182] Tomkins, A.G., Grundy, C., 2009.Upper Temperature Limits of Orogenic Gold Deposit Formation:Constraints from the Granulite-Hosted Griffin's Find Deposit, Yilgarn Cra-ton. Economic Geology, 104(5):669-685. https://doi.org/10.2113/gsecongeo.104.5.669 [183] Tripp, G. I., Vearncombe, J. R., 2004. Fault/fracture Density and Mineralization:A Contouring Method for Targeting in Gold Exploration. Journal of Structural Geology, 26(6-7):1087-1108. https://doi.org/10.1016/j.jsg.2003.11.002 [184] Vearncombe, J. R., 1998. Shear Zones, Fault Networks, and Archean Gold.Geology, 26(9):855. doi: 10.1130/0091-7613(1998)026<0855:SZFNAA>2.3.CO;2 [185] Wall, V.J., Graupner, T., Yantsen, V., et al., 2004.Muruntau, Uzbekistan: A Giant Thermal Aureole Gold (TAG) Sys-tem.In: Muhling, J., Goldfarb, R., Vielreicher, N., et al., eds., SEG 2004: Predictive Mineral Discovery Under Cover: Extended Abstracts: Centre for Global Metalloge-ny. University of Western Australia Publication, Perth, Australia, 199-203. [186] Wang, C.S., Liu, Z.F., Hébert, R., 2000.The Yarlung-Zangbo Paleo-Ophiolite, Southern Tibet:Implications for the Dy-namic Evolution of the Yarlung-Zangbo Suture Zone.Journal of Asian Earth Sciences, 18(6):651-661. doi: 10.1016/S1367-9120(00)00033-X [187] Wang, Q. F., Deng, J., Groves, D. I., Ore-Controlling Struc-ture and Genesis of Orogenic Gold Deposit with Evolv-ing Orogenesis: Case Study from Miocene Ailaoshan Orogenic Gold Deposits, TibetSoutheastern.Mineralium Deposita (in review). [188] Wang, Q. F., Deng, J., Liu, H., et al., 2010a. Fractal Models for Ore Reserve Estimation.Ore Geology Reviews, 37(1):2-14. https://doi.org/10.1016/j.oregeorev.2009.11.002 [189] Wang, Q.F., Deng, J., Zhao, J., et al., 2010b.Tonnage-Cutoff Model and Average Grade-Cutoff Model for a Single Ore Deposit.Ore Geology Reviews, 38(1-2):113-120. https://doi.org/10.1016/j.oregeorev.2010.07.003 [190] Wang, R., Richards, J.P., Zhou, L.M., et al., 2015b.The Role of Indian and Tibetan Lithosphere in Spatial Distribution of Cenozoic Magmatism and Porphyry Cu-Mo Deposits in the Gangdese Belt, Southern Tibet.Earth-Science Re-views, 150:68-94. doi: 10.1016/j.earscirev.2015.07.003 [191] Wang, X. M., Shao, S. C., Wang, D. B., 2000. The Features and Geological Significance of Inclusion and Hydrogen and Oxygen Isotopes in Western Qinling Area. Journal of Precious Metallic Geology:9(1):44-48(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gjsdz200001008 [192] Wang, Y.J., Fan, W.M., Zhang, G.W., et al., 2013.Phanerozo-ic Tectonics of the South China Block:Key Observations and Controversies. Gondwana Research, 23(4):1273-1305. https://doi.org/10.1016/j.gr.2012.02.019 [193] Wang, Z. L., Yang, L. Q., Guo, L. N., et al., 2015a. Fluid Im-miscibility and Gold Deposition in the Xincheng Deposit, Jiaodong Peninsula, China:A Fluid Inclusion Study.Ore Geology Reviews, 65:701-717. https://doi.org/10.1016/j.oregeorev.2014.06.006 [194] Weatherley, D. K., Henley, R. W., 2013. Flash Vaporization during Earthquakes Evidenced by Gold Deposits.Nature Geoscience, 6(4):294-298. https://doi.org/10.1038/ngeo1759 [195] Webber, A.P., Roberts, S., Taylor, R.N., et al., 2013.Golden Plumes:Substantial Gold Enrichment of Oceanic Crust during Ridge -Plume Interaction.Geology, 41(1):87-90. https://doi.org/10.1130/g33301.1 [196] Weinberg, R.F., Hodkiewicz, P.F., Groves, D.I., 2004.What Controls Gold Distribution in Archean Terranes?Geolo-gy, 32(7):545-548. https://doi.org/10.1130/g20475.1 [197] Weller, O. M., St-Onge, M. R., Waters, D. J., et al., 2013.Quantifying Barrovian Metamorphism in the Danba Structural Culmination of Eastern Tibet.Journal of Meta-morphic Geology, 31(9):909-935. https://doi.org/10.1111/jmg.12050 [198] Whitney, D. L., Teyssier, C., Fayon, A. K., 2004. Isothermal Decompression, Partial Melting and Exhumation of Deep Continental Crust.Geological Society, London, Spe-cial Publications, 227(1):313-326. https://doi.org/10.1144/gsl.sp.2004.227.01.16 [199] Williams, H.M., Turner, S.P., Kelley, S., et al., 2001.Age and Composition of Dikes in Southern Tibet:New Con-straints on the Timing of East-West Extension and Its Relationship to Postcollisional Volcanism. Geology, 29(4):339-342. doi: 10.1130/0091-7613(2001)029<0339:AACODI>2.0.CO;2 [200] Williams, H. M., Turner, S. P., Pearce, J. A., et al., 2004. Na-ture of the Source Regions for Post-Collisional, Potassic Magmatism in Southern and Northern Tibet from Geo-chemical Variations and Inverse Trace Element Model-ling.Journal of Petrology, 45(3):555-607. doi: 10.1093/petrology/egg094 [201] Williams-Jones, A. E., Bowell, R. J., Migdisov, A. A., 2009.Gold in Solution.Elements, 5(5):281-287. doi: 10.2113/gselements.5.5.281 [202] Wintsch, R. P., Christoffersen, R., Kronenberg, A. K., 1995.Fluid-Rock Reaction Weakening of Fault Zones.Journal of Geophysical Research:Solid Earth, 100(B7):13021-13032. https://doi.org/10.1029/94jb02622 [203] Wyman, D. A., 1989. Archean Shoshonitic Lamprophyres As-sociated with Superior Province Gold Deposits:Distribu-tion, Tectonic Setting, Noble Metal Abundances, and Significance for Gold Mineralization. Economic Geology Monographs, 6:661-667. [204] Wyman, D.A., Kerrich, R., 2010.Mantle Plume-Volcanic Arc Interaction:Consequences for Magmatism, Metallogeny, and Cratonization in the Abitibi and Wawa Subprovinc-es, Canada. Canadian Journal of Earth Sciences, 47(5):565-589. https://doi.org/10.1139/e09-049 [205] Wyman, D.A., O' Neill, C.O., Ayer, J.A., 2008.Evidence for Modern-Style Subduction to 3.1 Ga:A Plateau-Adakite-Gold (Diamond) Association. The Geological Society of America, 440:129-148. [206] Yang, J. H., Wu, F. Y., Wilde, S. A., 2003. A Review of the Geodynamic Setting of Large-Scale Late Mesozoic Gold Mineralization in the North China Craton:An Associa-tion with Lithospheric Thinning. Ore Geology Reviews, 23(3-4):125-152. https://doi.org/10.1016/s0169-1368(03)00033-7 [207] Yang, L., Wang, Q. F., Liu, X. F., 2015. Correlation between Mineralization Intensity and Fluid-Rock Reaction in the Xinli Gold Deposit, Jiaodong Peninsula, China:Con-straints from Petrographic and Statistical Approaches.Ore Geology Reviews, 71:29-39. https://doi.org/10.1016/j.oregeorev.2015.04.005 [208] Yang, L., Wang, Q.F., Wang, Y.N., et al., 2018b.Proto-to Pa-leo-Tethyan Evolution of the Eastern Margin of Simao Block.Gondwana Research, 62:61-74. https://doi.org/10.1016/j.gr.2018.02.012 [209] Yang, L., Zhao, R., Wang, Q.F., et al., 2018a.Fault Geometry and Fluid-Rock Reaction:Combined Controls on Mineral-ization in the Xinli Gold Deposit, Jiaodong Peninsula, China.Journal of Structural Geology, 111:14-26. https://doi.org/10.1016/j.jsg.2018.03.009 [210] Yang, L.Q., Deng, J., Guo, C.Y., et al., 2009a.Ore -Forming Fluid Characteristics of the Dayingezhuang Gold Depos-it, Jiaodong Gold Province, China.Resource Geology, 59(2):181-193. doi: 10.1111/rge.2009.59.issue-2 [211] Yang, L.Q., Deng, J., Guo, L.N., et al., 2016a.Origin and Evo-lution of Ore Fluid, and Gold-Deposition Processes at the Giant Taishang Gold Deposit, Jiaodong Peninsula, Eastern China. Ore Geology Reviews, 72:585-602. https://doi.org/10.1016/j.oregeorev.2015.08.021 [212] Yang, L.Q., Deng, J., Wang, Z.L., et al., 2016b.Thermochro-nologic Constraints on Evolution of the Linglong Meta-morphic Core Complex and Implications for Gold Miner-alization:A Case Study from the Xiadian Gold Deposit, Jiaodong Peninsula, Eastern China. Ore Geology Re-views, 72:165-178. https://doi.org/10.1016/j.oregeor-ev.2015.07.006 [213] Yang, L.Q., Deng, J., Wang, Z.L., et al., 2016c.Relationships between Gold and Pyrite at the Xincheng Gold Deposit, Jiaodong Peninsula, China:Implications for Gold Source and Deposition in a Brittle Epizonal Environment. Eco-nomic Geology, 111(1):105-126. https://doi.org/10.2113/econgeo.111.1.105 [214] Yang, L.Y., Yang, L.Q., Yuan, W.M., et al., 2013.Origin and Evolution of Ore Fluid for Orogenic Gold Traced by D -O Isotopes:A Case from the Jiapigou Gold Belt, China.Acta Petrologica Sinica, 29(11):4025-4035. [215] Yang, Q.Y., Santosh, M., 2015.Paleoproterozoic Arc Magma-tism in the North China Craton:No Siderian Global Plate Tectonic Shutdown. Gondwana Research, 28(1):82-105. doi: 10.1016/j.gr.2014.08.005 [216] Yang, Z.S., Hou, Z.Q., Meng, X.J., et al., 2009b.Post-Colli-sional Sb and Au Mineralization Related to the South Ti-betan Detachment System, Himalayan Orogen.Ore Geol-ogy Reviews, 36(1-3):194-212. doi: 10.1016/j.oregeorev.2009.03.005 [217] Yasuhara, H., Polak, A., Mitani, Y., et al., 2006.Evolution of Fracture Permeability through Fluid-Rock Reaction un-der Hydrothermal Conditions. Earth and Planetary Sci-ence Letters, 244(1-2):186-200. doi: 10.1016/j.epsl.2006.01.046 [218] Zhai, M. G., Peng, P., 2007. Paleoproterozoic Events in the North China Craton. Acta Petrologica Sinica, 23(11):2665-2682 (in Chinese with English abstract). [219] Zhai, W., Sun, X.M., Yi, J.Z., et al., 2014.Geology, Geochem-istry, and Genesis of Orogenic Gold -Antimony Mineral-ization in the Himalayan Orogen, South Tibet, China.Ore Geology Reviews, 58:68-90. https://doi.org/10.1016/j.oregeorev.2013.11.001 [220] Zhai, Y.S., Wang, J.P., Peng, R.M., et al., 2009.Research on Superimposed Metallogenic Systems and Polygenetic Mineral Deposits. Earth Science Frontiers, 16(6):282-290 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy200906030 [221] Zhang, G.Y., Zheng, Y.Y., Zhang, J.F., et al., 2011.Ore-Con-trol Structural and Geochronologic Constrain in Shalag-ang Antimony Deposit in Southern Tibet, China. Acta Petrologica Sinica, 27(7):2143-2149 (in Chinese with English abstract). [222] Zhang, H.F., Parrish, R., Zhang, L., et al., 2007.A-Type Gran-ite and Adakitic Magmatism Association in Songpan -Garze Fold Belt, Eastern Tibetan Plateau:Implication for Lithospheric Delamination. Lithos, 97(3-4):323-335. https://doi.org/10.1016/j.lithos.2007.01.002 [223] Zhang, L., Chen, H.Y., Chen, Y.J., et al., 2012.Geology and Fluid Evolution of the Wangfeng Orogenic-Type Gold Deposit, Western Tian Shan, China. Ore Geology Re-views, 49:85-95. https://doi.org/10.1016/j.oregeorv.2012.09.002 [224] Zhang, L. C., Shen, Y. C., Ji, J. S., 2003. Characteristics and Genesis of Kanggur Gold Deposit in the Eastern Tian-shan Mountains, NW China:Evidence from Geology, Iso-tope Distribution and Chronology.Ore Geology Reviews, 23(1-2):71-90. https://doi.org/10.1016/s0169-1368(03)00016-7 [225] Zhang, L. C., Zhou, X. H., Ding, S. J., 2008. Mantle-Derived Fluids Involved in Large-Scale Gold Mineralization, Jia-odong District, China:Constraints Provided by the He-Ar and H-O Isotopic Systems. International Geology Re-view, 50(5):472-482. https://doi.org/10.2747/0020-6814.50.5.472 [226] Zhao, H. S., Wang, Q. F., Groves, D. I., et al., 2019. A Rare Phanerozoic Amphibolite-Hosted Gold Deposit at Dan-ba, Yangtze Craton, China:Significance to Fluid and Met-al Sources for Orogenic Gold Systems. Mineralium De-posita, 54(1):133-152. https://doi.org/10.1007/s00126-018-0845-x [227] Zhong, R.C., Brugger, J., Tomkins, A.G., et al., 2015.Fate of Gold and Base Metals during Metamorphic Devolatiliza-tion of a Pelite.Geochimica et Cosmochimica Acta, 171:338-352.doi: 10.1016/j.gca.2015.09.013 [228] Zhou, M. F., Yan, D. P., Kennedy, A. K., et al., 2002a.SHRIMP U-Pb Zircon Geochronological and Geochemi-cal Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China.Earth and Planetary Science Letters, 196(1-2):51-67. https://doi.org/10.1016/s0012-821x(01)00595-7 [229] Zhou, T. H., Goldfarb, R. J., Phillips, N. G., 2002b. Tectonics and Distribution of Gold Deposits in China:An Over-view.Mineralium Deposita, 37(3):249-282. doi: 10.1007/s00126-001-0237-4 [230] Zhou, M.F., Yan, D.P., Vasconcelos, P.M., et al., 2008.Struc-tural and Geochronological Constraints on the Tectono -Thermal Evolution of the Danba Domal Terrane, East-ern Margin of the Tibetan Plateau. Journal of Asian Earth Sciences, 33(5-6):414-427. https://doi.org/10.1016/j.jseaes.2008.03.003 [231] Zhu, L.H., Qi, X.X., Peng, S.B., Li, Z.Q., 2011.Evolution of Ore Forming Fluid of Daping Gold Deposit in Ailaoshan Tectonic Zone, Southeast Tibet. Acta Petrologica Sini-ca, 27(11):3395-3408. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201111019 [232] Zhu, Y.N., Peng, J.T., 2015.Infrared Microthermometric and Noble Gas Isotope Study of Fluid Inclusions in Ore Min-erals at the Woxi Orogenic Au -Sb -W Deposit, Western Hunan, South China. Ore Geology Reviews, 65:55-69. https://doi.org/10.1016/j.oregeorev.2014.08.014 [233] 毕献武, 胡瑞忠, 何明友, 1997.哀牢山金矿带主要金矿床成矿流体特征.矿物学报, 17(4):435-441. doi: 10.3321/j.issn:1000-4734.1997.04.010 [234] 陈衍景, Pirajno, F., 赖勇, 等, 2004.胶东矿集区大规模成矿时间和构造环境.岩石学报, 20(4):907-922. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200404013 [235] 陈衍景, 翟明国, 蒋少涌, 2009.华北大陆边缘造山过程与成矿研究的重要进展和问题.岩石学报, 25(11):2695-2726. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200911001 [236] 邓军, 杨立强, 王长明, 2011.三江特提斯复合造山与成矿作用研究进展.岩石学报, 27(9):2501-2509. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201109001 [237] 李华健, 王庆飞, 杨林, 等, 2017.青藏高原碰撞造山背景造山型金矿床:构造背景、地质及地球化学特征.岩石学报, 33(7):2189-2201. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201707015 [238] 李士辉, 张静, 邓军, 等, 2011.哀牢山南段长安金矿床成矿流体特征及成因类型探讨.岩石学报, 27(12):3777-3786. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201112021 [239] 梁业恒, 孙晓明, 石贵勇, 等, 2011.云南哀牢山老王寨大型造山型金矿成矿流体地球化学.岩石学报, 27(9):2533-2540. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201109004 [240] 毛景文, 谢桂青, 李晓峰, 等, 2004.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘, 11(1):45-55. doi: 10.3321/j.issn:1005-2321.2004.01.003 [241] 毛景文, 谢桂青, 张作衡, 等, 2005.中国北方中生代大规模成矿作用的期次及其地球动力学背景.岩石学报, 21(1):169-188. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200501017 [242] 王学明, 邵世才, 汪东波, 等, 2000.西秦岭金矿床包裹体、氢氧同位素特征及其地质意义.贵金属地质, 9(1):44-48. doi: 10.3969/j.issn.1671-1947.2000.01.008 [243] 翟明国, 彭澎, 2007.华北克拉通古元古代构造事件.岩石学报, 23(11):2665-2682. doi: 10.3969/j.issn.1000-0569.2007.11.001 [244] 翟裕生, 王建平, 彭润民, 等, 2009.叠加成矿系统与多成因矿床研究.地学前缘, 16(6):282-290. doi: 10.3321/j.issn:1005-2321.2009.06.030 [245] 张刚阳, 郑有业, 张建芳, 等, 2011.西藏沙拉岗锑矿控矿构造及成矿时代约束.岩石学报, 27(7):2143-2149. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107021