• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    海南岛罗葵洞斑岩钼矿床地球化学特征及成矿物质来源

    朱昱桦 陈根文 单强 许德如 王历星 何妙玲 兰永文 孙俊

    朱昱桦, 陈根文, 单强, 许德如, 王历星, 何妙玲, 兰永文, 孙俊, 2020. 海南岛罗葵洞斑岩钼矿床地球化学特征及成矿物质来源. 地球科学, 45(4): 1187-1212. doi: 10.3799/dqkx.2019.101
    引用本文: 朱昱桦, 陈根文, 单强, 许德如, 王历星, 何妙玲, 兰永文, 孙俊, 2020. 海南岛罗葵洞斑岩钼矿床地球化学特征及成矿物质来源. 地球科学, 45(4): 1187-1212. doi: 10.3799/dqkx.2019.101
    Zhu Yuhua, Chen Genwen, Shan Qiang, Xu Deru, Wang Lixing, He Miaoling, Lan Yongwen, Sun Jun, 2020. Geochemical Characteristics and Ore-Forming Materials of Luokuidong Molybdenum Ore Deposit in Hainan Island. Earth Science, 45(4): 1187-1212. doi: 10.3799/dqkx.2019.101
    Citation: Zhu Yuhua, Chen Genwen, Shan Qiang, Xu Deru, Wang Lixing, He Miaoling, Lan Yongwen, Sun Jun, 2020. Geochemical Characteristics and Ore-Forming Materials of Luokuidong Molybdenum Ore Deposit in Hainan Island. Earth Science, 45(4): 1187-1212. doi: 10.3799/dqkx.2019.101

    海南岛罗葵洞斑岩钼矿床地球化学特征及成矿物质来源

    doi: 10.3799/dqkx.2019.101
    基金项目: 

    国家重点研发计划深地资源勘查开采重点专项 2016YFC0600401

    国土资源部全国矿产资源潜力评价项目 1212010881625

    详细信息
      作者简介:

      朱昱桦(1989-), 男, 工程师, 矿物学、岩石学、矿床学专业

      通讯作者:

      许德如(1966-), 男, E-mail:xuderu@gig.ac.cn

    • 中图分类号: P611

    Geochemical Characteristics and Ore-Forming Materials of Luokuidong Molybdenum Ore Deposit in Hainan Island

    • 摘要: 为了正确理解海南岛罗葵洞钼矿床赋矿斑岩体的岩石学成因与成矿之间的关系以及成矿物质来源,对矿床中含矿斑状花岗岩进行了全岩主量、微量、Sr-Nd-Pb同位素和金属硫化物S-Pb同位素等测试分析,结果表明:(1)罗葵洞斑状花岗岩具有高SiO2(70.94%~72.59%)、Al2O3(15.11%~16.26%)和低MgO(0.56%~0.68%),高Sr(421×10-6~564×10-6)、低Y(7.50×10-6~14.57×10-6)和Yb(0.76×10-6~1.30×10-6)含量,较弱的负Eu异常(平均0.75),亏损HFSE,富集LREE和LILE,较高的La/Yb(26.1~46.4)与Sr/Y(36.9~67.1)比值特征,表现出与埃达克岩相似的地球化学特征;(2)斑状花岗岩的(87Sr/86Sr)i=0.708 38~0.708 44,(143Nd/144Nd)i=0.512 22~0.512 23,εNdt)=-5.6~-5.5,对应的TDM2模式年龄为1.35~1.36 Ga,表明其可能形成于底侵的增厚玄武质下地壳岩石(中元古代)的重熔;(3)全岩锆饱和温度(平均795±12℃(σ))和锆石Ti温度(平均690±21℃(σ))表明斑状花岗岩岩浆来源于在水近饱和条件下发生的部分熔融;(4)锆石Ce4+/Ce3+比值范围为174~621(平均383),表明其在形成时的岩浆-热液体系的氧逸度较高,有利于Mo等成矿元素在岩浆熔体中富集,成矿潜力较大;(5)金属硫化物δ34S(平均1.7‰)和Pb同位素特征指示成矿物质来源以下地壳为主,同时伴有少量地幔成分的参与;(6)对比年代学、矿物学、地球化学和形成环境等方面后,初步认为该矿床属于Endako型斑岩钼矿床.

       

    • 斑岩型钼矿床作为钼金属的主要来源(占95%以上)(Simon and Ripley, 2011; Zeng et al., 2013;黄凡等, 2014; Wang et al., 2017a, 2017b; Chen et al., 2017),按照大地构造环境和品级通常可分为3种类型:(1)Climax型钼矿床:高品位的Mo(多大于0.15%)、与碱性、钙碱性侵入体有关、高F(一般 > 1%)、产于板内伸展环境下,其成矿花岗岩一般属于磁铁矿系列花岗岩,以北美Colorado矿带的Climax钼矿(907万t钼矿石,品位为0.24%)等为代表;(2)Endako型钼矿床:低品位的Mo(平均品位0.066%)、与钙碱性、高钾钙碱性侵入体有关、低F(一般 < 0.1%)、产于板块消减作用下,其成矿花岗岩部分具有较低氧逸度特征(属于钛铁矿系列花岗岩),以加拿大Cordillera的Endako钼矿床等为代表(Mutschler et al., 1981; Whalen et al., 2001; Sinclair, 2007; Ludington et al., 2009;孙燕等, 2012; Wang et al., 2014; Audétat and Li, 2017;叶天竺等, 2017);(3)碰撞型斑岩钼矿床:低品位的Mo(0.03%~0.32%),成矿流体富K、F和CO2,通常形成于大陆碰撞由挤压向伸展的转换期或者伸展阶段环境下,以我国秦岭-大别为代表(Li et al., 2012; Wang et al., 2014; Chen et al., 2017;曹冲和申萍, 2018).以往研究大多集中在Climax型和碰撞型斑岩钼矿床,而对Endako型斑岩钼矿床的研究则比较有限(Wang et al., 2014).

      截至目前,海南岛已发现大、中、小型钼(多金属)矿床/点至少10个,分别是罗葵洞钼矿床(王国君等, 2010;李孙雄等, 2014;朱昱桦等, 2018)、石门山钼铅锌多金属矿床(李孙雄等, 2014;陈沐龙等, 2015)、高通岭钼矿床(廖香俊等, 2008;付王伟等, 2014;朱昱桦等, 2017)、新村钼矿床(胡军等, 2017)、龙门岭钼矿床、红门岭钼钨矿床(付王伟等, 2013)、红岭钼矿点、报告村钼矿床、梅岭铜钼矿床和文且钼矿床(李孙雄等, 2014),属于华南钼成矿省中的一部分(Zeng et al., 2013;黄凡等, 2014).其中,罗葵洞钼矿床为一大型低品位、隐伏为主的斑岩型钼矿床(王国君等, 2010; Zeng et al., 2013; Xu et al., 2016;朱昱桦等, 2018).辽宁省有色地质局勘查总院(2008,海南省保亭县罗葵洞矿区钼矿详查地质报告)曾对该矿床进行过详查工作,估算得到钼金属资源量(121+122b+333)约为30万t,矿床平均品位约0.055%(王国君等, 2010).李孙雄等(2014)获得3件辉钼矿Re-Os同位素加权平均年龄为99.7±0.4 Ma,朱昱桦等(2018)获得7件辉钼矿Re-Os同位素等时线年龄为100.1±1.8 Ma(MSWD=1.50),含矿斑状花岗岩的LA-ICP-MS锆石U-Pb加权平均年龄为102.4±0.5 Ma(n=19, MSWD=0.80).王国君等(2010)朱昱桦等(2018)先后对该矿床的成因进行了初步的探讨,后者曾认为其是在白垩纪时期由于古太平洋俯冲角度的改变引起大规模的地壳/岩石圈伸展减薄导致热的软流圈地幔物质上涌所形成的.

      以往对该矿床的含矿斑岩体斑状花岗岩的研究主要集中在年代学及其岩浆-热液体系的形成温度等上面,认为其形成于白垩纪(ca.102 Ma)的低温(TTi-in-zircon=658~728℃)富水环境下(朱昱桦等, 2018),本次为了进一步深入理解矿床中成岩成矿环境(如氧逸度)、岩石成因和成矿物质来源等问题,利用全岩主/微量元素、Sr-Nd-Pb同位素重点研究了矿区内斑状花岗岩的岩石学成因及其与成矿之间的关系,利用金属硫化物S-Pb同位素研究了成矿物质来源,希望借此对指导海南全岛、华南地区甚至国内外具有类似成矿地质条件的钼矿产地的成矿预测和找矿勘探、进一步扩大我国钼资源优势等提供一些基础性的研究成果.

      海南岛是海南省陆地主体,为我国仅次于台湾岛的第二大岛屿.通常认为,华南板块由北西侧的扬子地块和东南侧的华夏地块所组成(现今地理位置),海南岛属于华夏地块西南延伸的一部分,以琼州海峡与华南内陆相隔,毗邻印支板块的北缘(图 1a)(Li et al., 2002; Metcalfe, 2013).

      图  1  海南岛位置简图(a)和海南岛地层、构造及相关钼矿床位置地质简图(b)
      均据Xu et al.(2016)修改. 1.中生代-新生代地层;2.新生代玄武岩;3.白垩纪盆地;4.古生代地层;5.晚中元古-新元古代石碌群和上覆石灰顶组;6.古-中元古代抱板群;7.新太古代杂岩(?);8.晚中生代花岗质岩类;9.白垩纪火山岩;10.晚古生代-早古生代花岗质岩类;11.变基性岩和相关沉积岩;12.地质界线;13.钼(多金属)矿床(矿化点),包括①红门岭、②红岭、③报告村、④文且、⑤石门山、⑥新村、⑦罗葵洞、⑧龙门岭、⑨高通岭、⑩梅岭
      Fig.  1.  Location map of Hainan Island (a); geological sketch map showing major stratigraphic and magmatic units, structures and molybdenum (Mo)-related ore deposits or occurrences on Hainan Island (b)

      海南岛具有特殊的大地构造位置和复杂的构造演化史,其处于欧亚板块、太平洋板块和澳大利亚-印支板块的交汇处(图 1a),历经晋宁期、加里东期、海西-印支期、燕山期和喜马拉雅期等多次构造运动,历来受到地质学家的青睐(Metcalfe, 1996; Li et al., 2002;唐立梅等, 2010; Xu et al., 2013; Cai et al., 2017;胡军等, 2017).岛内主要发育有近NE-NNE向和近EW向的构造体系,前者主要为白沙断裂和著名的含金韧性剪切带——戈枕断裂;后者自北向南主要分布有4条深大断裂带,分别为:王五-文教断裂、昌江-琼海断裂、尖峰-吊罗断裂和九所-陵水断裂(图 1b).其中,近EW向九所-陵水深大断裂两侧自西向东出露有石门山钼铅锌多金属矿床、罗葵洞钼矿床、新村钼矿床和龙门岭钼矿床等,均与燕山晚期钼矿化作用密切相关.

      罗葵洞钼矿床位于海南岛南部保亭黎族苗族自治县内,与保亭县城、三亚市区直线距离分别约为24 km、25 km,其地理坐标为109°32′00″E~109°35′00″E、18°24′00″N~18°27′00″N.区域构造上,该矿床位于近东西向九所-陵水断裂带中段的南侧,早白垩世同安岭陆相火山岩被的南缘,其北端紧邻新村钼矿床(图 1b).在矿区构造上,主要表现为线性构造(断裂带)和环状构造(火山口构造)(图 2),褶皱构造属于大茅-三亚倒转复式向斜的一部分,其出现在区域上南部地区的古生代地层中.矿区地层主要为白垩系陆相火山岩、火山碎屑岩,其大面积分布在区域的中部,属区域上的同安岭岩被.矿区内侵入岩主要出露在东南部和东部地区,主要包括中-粗粒花岗岩、斑状花岗岩、花岗闪长岩、石英二长(斑)岩和石英正长岩等岩石类型.根据2008年6月辽宁省有色地质局勘查总院提交的《海南省保亭县罗葵洞矿区钼矿详查地质报告》得知,在矿区7~24线(图 3),-79.84~-457.96 m标高出现隐伏的斑状花岗岩,在岩体上侵前锋即相对隆起部位可见到良好的钼矿化现象,因此推测深部所见到的斑状花岗岩,应该是矿区东部岩体(本文斑状花岗岩样品采集处)向西侧伏的同一个岩体.

      图  2  罗葵洞钼矿区及邻区地质简图
      朱昱桦等(2018)修改. 1.第四系含砂粘土、砂砾石;2.白垩系六罗村组中-酸性火山碎屑岩、火山岩类;3.白垩纪石英二长(斑)岩、石英正长岩;4.白垩纪斑状花岗岩(主);5.白垩纪花岗闪长岩;6.侏罗纪(白垩纪?)中-粗粒花岗岩;7.英安斑岩;8.安山玢岩;9.辉绿岩;10.含钼强硅蚀变带;11.含钼硅钾蚀变带;12.含钼硅化蚀变带;13.遥感环形影像;14.实测(F1)与推测(物探WF1/遥感YF1)断层;15.7’号剖面线;16.斑状花岗岩采样位置;17.矿石样采样位置;18.钻孔位置及编号
      Fig.  2.  Simplified geological map showing the Luokuidong mining district and its adjacent areas
      图  3  罗葵洞钼矿床矿区7’号线地质剖面图
      据辽宁省有色地质局勘查总院(2008)海南省保亭县罗葵洞矿区钼矿详查地质报告.1.第四系残坡积层;2.白垩系六罗村组中-酸性火山碎屑岩、火山岩类;3.白垩纪花岗质岩石;4.工业矿体(0.040%≤Mo≤0.170%,平均0.058%);5.低品位矿体(0.020%≤Mo < 0.040%,平均0.025%);6.矿化体;7.层序界线;8.钻孔位置及编号
      Fig.  3.  Geological section map of the No. 7' prospecting line in the Luokuidong molybdenum ore deposit

      罗葵洞矿床钼矿化主要赋存于隐伏的斑状花岗岩顶部,其次为外围火山岩、火山碎屑岩中;在隐伏的斑状花岗岩顶部见有石英二长(斑)岩等穿入,在其穿入部位常出现厚大的钼矿体.钼矿化以剥蚀程度浅和矿化范围广为特征.经钻探等工程确认矿体的长轴部为EW向展布、短轴SN向展布,总体呈近等轴形,矿体倾角较平缓,形态以扁平状为主(图 3).与成矿相关的矿物主要有辉钼矿、黄铁矿、黄铜矿、白钨矿、闪锌矿、磁铁矿和赤铁矿等,未见含锡矿物.热液蚀变从火山口由内至外大致可分为“含钼强硅蚀变带→含钼硅钾蚀变带→含钼硅化蚀变带”(图 2),以及不特别明显的绿帘石、绿泥石化蚀变带.

      9件斑状花岗岩均采自矿区东部(图 2),岩石呈浅肉红色,似斑状结构.斑晶以斜长石(ca. 25%)、钾长石(ca. 10%)及石英(ca. 10%)为主,斜长石见聚片双晶、卡斯巴-钠长石联合双晶和环带状构造;基质为细粒花岗结构,主要包括石英(ca. 35%)、钾长石(ca. 10%)、斜长石(ca. 5%)及少量黑云母和角闪石(多已绿泥石化);副矿物有褐帘石、绿帘石和锆石等(图 4a~4c).该类岩石在地表可见少量钼矿化现象(图 4d).

      图  4  斑状花岗岩标本截面(a);斑状花岗岩正交偏光显微镜下特征(b~c);斑状花岗岩上见少量浸染状辉钼矿(d);石英-辉钼矿阶段中的金属硫化物(e~f)
      Bt.黑云母;Ccp.黄铜矿;Chl.绿泥石;Kfs.钾长石;Mo.辉钼矿;Pl.斜长石;Py.黄铁矿;Qz.石英
      Fig.  4.  The section of porphyritic granite (a); photographs from orthogonal polarizing microscope of porphyritic granite (b-c); A small amount of molybdenite in porphyritic granite (d); Metal sulfide from quartz-molybdenite stage (e-f)

      12件用于S-Pb同位素测试的金属硫化物来自石英-辉钼矿阶段的矿石样(图 4e~4f)(采样位置见图 2),金属矿物主要为辉钼矿、黄铁矿和少量黄铜矿,脉石矿物主要为石英.辉钼矿穿插在石英脉中,主要呈团块状、树枝状、叶片状和针状;黄铁矿、黄铜矿主要呈半自形或他形粒状.

      实验中选取新鲜、无蚀变或蚀变较弱的岩石样品,去除表皮后,将样品无污染粉碎至200目.主量元素含量分析测试在澳实分析检测(广州)有限公司完成,测试时采用偏硼酸锂熔融,X荧光光谱仪分析完成(方法代码为ME-XRF26d),检测元素含量范围在0.01%~100%之间,分析精度优于5%.微量元素测试在中国科学院广州地球化学研究所同位素地球化学国家重点实验室完成,测试时采用仪器Perkin-Elmer Sciex ELAN 6000型电感耦合等离子体质谱仪(ICP-MS)完成,分析精度优于5%,详细的实验步骤和方法可参考Li et al.(1997).

      代表性样品的Sr-Nd-Pb同位素测试均在中国科学院广州地球化学研究所同位素地球化学国家重点实验室采用VG-354型多接收等离子质谱(MC-ICP-MS)进行完成.Sr-Nd同位素分析测试时,样品粉末首先在聚四氟乙烯杯中用HF+HNO3进行溶解,然后采用阳离子树脂交换柱将Sr和REE分离,再从REE中提取Nd,具体的样品准备和化学分离过程可参考韦刚健等(2002)梁细荣等(2003).测试过程中用于校正Sr、Nd质量分馏的标准化常数86Sr/88Sr和146Nd/144Nd比值分别为86Sr/88Sr=0.119 4和146Nd/144Nd=0.721 9,作为标样NIST NBS 987和Shin Etsu JNdi-1的同位素比值分别为87Sr/86Sr=0.710 246±17(2σ,n=12)和143Nd/144Nd=0.512 105±10(2σ,n=12).Sr、Nd同位素分析精度高于0.002%.以HBr为稀释剂,采用传统的离子交换技术对Pb进行分离和纯化,以标准样JB-3、BCR-2和JG-1a的同位素比值206Pb/204Pb分别为18.286±0、18.763±1和18.655±2(2σ,n=4),207Pb/204Pb分别为15.537±1、15.615±1和15.608±2(2σ,n=4),208Pb/204Pb分别为38.242±2、38.712±4和38.677±6(2σ,n=4)校正批样Pb同位素分析测定过程中的分馏.

      样品87Rb/86Sr、147Sm/144Nd比值依据样品的Rb、Sr、Sm、Nd含量以及实测的87Sr/86Sr和143Nd/144Nd比值来进行计算.初始87Sr/86Sr(ISr)在计算时使用Rb的衰变常数为λRb=1.42×10-11 a-1(Steiger and Jäger, 1977).初始(143Nd/144Nd)i、εNd(t)在计算时使用Sm的衰变常数为λSm=6.54×10-12 a-1(Lugmair and Marti, 1978)和球粒陨石的143Nd/144Nd=0.512 638和147Sm/144Nd=0.196 7(Jacobsen and Wasserburg, 1980)进行计算.Nd的单阶段亏损地幔模式年龄(TDM1(Nd))使用亏损地幔的143Nd/144Nd=0.513 15以及147Sm/144Nd=0.213 7进行计算;两阶段亏损地幔模式年龄(TDM2(Nd))计算公式为(Depaolo and Wasserburg, 1979):

      TDM2=TDM1-(TDM1-t)×(fCC-fS)/(fCC-fDM),

      式中:fS=[(147Sm/144Nd)S/(147Sm/144Nd)CHUR]-1,亏损地幔fDM=[(147Sm/144Nd)DM/(147Sm/144Nd)CHUR]-1,平均大陆地壳fCC=-0.4.

      样品238U/204Pb、235U/204Pb、232Th/204Pb比值根据样品U、Th、Pb含量以及实测的208Pb/204Pb、207Pb/204Pb、206Pb/204Pb值进行计算,Pb同位素的初始值(208Pb/204Pb)i、(207Pb/204Pb)i和(206Pb/204Pb)i使用二阶段演化模式进行计算.通常,全岩的Pb同位素比值需要利用年龄和U、Th、Pb含量进行普通铅校正,从而获得全岩的初始Pb同位素比值;硫化物及长石中因含U和Th低微致使其形成后由U和Th衰变产生的放射性成因Pb数量少,从而对Pb同位素组成的影响可以忽略不计.

      将石英-辉钼矿阶段中的矿石样品无污染粉碎至40~60目,再在实体显微镜下分别逐粒挑选出辉钼矿、黄铁矿单矿物颗粒,保证纯度99%以上.分析测试均在核工业北京地质研究院分析测试研究中心完成.其中,S同位素测试所采用仪器型号为Delta v plus气体同位素质谱计,检测方法和依据为DZ/T 0184.14-1997《硫化物中硫同位素组成的测定》,测量结果以Vienna陨硫铁(V-CDT,其δ34S‰=0)为标准,记为δ34SV-CDT,分析精度优于±0.2‰.硫化物参考标准为GBW-04414、GBW-04415硫化银标准,其δ34S分别是-0.07‰±0.13‰和22.15‰±0.14‰.Pb同位素测试所采用仪器型号为ISOPROBE-T热表面电离质谱仪和Phoenix热表面电离质谱仪,检测方法和依据为DZ/T 0184.12-1997《岩石、矿物中微量铅的同位素组成的测定》,普通铅标准为NBS 981未校正结果:208Pb/206Pb=2.164 940±15,207Pb/206Pb=0.914 338±7,204Pb/206Pb=0.059 110 7±2,全流程本底Pb < 100 pg.测试结果表示为:结果(2σ).

      9件斑状花岗岩的主、微量元素测试结果见表 1.

      表  1  罗葵洞斑状花岗岩主量(%)、微量(10-6)元素测试结果
      Table  Supplementary Table   Major (%) and trace elements (106) compositions from Luokuidong porphyritic granite
      样品号 16LK-21 16LK-22 16LK-23 16LK-24 16LK-25 16LK-26 16LK-27 17LK-01 17LK-02
      SiO2 72.41 71.94 71.50 72.07 72.59 71.66 70.94 72.16 72.34
      TiO2 0.29 0.33 0.33 0.27 0.30 0.32 0.33 0.30 0.31
      Al2O3 15.41 15.64 16.26 15.51 15.48 15.92 15.77 15.11 15.71
      MnO 0.04 0.05 0.05 0.04 0.05 0.06 0.04 0.05 0.05
      TFe2O3 2.01 2.23 1.79 1.83 2.25 1.99 2.73 1.97 1.80
      MgO 0.62 0.68 0.68 0.56 0.59 0.63 0.62 0.64 0.58
      CaO 0.84 1.44 1.53 1.32 1.05 1.47 1.68 1.97 1.17
      Na2O 3.23 3.20 3.36 2.94 2.65 3.45 3.44 3.69 2.72
      K2O 5.08 4.40 4.43 5.39 4.99 4.46 4.38 4.03 5.28
      P2O5 0.07 0.09 0.09 0.07 0.05 0.05 0.07 0.09 0.04
      Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
      LOI 1.41 1.60 1.62 1.25 1.73 1.27 1.19 0.56 1.43
      Alk 8.31 7.59 7.78 8.32 7.64 7.91 7.82 7.72 8.00
      δ 2.35 1.99 2.13 2.38 1.97 2.18 2.19 2.04 2.18
      A/CNK 1.25 1.24 1.24 1.19 1.33 1.21 1.17 1.08 1.27
      A/NK 1.42 1.56 1.57 1.45 1.58 1.51 1.51 1.45 1.54
      Mg# 0.34 0.34 0.39 0.34 0.31 0.35 0.28 0.35 0.35
      K2O/Na2O 1.58 1.38 1.32 1.83 1.88 1.29 1.27 1.09 1.94
      TZr 799 799 799 783 801 801 812 772 790
      Sc 4.04 3.44 3.42 3.72 3.98 4.16 4.56 4.26 3.51
      Ti 1 658 1 940 1 948 1 621 1 809 1 851 1 935 1 836 1 721
      V 19.1 20.2 19.0 17.9 20.4 21.3 26.1 24.2 19.0
      Cr 17.2 13.0 10.9 12.7 14.2 11.2 12.7 13.9 13.0
      Mn 308 365 318 302 328 417 321 393 345
      Co 1.32 3.12 2.11 3.00 1.43 2.05 2.53 1.41 1.46
      Ni 5.24 2.62 2.14 2.46 3.60 2.36 2.97 2.30 2.70
      Cu 84.9 61.9 44.6 99.4 66.5 52.0 13.5 56.0 92.8
      Zn 51.9 43.0 50.8 49.5 76.7 181.9 58.5 175.8 49.6
      Ga 19.0 20.3 20.7 19.6 19.9 20.4 20.8 20.5 20.0
      Ge 1.38 1.55 1.32 1.27 1.42 1.35 1.52 1.48 1.30
      Rb 199 183 182 207 208 202 162 189 196
      Sr 436 487 533 503 421 519 537 564 438
      Y 10.4 10.0 8.0 7.5 8.1 11.0 14.6 14.5 8.0
      Zr 153 156 157 135 147 165 194 133 136
      Nb 8.1 8.3 7.9 8.2 8.9 9.1 9.6 9.3 7.8
      Cs 3.45 3.34 3.40 3.05 3.03 3.62 2.59 3.34 3.39
      Ba 995 708 904 1127 742 805 873 686 946
      La 35.3 41.9 28.3 30.9 36.0 27.8 39.4 40.5 30.5
      Ce 62.9 73.0 52.3 55.5 66.5 51.8 69.4 72.7 60.9
      Pr 6.70 8.21 5.78 5.75 7.10 5.37 7.74 7.89 6.31
      Nd 22.5 27.8 20.5 19.4 24.4 18.5 25.9 26.8 21.8
      Sm 3.48 4.17 3.22 2.95 3.56 2.69 3.75 3.93 3.23
      Eu 0.76 0.92 0.78 0.70 0.74 0.61 0.86 0.82 0.71
      Gd 2.69 3.06 2.42 2.19 2.64 2.24 3.02 3.13 2.46
      Tb 0.34 0.37 0.29 0.28 0.32 0.29 0.38 0.42 0.30
      Dy 1.78 1.83 1.51 1.40 1.60 1.64 2.04 2.27 1.57
      Ho 0.35 0.34 0.28 0.27 0.30 0.35 0.43 0.46 0.30
      Er 0.96 0.91 0.75 0.72 0.80 1.01 1.15 1.26 0.82
      Tm 0.15 0.14 0.11 0.11 0.12 0.15 0.18 0.20 0.12
      Yb 1.01 0.90 0.78 0.76 0.81 1.07 1.12 1.30 0.82
      Lu 0.15 0.14 0.12 0.12 0.12 0.17 0.19 0.20 0.13
      Hf 4.73 4.50 4.36 4.30 4.19 4.75 5.58 3.95 4.04
      Ta 0.78 0.61 0.58 0.73 0.63 0.69 0.75 0.67 0.61
      Pb 13.7 12.9 13.0 15.0 15.3 12.5 14.0 13.2 14.9
      Th 16.3 14.0 12.9 15.0 14.5 14.2 15.1 17.1 9.1
      U 2.25 1.83 1.68 2.10 2.25 3.39 2.44 2.69 2.02
      ∑REE 139 164 117 121 145 114 156 162 130
      δEu 0.73 0.75 0.82 0.80 0.70 0.73 0.75 0.69 0.75
      (La/Yb)N 25.2 33.3 26.1 29.2 31.9 18.7 25.4 22.4 26.6
      La/Yb 35.1 46.4 36.4 40.7 44.4 26.0 35.4 31.2 37.1
      Sr/Y 42.1 48.5 66.6 67.1 52.1 47.2 36.9 39.0 54.7
      Th/Ta 20.9 23.0 22.4 20.5 23.3 20.4 20.3 25.7 14.9
      Th/Nb 2.0 1.7 1.6 1.8 1.6 1.6 1.6 1.8 1.2
      注:LOI.烧失量;碱度Alk=Na2O+K2O;里特曼指数δ=(Na2O+K2O)2/(SiO2-43)(ωB,%);A/CNK=Al2O3/(CaO+K2O+Na2O),分子数比值;A/NK=Al2O3/(K2O+Na2O),分子数比值;Mg#=Mg2+/(Mg2++Fe2+)的摩尔数比值;TZr为全岩锆饱和温度计.
      下载: 导出CSV 
      | 显示表格

      在侵入岩TAS图解上(图 5a),斑状花岗岩样品点均落入花岗岩中的亚碱性(δ=2.0~2.4)系列区域内,属于钙碱性系列(δ < 3.3).在硅-钾图解上(图 5b)样品点落入高钾钙碱性-钾玄岩系列区域内.斑状花岗岩具有高SiO2(70.94%~72.59%)、高Al2O3(15.11%~16.26%)和低MgO(0.56%~0.68%),高Sr(421×10-6~564×10-6)、低Y(7.50×10-6~14.6×10-6)和Yb(0.76×10-6~1.30×10-6)的含量特征;在稀土元素(REE)上表现出较弱的负Eu异常(δEu=0.69~0.82,平均0.75),亏损HFSE(如Nb、Ta、Zr、Hf和Ti等),富集LREE((La/Yb)N=18.7~33.3)和LILE(如Rb、Ba、Th和U等)(图 5c~5d),且其La/Yb与Sr/Y比值分别为26.1~46.4、36.9~67.1,表现出与埃达克岩相似的地球化学特征(Defant and Drummond, 1990;王焰等, 2000;王强等, 2001a;许继峰等, 2014).在Sr/Y-Y图解(图 5e)和(La/Yb)N-YbN图解(图 5f)上,样品点均落入太古代英云闪长岩-奥长花岗岩-花岗闪长岩(TTG)和现代埃达克岩共同所组成的区域内.

      图  5  岩浆岩TAS图解(a);硅-钾图(b);球粒陨石标准化稀土元素分布模式(c);原始地幔标准化微量元素蛛网图(d);Sr/Y-Y图解(e);(La/Yb)N-YbN图解(f)
      图a据Martin(1993);图b据Peccerillo and Taylor(1976)Middlemost(1985);图c据Sun et al.(1989),其中海南屯昌埃达克质岩贾小辉等(2010)Wang et al.(2012),六罗村组流纹岩周云等(2015)Zhou et al.(2015);图d据Sun et al.(1989);图e据Defant and Drummond(1990)Defant et al.(2002);图f据Martin(1993).1.橄榄辉长岩;2a.碱性辉长岩;2b.亚碱性辉长岩;3.辉长闪长岩;4.闪长岩;5.花岗闪长岩;6.花岗岩;7.硅英岩;8.二长辉长岩;9.二长闪长岩;10.二长岩;11.石英二长岩;12.正长岩;13.副长石辉长岩;14.副长石二长闪长岩;15.副长石二长正长岩;16.副长石正长岩;17.副长石深成岩;18.霓方钠岩/磷霞岩/粗白榴岩;Ir分界线上方为碱性系列,下方为亚碱性系列岩石
      Fig.  5.  Diagrams of TAS (a); SiO2-K2O (b); the chondrite-normalized rare earth elements (REE) (c); The primitive mantle-normalized multi-element diagrams(d); Sr/Y vs. Y (f) and (La/Yb)N vs.YbN(e)

      3件代表性斑状花岗岩的Sr-Nd-Pb同位素测试结果见表 2表 3,其Sr含量介于487×10-6~564×10-6,Nd含量介于20.5×10-6~27.8×10-6,以斑状花岗岩中锆石的结晶年龄t=102 Ma(朱昱桦等, 2018)来计算,获得其全岩(87Sr/86Sr)i值变化于0.708 38~0.708 44,(143Nd/144Nd)i值变化于0.512 22~0.512 23,εNd(t)变化于-5.6~-5.5,对应的TDM2模式年龄为1.35 ~1.36 Ga.样品校正后的(206Pb/204Pb)i值变化于18.762~18.832(平均18.796);(207Pb/204Pb)i值变化于15.628~15.637(平均15.631);(208Pb/204Pb)i值变化于38.603~38.626(平均38.612);所对应的μ值变化于9.48~9.50(平均9.49),ω值变化于36.02~36.28(平均36.18).

      表  2  罗葵洞斑状花岗岩Sr-Nd同位素组成
      Table  Supplementary Table   Sr-Nd isotopic compositions of the Luokuidong porphyritic granite
      样品编号 Rb(10-6 Sr(10-6 87Rb/86Sr 87Sr/86Srs (87Sr/86Sr)i Sm(10-6 Nd(10-6 147Sm/144Nd 143Nd/144Nd (143Nd/144Nd)i εNd(0) εNd(t) TDM2(Ma)
      16LK-22 183 487 1.09 0.709 963 0.000 020 0.708 38 4.17 27.8 0.090 655 0.512 281 0.000 010 0.512 22 -6.97 -5.6 1 354
      16LK-23 182 533 0.99 0.709 855 0.000 016 0.708 43 3.22 20.5 0.094 797 0.512 282 0.000 011 0.512 22 -6.95 -5.6 1 357
      17LK-01 189 564 0.97 0.709 839 0.000 020 0.708 44 3.93 26.8 0.088 580 0.512 284 0.000 011 0.512 23 -6.91 -5.5 1 347
      下载: 导出CSV 
      | 显示表格
      表  3  罗葵洞斑状花岗岩Pb同位素组成
      Table  Supplementary Table   Pb isotopic compositions of the Luokuidong porphyritic granite
      样品
      编号
      U
      (10-6
      Th
      (10-6
      Pb
      (10-6
      206Pb/
      204Pb
      207Pb/
      204Pb
      208Pb/
      204Pb
      (206Pb/
      204Pb)i
      (207Pb/
      204Pb)i
      (208Pb/
      204Pb)i
      μ ω
      16LK-22 1.83 14.0 12.9 18.941 0.000 8 15.635 0.000 8 38.991 0.002 3 18.795 15.628 38.626 9.48 36.23
      16LK-23 1.68 12.9 13.0 18.894 0.000 9 15.635 0.000 9 38.940 0.002 7 18.762 15.629 38.606 9.49 36.28
      17LK-01 2.69 17.1 13.2 19.042 0.000 9 15.647 0.000 8 39.040 0.002 2 18.832 15.637 38.603 9.50 36.02
      注:μ=238U/204Pb,ω=232Th/204Pb.
      下载: 导出CSV 
      | 显示表格

      石英-辉钼矿阶段中金属硫化物(6件辉钼矿、6件黄铁矿)的S-Pb同位素测试结果见表 4.辉钼矿的δ34S值为1.6‰~3.7‰(平均2.7‰),黄铁矿的δ34S值为-4.7‰~2.2‰(平均0.7‰),所获得的金属硫化物样品的δ34S值,与矿物共生时的S同位素热力学平衡序列δ34S辉钼矿 > δ34S黄铁矿相一致,表明了罗葵洞钼矿床金属硫化物在结晶时S同位素应该达到了热力学平衡(Ohmoto, 1986; Wang et al., 2017a);辉钼矿的206Pb/204Pb、207Pb/204Pb和208Pb/204Pb的比值范围分别为18.492~18.744(平均18.635)、15.577~15.685(平均15.628)和38.406~38.901(平均38.674),所对应的μ值范围为9.41~9.61(平均9.50),ω值范围为35.47~37.84(平均36.52);黄铁矿的206Pb/204Pb、207Pb/204Pb和208Pb/204Pb的比值范围分别为18.653~18.744(平均18.687)、15.604~15.652(平均15.632)和38.610~38.809(平均38.708),所对应的μ值范围为9.45~9.54(平均9.50),ω值范围为35.93~37.13(平均36.42).

      表  4  罗葵洞金属硫化物S-Pb同位素组成
      Table  Supplementary Table   S and Pb istopic compositions for Luokuidong metal sulfides
      矿物 δSV-CDT34(‰) 206Pb/204Pb 平均 207Pb/204Pb 平均 208Pb/204Pb 平均 μ 平均 平均 ω 平均 平均 Th/U
      辉钼矿 3.3 18.692(0.011) 18.635 15.660(0.009) 15.628 38.811(0.024) 38.674 9.55 9.50 9.50 37.06 36.52 36.47 3.76
      1.6 18.679(0.001) 15.621(0.001) 38.674(0.003) 9.48 36.23 3.70
      2.5 18.658(0.004) 15.685(0.004) 38.901(0.007) 9.61 37.84 3.81
      2.9 18.744(0.006) 15.645(0.006) 38.777(0.018) 9.52 36.52 3.71
      2.4 18.543(0.004) 15.577(0.003) 38.406(0.007) 9.41 35.47 3.65
      3.7 18.492(0.002) 15.578(0.002) 38.472(0.004) 9.41 36.01 3.70
      黄铁矿 2.1 18.654(0.002) 18.687 15.646(0.002) 15.632 38.809(0.004) 38.708 9.53 9.50 37.13 36.42 3.77
      1.6 18.714(0.002) 15.652(0.002) 38.768(0.005) 9.54 36.70 3.72
      2.2 18.653(0.003) 15.620(0.002) 38.643(0.006) 9.48 36.23 3.70
      -4.7 18.698(0.003) 15.643(0.003) 38.724(0.009) 9.52 36.53 3.71
      1 18.658(0.002) 15.604(0.002) 38.610(0.004) 9.45 35.93 3.68
      2.1 18.744(0.002) 15.626(0.002) 38.695(0.004) 9.48 36.02 3.68
      注:μ=238U/204Pb,ω=232Th/204Pb.
      下载: 导出CSV 
      | 显示表格

      关于埃达克质岩石的成因机制目前主要有以下几种认识:(1)俯冲洋壳熔融(Defant and Drummond, 1990);(2)玄武质岩浆的结晶分异(Castillo et al., 1999; Macpherson et al., 2006; Gao et al., 2009);(3)岩浆混合作用(Guo et al., 2007; König et al., 2007; Streck et al., 2007);(4)拆沉玄武质下地壳部分熔融(Kay and Kay, 1993; Xu et al., 2002; Gao et al., 2004; Wang et al., 2006;侯增谦等, 2007);(5)加厚古老下地壳的直接部分熔融(张旗等, 2001, 2002;李印等, 2009);(6)底侵玄武质下地壳部分熔融(Atherton and Petford, 1993;王强等, 2001a, 2001b; Chung et al., 2003; Condie, 2005; Wang et al., 2005).

      由于华南陆块(包括海南岛)在白垩纪时期已经处于陆内伸展环境(包志伟等, 2000;王强等, 2002; Zhou et al., 2006; Li and Li, 2007),因此,海南岛地区在白垩纪时期并不存在洋壳俯冲.由俯冲洋壳熔融产生的埃达克质岩通常具有高Na2O、低K2O(K2O/Na2O≤0.4)的特征(Defant and Drummond, 1990),而罗葵洞钼矿区中埃达克质斑状花岗岩具有低Na2O、高K2O(K2O/Na2O≥1.1)的特征,此外,它们的(87Sr/86Sr)i=0.708 38~0.708 44、(143Nd/144Nd)i=0.512 22~0.512 23,εNd(t)=-5.6~-5.5、εHf(t)=-5.38~-2.20 (朱昱桦等, 2018),也与新生代俯冲洋壳形成的埃达克岩差异显著((87Sr/86Sr)i < 0.705、(143Nd/144Nd)i > 0.512 5)(王强等, 2001a, 2001b;贾小辉等, 2010).

      罗葵洞钼矿区中的埃达克质斑状花岗岩也不可能由玄武质岩浆的分离结晶作用或是壳幔岩浆的混合作用而形成,原因如下:(1)通常认为由玄武质岩浆的分离结晶作用所产生的埃达克岩其SiO2变化范围一般较宽,由岩浆混合作用所形成的埃达克质岩石偏中性,而罗葵洞埃达克质斑状花岗岩具有高SiO2(70.94%~72.59%)、低MgO(0.56%~0.68%)和Mg#值(0.31~0.43),显然与岩浆的分离作用或混合作用所形成的埃达克质岩石不一致;(2)由相关图解可排除岩浆的分离结晶作用(图 6a~6b)和岩浆的混合作用(图 6c~6d);(3)野外宏观上、显微镜微观下也观察不到岩浆混合的相关标志,宏观上出现如复合岩墙、网脉状杂岩、暗色微粒包体、淬火边和相互包裹现象等,微观上出现如钾长石的更长环斑结构、磷灰石等矿物的针状结构、暗色矿物的聚晶结构以及各种吸回结构等(Guo et al., 2007; König et al., 2007; Streck et al., 2007;王玉往和王京彬, 2007;贾小辉等, 2010;周云等, 2015).

      图  6  La-La/Yb、Th-Rb、Rb/V-Rb和Rb/V-1/V图解
      Fig.  6.  La-La/Yb, Th-Rb, Rb/V-Rb and Rb/V-1/V diagrams

      罗葵洞埃达克质斑状花岗岩低的MgO含量(0.56%~0.68%)、Mg#值(0.31~0.43)和过渡族元素(如Sc、V、Cr、Co和Ni等)含量,也明显低于由拆沉下地壳熔融形成的埃达克质岩(高山等, 1998;侯增谦等, 2007).

      本次研究中的Sr-Nd同位素组成也完全不同于华南古老地壳物质的Sr-Nd同位素组成(图 7a);它们的εNd(t)值也明显低于海南已知的最老基底抱板群变质基底的εNd(t)值(图 7a);样品的Nd二阶段地壳模式年龄(TDM2=1.35~1.36 Ga)(表 2),同样也明显低于抱板群的变质原岩年龄(1.4~1.8 Ga)(单惠珍, 1990;马大铨等, 1997;许德如等, 2000; Li et al., 2008);在年代学上,笔者也暂未在该区域发现年龄老于1.4 Ga的继承锆石或捕获锆石.因此,罗葵洞钼矿区中埃达克质斑状花岗岩不太可能直接由加厚的古元古代晚期-中元古代早期(1.4~1.8 Ga)下地壳物质部分熔融而形成.

      图  7  罗葵洞钼矿区斑状花岗岩εNd(t)-(87Sr/86Sr)i图解(a);SiO2-MgO图解(b)
      图a中华南下地壳数据周云等(2015)及其参考文献,六罗村组火山岩数据周云等(2015)Zhou et al.(2015),屯昌早白垩世埃达克质侵入岩及镁铁质包体数据贾小辉等(2010)Wang et al. (2012)及其中的参考文献.图b据Wang et al.(2006, 2007)侯增谦等(2007)及其中的参考文献
      Fig.  7.  εNd(t)-(87Sr/86Sr)i diagram for the Luokuidong magmatic rocks (a) and MgO vs. SiO2 diagram for the Luokuidong(b)

      笔者倾向于认为该矿区中埃达克质斑状花岗岩最可能形成于新底侵的增厚玄武质下地壳的部分熔融,这里的下地壳应是古老的(中元古代中期)且其重熔是由于早白垩世晚期-晚白垩世早期(ca. 102 Ma)的玄武质岩浆活动所引起的.主要依据如下:(1)下地壳熔融形成埃达克岩取决于地壳的热状态和厚度,而源自地幔的玄武质岩浆的底侵作用在使地壳发生垂向增生加厚的同时,也导致下地壳处于高热流的状态(Atherton and Petford, 1993;王强等, 2001b).罗葵洞斑状花岗岩地球化学特征(如高SiO2、高Al2O3、高Sr、低Y和亏损HREE),HREE相对亏损(LREE/HREE=15.45~20.60)、Y含量(≤16×10-6)表明其源区可能位于石榴石稳定的区域.同时,较弱的负Eu异常(平均0.75)、高Sr含量(421×10-6~564×10-6)也表明了岩浆源区基本不含斜长石,即使斜长石能够少量存在,也不能在熔融中残留下来.与此同时,LREE富集、HREE亏损,LILE富集、HSFE亏损,高比值的Th/Ta(14.9~25.7)和Th/Nb(1.2~2.0)表明其地幔源区直接或间接经历过俯冲板片流体的交代作用(Pearce and Peate, 1995),且残留相为石榴石+辉石+含Ti-相矿物(如金红石)±角闪石组合(王强等, 2001a;侯增谦等, 2003; Gao et al., 2004; Hou et al., 2004; Qu et al., 2004;杨志明和侯增谦, 2009;许继峰等, 2014).高温高压实验已证明金红石是导致埃达克质熔体和TTG岩浆中Nb、Ta、Ti亏损的必要残留矿物,并根据金红石稳定的最小压力1.5 GPa限定了埃达克岩和TTG岩浆产生深度 > 50 km(Sen and Dunn, 1994; Rapp et al., 1999),同时发现含金红石角闪榴辉岩熔融是埃达克和TTG质岩浆产生的最佳模型(Xiong, 2006).在MgO-SiO2图解(图 7b)中,样品也投影于世界其他地区新底侵的玄武质下地壳熔融所形成的埃达克岩范围内,并与蚀变玄武岩在实验室较高压力(1.0~4.0 GPa)条件下熔融所形成熔体的成分相一致(Wang et al., 2006;贾小辉等, 2010).(2)由玄武质下地壳熔融形成的埃达克质岩的同位素具有如下特征:(87Sr/86Sr)i=0.704~0.708、(143Nd/144Nd)i=0.512 3~0.512 6,与罗葵洞钼矿区中埃达克质斑状花岗岩的(87Sr/86Sr)i=0.708 38~0.708 44、(143Nd/144Nd)i=0.512 22~0.512 23相似.(3)罗葵洞地区存在同时期的基性火山岩.周云等(2015)Zhou et al.(2015)已证实三亚六罗地区六罗村组上部的流纹岩和下部的玄武安山岩的形成年龄为ca.102 Ma,且提出它们是由玄武质岩浆底侵下地壳后再部分熔融的观点.(4)本文获得斑状花岗岩全岩Nd的TDM2模式年龄为1.35~1.36 Ga,与此前所报道的锆石Hf同位素平均地壳TDM2模式年龄为1.31~1.51 Ga(朱昱桦等, 2018)接近,主体投影于下地壳岩石演化区域,表明其岩浆可能来源于中元古代中期下地壳的重熔,伴有部分幔源物质的加入.周云等(2015)Zhou et al.(2015)通过对六罗村组流纹岩和玄武岩-安山岩样品分析后认为,其相似的Nd、Hf同位素组分和不同的微量元素组成特征,暗示了其源区化学组分是多相的,而Nd、Hf同位素组分是相对均一的,可能的解释是由于地幔楔橄榄岩与来自于俯冲沉积物部分熔融所形成的长英质熔体的不完全反应(Chenet al., 2014).大量的研究也表明与岛弧相关的许多岩石受俯冲板片熔体的影响而表现出富集Hf同位素组成、亏损Nb和Ta等地球化学特征,然而,海南岛在同时期并未发生俯冲消减作用,结合全岩Nd的TDM2模式年龄和锆石Hf的TDM2模式年龄(1.31~1.51 Ga)(朱昱桦等, 2018),一个可能的解释是这些岩浆来源于古岛弧岩石的重熔.

      4.2.1   温度

      花岗质岩浆通常是绝热式上升侵位的,故其在早期结晶时的温度能够近似地代表岩浆形成时的温度(吴福元等, 2007).锆石一般是花岗质岩浆体系中较早结晶的副矿物,其晶体具有高度稳定性,是估算岩浆形成温度的优选副矿物.目前有2种方法,分别是全岩锆饱和温度计(Watson and Harrison, 1983; Miller et al., 2003)和锆石Ti温度计(Watson and Harrison, 2005;Watson et al., 2006; Ferry and Watson, 2007).

      其中,锆饱和温度计的计算公式根据Miller et al.(2003)进行了修正,即:

      $$ {T_{{\rm{Zr}}}} = 12900/\left[ {2.95 + 0.85M + \ln \left( {496000/{\rm{Z}}{{\rm{r}}_{00}}} \right)} \right], $$

      式中:TZr为开尔文温度,即TZr=t+273.15(t是摄氏温度的符号℃);M为岩石中某些阳离子比值,表示为M=[(Na+K+2Ca)/(Al×Si)].据此计算得到斑状花岗岩岩浆温度范围为772~812℃(平均795±12℃(σ))(表 1),近似于熔体分离的温度,是原始侵位岩浆的最低计算温度(Miller et al., 2003).而该矿床中由斑状花岗岩中锆石Ti温度计获得的温度为658~728℃(平均690±21℃(σ)),近似代表了花岗岩近液相线的温度,也近似代表了岩浆起源时温度的最小值.研究表明,绝大部分高温条件下(> 750℃)形成的岩浆岩,其锆石Ti温度很好地落在湿花岗岩固相线以上,低的锆石结晶温度(ca. 680℃)表明了锆石结晶时的岩浆处于水近饱和条件下(Harrison et al., 2007),同时,实验研究也表明水饱和熔融或角闪石的脱水熔融可以产生埃达克岩熔体(Beard and Lofgren, 1989, 1991; Rapp et al., 1991; Rushmer, 1991; Winther and Newton, 1991; Wolf and Wyllie, 1991; Sen and Dunn, 1994).因此推测,罗葵洞斑状花岗岩的岩浆可能来源于在水近饱和条件下发生的部分熔融.

      4.2.2   氧逸度

      稀土元素中的Ce(+3、+4价)、Eu(+2、+3价)为变价元素,使得它们在某些副矿物中的含量变化可以从侧面灵敏地反映出岩浆或热液体系的氧逸度状态(赵振华, 2010).岩浆中Ce3+离子可以被氧化成Ce4+离子,而Ce4+与Zr4+离子半径相近、电荷数相同,所以会更容易取代锆石中的Zr4+离子,使得锆石中出现明显的Ce正异常,而该异常程度反映了形成锆石时的岩浆-热液体系的氧化-还原状态(Liang et al., 2006;赵振华, 2010; Zhou et al., 2018).Ce4+/Ce3+主要由氧逸度控制,受温度和压力的影响较小(Ballard et al., 2002; Liang et al., 2006).锆石中Ce4+/Ce3+目前虽不能通过光谱分析直接测得,但是可以通过相关理论计算求得,具体可参考Ballard et al.(2002).

      以往研究表明,氧逸度的高低对长英质岩浆的矿化起着重要作用(Mungall, 2002; Sun et al., 2004; Liang et al., 2006; Li et al., 2008; Zhou et al., 2018).在氧逸度较低时,硫主要以S2的形式存在,相反,在氧逸度较高时,硫主要以SO、SO2的形式存在(Liang et al., 2006).SO、SO2与Cu、Mo等离子亲和性更强,溶解度更高,使得熔体-热液在岩浆分异的过程中会逐渐富集Cu、Mo等元素,从而对成矿有利.高的氧逸度使得Mo在熔体-热液演化阶段始终以高价态的钼酸盐形式迁移和富集,直到热液演化晚期温度下降以及体系中还原态S含量增加,从而有利于辉钼矿的沉淀(徐文刚等, 2011).

      在斑岩型钼、铜和铜-钼等相关矿床中,国内外学者们将锆石中Ce4+/Ce3+比值和Eu/Eu*比值大小作为判断岩体成矿潜力大小的标志之一.通常认为Ce4+/Ce3+ > 260,Eu/Eu* > 0.4时具有成矿潜力(Liang et al., 2006;赵振华, 2010).Liang et al.(2006)获得西藏玉龙超大型斑岩铜矿含矿斑岩体中锆石的Ce4+/Ce3+平均值范围为201~334,不含矿斑岩体Ce4+/Ce3+比值为93~112;Zhang et al.(2014)获得大别山地区沙坪沟特大型斑岩型钼矿床含矿斑岩体花岗斑岩的Ce4+/Ce3+平均值为547、Eu/Eu*平均值为0.36;Thompson et al.(1999)Sun et al.(2015)研究认为斑岩钼矿的氧逸度系统低于斑岩铜-钼矿床和斑岩铜-金矿床;Li et al.(2017)对比华南燕山期不同金属矿床有关的花岗岩的氧逸度后认为,与铜(金)-钼成矿有关的花岗质岩浆氧逸度最高.曹冲和申萍(2018)认为,即使斑岩型钼矿床成矿岩浆氧逸度存在较大的差别,但是过低的氧逸度对钼元素在岩浆中的富集并不有利;Shen et al.(2015)对中亚9个不同规模的斑岩铜矿中的13个含矿岩体进行了锆石Ce4+/Ce3+比值及其氧逸度的分析,结果表明含矿岩浆中锆石的Ce4+/Ce3+ > 120可形成大型矿床,Ce4+/Ce3+ < 120则形成小型矿床,为评价斑岩铜矿规模提供一种新的评价标准,与之相似,Zhou et al.(2018)系统地研究了东兴安-蒙古造山带中8个代表性斑岩钼矿床中的11个花岗质侵入体的锆石Ce4+/Ce3+比值后认为,含矿侵入体锆石Ce4+/Ce3+比值与钼储量表现出正相关关系,且其比值相对于在无矿化、贫矿化侵入体中要大得多,同时,以锆石Ce4+/Ce3+比值300、200和100为界,可将斑岩钼矿床规模较好划分出巨型、大型、中型和小型,且在对比斑岩铜矿后,认为在该类型钼矿床中与成矿密切相关的岩体其锆石Ce4+/Ce3+比值越高,其成矿的潜力也越大.

      本文通过计算获得样品斑状花岗岩(16LK-22)中锆石的Ce4+/Ce3+比值范围为174~621(平均383)(锆石数据引用自朱昱桦等(2018));Eu/Eu*比值范围为0.31~0.51(平均0.40)(表 5),综合表明了形成罗葵洞斑状花岗岩的岩浆-热液体系氧逸度较高,成矿潜力较大.

      表  5  罗葵洞斑状花岗岩(16LK-22)锆石Ce4+/Ce3+比值计算值
      Table  Supplementary Table   Calculated Ce4+/Ce3+ ratios of zircons in the Luokuidong granite sample 16LK-22
      锆石编号 锆石Ce4+/
      Ce3+
      熔体Ce4+/Ce3+ D(Ce4+ D(Ce3+ D(Ce锆石/熔体
      16LK-22-2 174 0.000 890 810.113 738 0.004 148 0.725 508
      16LK-22-4 500 0.000 913 896.461 715 0.001 636 0.819 900
      16LK-22-5 198 0.000 927 782.932 100 0.003 661 0.729 655
      16LK-22-6 209 0.000 654 753.944 164 0.002 366 0.495 818
      16LK-22-7 544 0.000 878 801.997 038 0.001 295 0.705 816
      16LK-22-8 621 0.000 675 686.383 176 0.000 747 0.463 996
      16LK-22-11 347 0.000 810 770.383 170 0.001 798 0.625 953
      16LK-22-13 577 0.000 637 748.363 413 0.000 827 0.477 231
      16LK-22-16 384 0.000 750 706.709 990 0.001 382 0.531 316
      16LK-22-18 306 0.000 900 718.052 331 0.002 115 0.648 074
      16LK-22-19 188 0.000 918 724.125 709 0.003 541 0.668 523
      16LK-22-20 304 0.001 012 719.665 184 0.002 396 0.731 012
      16LK-22-21 375 0.000 934 717.837 055 0.001 787 0.672 084
      16LK-22-23 465 0.000 803 766.278 035 0.001 323 0.616 388
      16LK-22-27 213 0.001 121 829.556 966 0.004 381 0.934 451
      16LK-22-28 571 0.000 873 739.250 902 0.001 132 0.646 488
      16LK-22-29 533 0.001 093 699.556 320 0.001 437 0.766 053
      16LK-22-30 295 0.001 064 726.850 626 0.002 623 0.776 350
      16LK-22-35 467 0.000 960 691.609 170 0.001 422 0.665 422
      下载: 导出CSV 
      | 显示表格

      由金属硫化物样品(辉钼矿和黄铁矿)所获得的δ34S范围为-4.7‰~3.7‰(平均1.7‰),该范围与幔源硫(岩浆硫)δ34S值(ca. 0‰±3‰)略相近(Chaussidon and Lorand, 1990),表明该矿床的金属硫化物的硫源以岩浆硫为主.该范围也与国内大多数大型斑岩型钼矿床的δ34S范围(主要为-2‰~10‰)基本一致(叶天竺等, 2017),反映出罗葵洞钼矿床具有典型岩浆硫同位素组成的特点.

      由辉钼矿和黄铁矿的Pb同位素组成特点可知,所获得的μ值范围为9.41~9.61(平均9.50),略低于上地壳的μ值(μ=9.6)而明显高于地幔原始铅的μ值(μ=8~9)(Wang et al., 2017);所获得的ω值范围为35.47~37.84(平均36.47),略低于平均地壳铅的ω值(36.84)而明显高于平均地幔铅的ω值(33.21)(Stacey and Kramers, 1975).在206Pb/204Pb-207Pb/204Pb图解(图 8a)中,所有硫化物样品点均落于上地壳演化线与造山带演化线之间或附近;在206Pb/204Pb-208Pb/204Pb图解(图 8b)中,所有硫化物样品点均落于下地壳演化线与造山带演化线之间,且靠近造山带演化线,这个结果表明罗葵洞钼矿区成矿金属元素主要来源于地壳,且可能混有少量的地幔物质.此外,斑状花岗岩Pb同位素组成与金属硫化物的Pb同位素组成均比较相似(图 8),成岩成矿时代也相近,表明其岩浆体系也可能为成矿物质提供了重要来源.

      图  8  罗葵洞钼矿区Pb同位素图解
      Zartman and Doe(1981). UC.上地壳;OR.造山带;M.地幔;LC.下地壳
      Fig.  8.  Diagrams showing lead isotopic compositions of the Luokuidong

      因此,罗葵洞钼矿床中成矿物质来源可能以深部地壳为主,同时伴有少量地幔成分的参与,该结果与此前由辉钼矿Re含量(26.04×106~50.39×106,平均33.65×106)所支持的结论相一致(朱昱桦等, 2018).

      不少斑岩型钼、铜和钼-铜等相关矿床表现出与埃达克(质)岩密切相关,如豫南姚冲钼矿床、黑龙江鹿鸣钼矿床、东天山白山钼矿床、陕西华县八里坡钼矿床、德兴斑岩铜矿田、长江中下游斑岩铜矿、冈底斯中段岗讲斑岩铜-钼矿床和青海纳日贡玛斑岩钼-铜矿床等(侯增谦等, 2007;杨志明等, 2008; Chen et al., 2017;杨震等, 2017;郗爱华等, 2018).目前关于埃达克(质)岩产出构造背景大致分为两类:(1)产于岛弧或活动大陆边缘环境;(2)产于陆内环境,无论是板片部分熔融的产物、典型岛弧岩浆的分异产物、加厚陆壳的部分熔融或是拆沉下地壳的部分熔融的产物,只要物理、化学条件允许,板片或是下地壳的熔融均可形成埃达克岩(李印等, 2009).

      在成矿背景与成矿时间上,大多数学者认为华南板块在晚中生代(ca. 180~80 Ma)由于受到古太平洋板块俯冲作用于东亚大陆边缘及与此相关的地球动力学过程(如拆沉作用、板块后撤和弧后拉张等)的影响而产生了大规模的W、Sn、Bi、Mo、Cu、Pb、Zn和Au等的成矿作用(Zhou and Li, 2000;毛景文等, 2004; Mao et al., 2011; Xu et al., 2016).海南岛自晚二叠世后属于华夏地块的一部分,具有与其相似的大地构造演化历史(Hsü et al., 1990; Li et al., 2002; Xu et al., 2015, 2016).Xu et al.(2016)将海南岛内的钼矿化作用划分出3个时段,分别为ca. 112 Ma、106~95 Ma和89~72 Ma,认为钼矿化作用与白垩纪时俯冲的古太平洋板片后撤作用密切相关.罗葵洞7件辉钼矿Re-Os等时线的年龄为100.1±1.8 Ma(MSWD=1.50)(朱昱桦等, 2018),恰处于中国东南部(包括海南岛)在晚白垩世时期伸展拉张时期(图 9a)(Wang et al., 2012; Zhou et al., 2015;胡军等, 2017).

      图  9  构造背景示意图(a);成岩成矿过程示意图(b~c)
      图a据Xu et al.(2016)修改
      Fig.  9.  Tectonic setting(a) and rock formation and mineralization of Luokuidong(b-c)

      在成岩成矿空间与时间上,罗葵洞钼矿化主要赋存于隐伏的斑状花岗岩顶部,其次为外围火山岩、火山碎屑岩中,而火山碎屑岩(流纹质晶屑凝灰熔岩)和斑状花岗岩LA-ICP-MS锆石U-Pb加权平均年龄分别为104.1±0.7 Ma(n=11, MSWD=0.24)和102.4±0.5 Ma(n=19, MSWD=0.80),表明钼矿化是继火山作用、岩体侵位后在较短时间内含矿岩浆热液活动的产物(朱昱桦等, 2018).

      在成岩成矿过程上,罗葵洞地区由于在晚白垩世处于弧后伸展背景(图 9a),导致热的软流圈地幔物质上涌,引起火山喷发(ca. 104 Ma),火山喷发在提供热源的同时也促进了岩浆对流并携带部分Mo、Cu和W等成矿元素进入围岩.随后,来自新底侵的增厚玄武质下地壳部分熔融形成高氧逸度、富水的岩浆-热液沿火山构造上侵就位形成具有埃达克质地球化学特征的斑状花岗岩(ca. 102 Ma)(图 9b).岩浆房中轻的、富水、富气的成矿岩浆通过岩浆通道上升至其顶部,并最终造成上部火山岩、火山碎屑岩等岩石发生破裂,形成各种节理、裂隙,促使成矿元素沉淀富集在这些节理、裂隙中交代充填,并在岩浆晚期由岩体往外大致形成含钼强硅化带→含钼硅钾蚀变带→含钼硅化蚀变带→绿帘石、绿泥石化带,最终形成罗葵洞斑岩型钼矿床(ca. 100 Ma)(图 9c).这与Shinohara et al.(1995)提出的斑岩型钼矿床的岩浆对流流体富集机制是一致的.

      如前所述,斑岩型钼矿床按照大地构造环境和品级可进一步可划分为Climax型、Endako型和碰撞型(Sinclair, 2007)(图 10),但其形成的构造背景较为复杂,目前主要识别出斑岩型钼矿床的构造背景有4类:(1)与弧后伸展、陆内裂谷和造山后伸展相关的伸展背景,如产于造山后伸展的安徽沙坪沟钼矿床(Wang et al., 2014)、产于大陆裂谷的Cave Peak钼矿床、产于弧后Rio Grande裂谷的Climax和Henderson钼矿床(Westra and Keith, 1981; Ludington and Plumlee, 2009);(2)与板块俯冲下相关的弧环境,如产于陆缘弧环境的浙西南治岭头斑岩钼矿床(Wang et al., 2017a, 2017b)和加拿大Endako钼矿床、Ruby Creek钼矿床(Climax型)(Ludington et al., 2009);(3)与碰撞作用相关的,如产于同碰撞的西藏冈底斯沙让斑岩型钼矿床(秦克章等, 2008)、产于碰撞造山阶段的西藏荣嘎钼矿床(郑有业等, 2017);(4)与地幔柱作用相关的,如东英格兰Malmbjerg斑岩型钼矿床(Brooks et al., 2004).因此,单一的根据成矿构造背景划分斑岩型钼矿床的细类欠妥,仍需结合矿床的其他相关特征进行对比划分(图 10).

      图  10  斑岩型钼矿床分类特征
      Fig.  10.  Characteristic of porphyry molybdenum deposit

      根据图 10,考虑到罗葵洞钼矿床形成于受俯冲的古太平洋板片回撤引起的弧后伸展背景,低Mo品位(平均0.055%),成矿时代为ca.100 Ma,其赋矿岩体斑状花岗岩具有Endako型相似的地球化学特征,矿石矿物上出现白钨矿、黄铜矿,未见含锡矿物,初步认为其属于Endako型斑岩钼矿床.

      (1)罗葵洞斑状花岗岩具有与埃达克质岩石相似的地球化学特征.

      (2)罗葵洞埃达克质斑状花岗岩可能形成于底侵的增厚玄武质下地壳岩石(中元古代中期)的重熔.

      (3)罗葵洞埃达克质斑状花岗岩的岩浆是形成在水近饱和条件下的部分熔融,其岩浆-热液体系氧逸度较高,成矿潜力较大.

      (4)罗葵洞钼矿床成矿物质来源以深部地壳为主,同时可能伴有少量地幔成分的参与.

      (5)初步认为罗葵洞钼矿床属于Endako型斑岩钼矿床.

      致谢: 感谢两位匿名审稿专家对本文进行了认真、细致地审稿以及提出了宝贵的建议,感谢编委、编辑部尽心尽责地为本文的完善所提供的建议和帮助.本研究在野外工作中得到海南省地矿局的支持与帮助;在中国科学院广州地球化学研究所实验过程中,涂湘林高级工程师、曾文高级工程师、张乐老师和吴丹老师等对全岩微量元素、同位素、锆石分析等实验提供了悉心指导与帮助,张湖研究员、于学元研究员在室内岩石鉴定工作中给予了一定的指导,在此一并表示衷心地感谢!
    • 图  1  海南岛位置简图(a)和海南岛地层、构造及相关钼矿床位置地质简图(b)

      均据Xu et al.(2016)修改. 1.中生代-新生代地层;2.新生代玄武岩;3.白垩纪盆地;4.古生代地层;5.晚中元古-新元古代石碌群和上覆石灰顶组;6.古-中元古代抱板群;7.新太古代杂岩(?);8.晚中生代花岗质岩类;9.白垩纪火山岩;10.晚古生代-早古生代花岗质岩类;11.变基性岩和相关沉积岩;12.地质界线;13.钼(多金属)矿床(矿化点),包括①红门岭、②红岭、③报告村、④文且、⑤石门山、⑥新村、⑦罗葵洞、⑧龙门岭、⑨高通岭、⑩梅岭

      Fig.  1.  Location map of Hainan Island (a); geological sketch map showing major stratigraphic and magmatic units, structures and molybdenum (Mo)-related ore deposits or occurrences on Hainan Island (b)

      图  2  罗葵洞钼矿区及邻区地质简图

      朱昱桦等(2018)修改. 1.第四系含砂粘土、砂砾石;2.白垩系六罗村组中-酸性火山碎屑岩、火山岩类;3.白垩纪石英二长(斑)岩、石英正长岩;4.白垩纪斑状花岗岩(主);5.白垩纪花岗闪长岩;6.侏罗纪(白垩纪?)中-粗粒花岗岩;7.英安斑岩;8.安山玢岩;9.辉绿岩;10.含钼强硅蚀变带;11.含钼硅钾蚀变带;12.含钼硅化蚀变带;13.遥感环形影像;14.实测(F1)与推测(物探WF1/遥感YF1)断层;15.7’号剖面线;16.斑状花岗岩采样位置;17.矿石样采样位置;18.钻孔位置及编号

      Fig.  2.  Simplified geological map showing the Luokuidong mining district and its adjacent areas

      图  3  罗葵洞钼矿床矿区7’号线地质剖面图

      据辽宁省有色地质局勘查总院(2008)海南省保亭县罗葵洞矿区钼矿详查地质报告.1.第四系残坡积层;2.白垩系六罗村组中-酸性火山碎屑岩、火山岩类;3.白垩纪花岗质岩石;4.工业矿体(0.040%≤Mo≤0.170%,平均0.058%);5.低品位矿体(0.020%≤Mo < 0.040%,平均0.025%);6.矿化体;7.层序界线;8.钻孔位置及编号

      Fig.  3.  Geological section map of the No. 7' prospecting line in the Luokuidong molybdenum ore deposit

      图  4  斑状花岗岩标本截面(a);斑状花岗岩正交偏光显微镜下特征(b~c);斑状花岗岩上见少量浸染状辉钼矿(d);石英-辉钼矿阶段中的金属硫化物(e~f)

      Bt.黑云母;Ccp.黄铜矿;Chl.绿泥石;Kfs.钾长石;Mo.辉钼矿;Pl.斜长石;Py.黄铁矿;Qz.石英

      Fig.  4.  The section of porphyritic granite (a); photographs from orthogonal polarizing microscope of porphyritic granite (b-c); A small amount of molybdenite in porphyritic granite (d); Metal sulfide from quartz-molybdenite stage (e-f)

      图  5  岩浆岩TAS图解(a);硅-钾图(b);球粒陨石标准化稀土元素分布模式(c);原始地幔标准化微量元素蛛网图(d);Sr/Y-Y图解(e);(La/Yb)N-YbN图解(f)

      图a据Martin(1993);图b据Peccerillo and Taylor(1976)Middlemost(1985);图c据Sun et al.(1989),其中海南屯昌埃达克质岩贾小辉等(2010)Wang et al.(2012),六罗村组流纹岩周云等(2015)Zhou et al.(2015);图d据Sun et al.(1989);图e据Defant and Drummond(1990)Defant et al.(2002);图f据Martin(1993).1.橄榄辉长岩;2a.碱性辉长岩;2b.亚碱性辉长岩;3.辉长闪长岩;4.闪长岩;5.花岗闪长岩;6.花岗岩;7.硅英岩;8.二长辉长岩;9.二长闪长岩;10.二长岩;11.石英二长岩;12.正长岩;13.副长石辉长岩;14.副长石二长闪长岩;15.副长石二长正长岩;16.副长石正长岩;17.副长石深成岩;18.霓方钠岩/磷霞岩/粗白榴岩;Ir分界线上方为碱性系列,下方为亚碱性系列岩石

      Fig.  5.  Diagrams of TAS (a); SiO2-K2O (b); the chondrite-normalized rare earth elements (REE) (c); The primitive mantle-normalized multi-element diagrams(d); Sr/Y vs. Y (f) and (La/Yb)N vs.YbN(e)

      图  6  La-La/Yb、Th-Rb、Rb/V-Rb和Rb/V-1/V图解

      Schiano et al.(2010)

      Fig.  6.  La-La/Yb, Th-Rb, Rb/V-Rb and Rb/V-1/V diagrams

      图  7  罗葵洞钼矿区斑状花岗岩εNd(t)-(87Sr/86Sr)i图解(a);SiO2-MgO图解(b)

      图a中华南下地壳数据周云等(2015)及其参考文献,六罗村组火山岩数据周云等(2015)Zhou et al.(2015),屯昌早白垩世埃达克质侵入岩及镁铁质包体数据贾小辉等(2010)Wang et al. (2012)及其中的参考文献.图b据Wang et al.(2006, 2007)侯增谦等(2007)及其中的参考文献

      Fig.  7.  εNd(t)-(87Sr/86Sr)i diagram for the Luokuidong magmatic rocks (a) and MgO vs. SiO2 diagram for the Luokuidong(b)

      图  8  罗葵洞钼矿区Pb同位素图解

      Zartman and Doe(1981). UC.上地壳;OR.造山带;M.地幔;LC.下地壳

      Fig.  8.  Diagrams showing lead isotopic compositions of the Luokuidong

      图  9  构造背景示意图(a);成岩成矿过程示意图(b~c)

      图a据Xu et al.(2016)修改

      Fig.  9.  Tectonic setting(a) and rock formation and mineralization of Luokuidong(b-c)

      图  10  斑岩型钼矿床分类特征

      Fig.  10.  Characteristic of porphyry molybdenum deposit

      表  1  罗葵洞斑状花岗岩主量(%)、微量(10-6)元素测试结果

      Table  1.   Major (%) and trace elements (106) compositions from Luokuidong porphyritic granite

      样品号 16LK-21 16LK-22 16LK-23 16LK-24 16LK-25 16LK-26 16LK-27 17LK-01 17LK-02
      SiO2 72.41 71.94 71.50 72.07 72.59 71.66 70.94 72.16 72.34
      TiO2 0.29 0.33 0.33 0.27 0.30 0.32 0.33 0.30 0.31
      Al2O3 15.41 15.64 16.26 15.51 15.48 15.92 15.77 15.11 15.71
      MnO 0.04 0.05 0.05 0.04 0.05 0.06 0.04 0.05 0.05
      TFe2O3 2.01 2.23 1.79 1.83 2.25 1.99 2.73 1.97 1.80
      MgO 0.62 0.68 0.68 0.56 0.59 0.63 0.62 0.64 0.58
      CaO 0.84 1.44 1.53 1.32 1.05 1.47 1.68 1.97 1.17
      Na2O 3.23 3.20 3.36 2.94 2.65 3.45 3.44 3.69 2.72
      K2O 5.08 4.40 4.43 5.39 4.99 4.46 4.38 4.03 5.28
      P2O5 0.07 0.09 0.09 0.07 0.05 0.05 0.07 0.09 0.04
      Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
      LOI 1.41 1.60 1.62 1.25 1.73 1.27 1.19 0.56 1.43
      Alk 8.31 7.59 7.78 8.32 7.64 7.91 7.82 7.72 8.00
      δ 2.35 1.99 2.13 2.38 1.97 2.18 2.19 2.04 2.18
      A/CNK 1.25 1.24 1.24 1.19 1.33 1.21 1.17 1.08 1.27
      A/NK 1.42 1.56 1.57 1.45 1.58 1.51 1.51 1.45 1.54
      Mg# 0.34 0.34 0.39 0.34 0.31 0.35 0.28 0.35 0.35
      K2O/Na2O 1.58 1.38 1.32 1.83 1.88 1.29 1.27 1.09 1.94
      TZr 799 799 799 783 801 801 812 772 790
      Sc 4.04 3.44 3.42 3.72 3.98 4.16 4.56 4.26 3.51
      Ti 1 658 1 940 1 948 1 621 1 809 1 851 1 935 1 836 1 721
      V 19.1 20.2 19.0 17.9 20.4 21.3 26.1 24.2 19.0
      Cr 17.2 13.0 10.9 12.7 14.2 11.2 12.7 13.9 13.0
      Mn 308 365 318 302 328 417 321 393 345
      Co 1.32 3.12 2.11 3.00 1.43 2.05 2.53 1.41 1.46
      Ni 5.24 2.62 2.14 2.46 3.60 2.36 2.97 2.30 2.70
      Cu 84.9 61.9 44.6 99.4 66.5 52.0 13.5 56.0 92.8
      Zn 51.9 43.0 50.8 49.5 76.7 181.9 58.5 175.8 49.6
      Ga 19.0 20.3 20.7 19.6 19.9 20.4 20.8 20.5 20.0
      Ge 1.38 1.55 1.32 1.27 1.42 1.35 1.52 1.48 1.30
      Rb 199 183 182 207 208 202 162 189 196
      Sr 436 487 533 503 421 519 537 564 438
      Y 10.4 10.0 8.0 7.5 8.1 11.0 14.6 14.5 8.0
      Zr 153 156 157 135 147 165 194 133 136
      Nb 8.1 8.3 7.9 8.2 8.9 9.1 9.6 9.3 7.8
      Cs 3.45 3.34 3.40 3.05 3.03 3.62 2.59 3.34 3.39
      Ba 995 708 904 1127 742 805 873 686 946
      La 35.3 41.9 28.3 30.9 36.0 27.8 39.4 40.5 30.5
      Ce 62.9 73.0 52.3 55.5 66.5 51.8 69.4 72.7 60.9
      Pr 6.70 8.21 5.78 5.75 7.10 5.37 7.74 7.89 6.31
      Nd 22.5 27.8 20.5 19.4 24.4 18.5 25.9 26.8 21.8
      Sm 3.48 4.17 3.22 2.95 3.56 2.69 3.75 3.93 3.23
      Eu 0.76 0.92 0.78 0.70 0.74 0.61 0.86 0.82 0.71
      Gd 2.69 3.06 2.42 2.19 2.64 2.24 3.02 3.13 2.46
      Tb 0.34 0.37 0.29 0.28 0.32 0.29 0.38 0.42 0.30
      Dy 1.78 1.83 1.51 1.40 1.60 1.64 2.04 2.27 1.57
      Ho 0.35 0.34 0.28 0.27 0.30 0.35 0.43 0.46 0.30
      Er 0.96 0.91 0.75 0.72 0.80 1.01 1.15 1.26 0.82
      Tm 0.15 0.14 0.11 0.11 0.12 0.15 0.18 0.20 0.12
      Yb 1.01 0.90 0.78 0.76 0.81 1.07 1.12 1.30 0.82
      Lu 0.15 0.14 0.12 0.12 0.12 0.17 0.19 0.20 0.13
      Hf 4.73 4.50 4.36 4.30 4.19 4.75 5.58 3.95 4.04
      Ta 0.78 0.61 0.58 0.73 0.63 0.69 0.75 0.67 0.61
      Pb 13.7 12.9 13.0 15.0 15.3 12.5 14.0 13.2 14.9
      Th 16.3 14.0 12.9 15.0 14.5 14.2 15.1 17.1 9.1
      U 2.25 1.83 1.68 2.10 2.25 3.39 2.44 2.69 2.02
      ∑REE 139 164 117 121 145 114 156 162 130
      δEu 0.73 0.75 0.82 0.80 0.70 0.73 0.75 0.69 0.75
      (La/Yb)N 25.2 33.3 26.1 29.2 31.9 18.7 25.4 22.4 26.6
      La/Yb 35.1 46.4 36.4 40.7 44.4 26.0 35.4 31.2 37.1
      Sr/Y 42.1 48.5 66.6 67.1 52.1 47.2 36.9 39.0 54.7
      Th/Ta 20.9 23.0 22.4 20.5 23.3 20.4 20.3 25.7 14.9
      Th/Nb 2.0 1.7 1.6 1.8 1.6 1.6 1.6 1.8 1.2
      注:LOI.烧失量;碱度Alk=Na2O+K2O;里特曼指数δ=(Na2O+K2O)2/(SiO2-43)(ωB,%);A/CNK=Al2O3/(CaO+K2O+Na2O),分子数比值;A/NK=Al2O3/(K2O+Na2O),分子数比值;Mg#=Mg2+/(Mg2++Fe2+)的摩尔数比值;TZr为全岩锆饱和温度计.
      下载: 导出CSV

      表  2  罗葵洞斑状花岗岩Sr-Nd同位素组成

      Table  2.   Sr-Nd isotopic compositions of the Luokuidong porphyritic granite

      样品编号 Rb(10-6 Sr(10-6 87Rb/86Sr 87Sr/86Srs (87Sr/86Sr)i Sm(10-6 Nd(10-6 147Sm/144Nd 143Nd/144Nd (143Nd/144Nd)i εNd(0) εNd(t) TDM2(Ma)
      16LK-22 183 487 1.09 0.709 963 0.000 020 0.708 38 4.17 27.8 0.090 655 0.512 281 0.000 010 0.512 22 -6.97 -5.6 1 354
      16LK-23 182 533 0.99 0.709 855 0.000 016 0.708 43 3.22 20.5 0.094 797 0.512 282 0.000 011 0.512 22 -6.95 -5.6 1 357
      17LK-01 189 564 0.97 0.709 839 0.000 020 0.708 44 3.93 26.8 0.088 580 0.512 284 0.000 011 0.512 23 -6.91 -5.5 1 347
      下载: 导出CSV

      表  3  罗葵洞斑状花岗岩Pb同位素组成

      Table  3.   Pb isotopic compositions of the Luokuidong porphyritic granite

      样品
      编号
      U
      (10-6
      Th
      (10-6
      Pb
      (10-6
      206Pb/
      204Pb
      207Pb/
      204Pb
      208Pb/
      204Pb
      (206Pb/
      204Pb)i
      (207Pb/
      204Pb)i
      (208Pb/
      204Pb)i
      μ ω
      16LK-22 1.83 14.0 12.9 18.941 0.000 8 15.635 0.000 8 38.991 0.002 3 18.795 15.628 38.626 9.48 36.23
      16LK-23 1.68 12.9 13.0 18.894 0.000 9 15.635 0.000 9 38.940 0.002 7 18.762 15.629 38.606 9.49 36.28
      17LK-01 2.69 17.1 13.2 19.042 0.000 9 15.647 0.000 8 39.040 0.002 2 18.832 15.637 38.603 9.50 36.02
      注:μ=238U/204Pb,ω=232Th/204Pb.
      下载: 导出CSV

      表  4  罗葵洞金属硫化物S-Pb同位素组成

      Table  4.   S and Pb istopic compositions for Luokuidong metal sulfides

      矿物 δSV-CDT34(‰) 206Pb/204Pb 平均 207Pb/204Pb 平均 208Pb/204Pb 平均 μ 平均 平均 ω 平均 平均 Th/U
      辉钼矿 3.3 18.692(0.011) 18.635 15.660(0.009) 15.628 38.811(0.024) 38.674 9.55 9.50 9.50 37.06 36.52 36.47 3.76
      1.6 18.679(0.001) 15.621(0.001) 38.674(0.003) 9.48 36.23 3.70
      2.5 18.658(0.004) 15.685(0.004) 38.901(0.007) 9.61 37.84 3.81
      2.9 18.744(0.006) 15.645(0.006) 38.777(0.018) 9.52 36.52 3.71
      2.4 18.543(0.004) 15.577(0.003) 38.406(0.007) 9.41 35.47 3.65
      3.7 18.492(0.002) 15.578(0.002) 38.472(0.004) 9.41 36.01 3.70
      黄铁矿 2.1 18.654(0.002) 18.687 15.646(0.002) 15.632 38.809(0.004) 38.708 9.53 9.50 37.13 36.42 3.77
      1.6 18.714(0.002) 15.652(0.002) 38.768(0.005) 9.54 36.70 3.72
      2.2 18.653(0.003) 15.620(0.002) 38.643(0.006) 9.48 36.23 3.70
      -4.7 18.698(0.003) 15.643(0.003) 38.724(0.009) 9.52 36.53 3.71
      1 18.658(0.002) 15.604(0.002) 38.610(0.004) 9.45 35.93 3.68
      2.1 18.744(0.002) 15.626(0.002) 38.695(0.004) 9.48 36.02 3.68
      注:μ=238U/204Pb,ω=232Th/204Pb.
      下载: 导出CSV

      表  5  罗葵洞斑状花岗岩(16LK-22)锆石Ce4+/Ce3+比值计算值

      Table  5.   Calculated Ce4+/Ce3+ ratios of zircons in the Luokuidong granite sample 16LK-22

      锆石编号 锆石Ce4+/
      Ce3+
      熔体Ce4+/Ce3+ D(Ce4+ D(Ce3+ D(Ce锆石/熔体
      16LK-22-2 174 0.000 890 810.113 738 0.004 148 0.725 508
      16LK-22-4 500 0.000 913 896.461 715 0.001 636 0.819 900
      16LK-22-5 198 0.000 927 782.932 100 0.003 661 0.729 655
      16LK-22-6 209 0.000 654 753.944 164 0.002 366 0.495 818
      16LK-22-7 544 0.000 878 801.997 038 0.001 295 0.705 816
      16LK-22-8 621 0.000 675 686.383 176 0.000 747 0.463 996
      16LK-22-11 347 0.000 810 770.383 170 0.001 798 0.625 953
      16LK-22-13 577 0.000 637 748.363 413 0.000 827 0.477 231
      16LK-22-16 384 0.000 750 706.709 990 0.001 382 0.531 316
      16LK-22-18 306 0.000 900 718.052 331 0.002 115 0.648 074
      16LK-22-19 188 0.000 918 724.125 709 0.003 541 0.668 523
      16LK-22-20 304 0.001 012 719.665 184 0.002 396 0.731 012
      16LK-22-21 375 0.000 934 717.837 055 0.001 787 0.672 084
      16LK-22-23 465 0.000 803 766.278 035 0.001 323 0.616 388
      16LK-22-27 213 0.001 121 829.556 966 0.004 381 0.934 451
      16LK-22-28 571 0.000 873 739.250 902 0.001 132 0.646 488
      16LK-22-29 533 0.001 093 699.556 320 0.001 437 0.766 053
      16LK-22-30 295 0.001 064 726.850 626 0.002 623 0.776 350
      16LK-22-35 467 0.000 960 691.609 170 0.001 422 0.665 422
      下载: 导出CSV
    • [1] Atherton, M.P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416): 144-146. https://doi.org/10.1038/362144a0
      [2] Audétat, A., Li, W. T., 2017. The Genesis of Climax-Type Porphyry Mo Deposits: Insights from Fluid Inclusions and Melt Inclusions. Ore Geology Reviews, 88: 436-460. https://doi.org/10.1016/j.oregeorev.2017.05.018
      [3] Ballard, J.R., Palin, M.J., Campbell, I.H., 2002. Relative Oxidation States of Magmas Inferred from Ce(IV)/Ce(III) in Zircon: Application to Porphyry Copper Deposits of Northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347-364. https://doi.org/10.1007/s00410-002-0402-5
      [4] Bao, Z.W., Zhao, Z.H., Xiong, X.L., et al., 2000.Geochemistry of Ejinao Alkali Syenite and Its Geodynamic Significance.Geochimica, 29(5):462-468(in Chinese with English abstract).
      [5] Beard, J.S., Lofgren, G.E., 1989. Effect of Water on the Composition of Partial Melts of Greenstone and Amphibolite. Science, 244(4901): 195-197. https://doi.org/10.1126/science.244.4901.195
      [6] Beard, J.S., Lofgren, G.E., 1991. Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6. 9 kb. Journal of Petrology, 32(2): 365-401. https://doi.org/10.1093/petrology/32.2.365
      [7] Brooks, C.K., Tegner, C., Stein, H., et al., 2004. Re-Os and 40Ar/39Ar Ages of Porphyry Molybdenum Deposits in the East Greenland Volcanic-Rifted Margin. Economic Geology, 99(6): 1215-1222. https://doi.org/10.2113/gsecongeo.99.6.1215
      [8] Cai, J.X., Wu, C.J., Xu, D.R., et al., 2017. Structural Analysis of the Baolun Gold Deposit, Hainan Island, South China: Implications for Metallogeny. Ore Geology Reviews, 89: 253-269. https://doi.org/10.1016/j.oregeorev.2017.06.005
      [9] Cao, C., Shen, P., 2018.Advances and Problems in Study of Porphyry Molybdenum Deposits.Geological Review, 64(2):477-497(in Chinese with English abstract).
      [10] Castillo, P.R., Janney, P.E., Solidum, R.U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. https://doi.org/10.1007/s004100050467
      [11] Chaussidon, M., Lorand, J.P., 1990. Sulphur Isotope Composition of Orogenic Spinel Lherzolite Massifs from Ariege (North-Eastern Pyrenees, France): An Ion Microprobe Study. Geochimica et Cosmochimica Acta, 54(10): 2835-2846. https://doi.org/10.1016/0016-7037(90)90018-g
      [12] Chen, L., Zhao, Z.F., Zheng, Y.F., 2014. Origin of Andesitic Rocks: Geochemical Constraints from Mesozoic Volcanics in the Luzong Basin, South China. Lithos, 190-191(2): 220-239. https://doi.org/10.1016/j.lithos.2013.12.011
      [13] Chen, M.L., Lv, Z.Y., Ma, C.Q., et al., 2015. Re-Os Isotopic Dating and Geological Implications of Shimenshan Mo Polymetallic Deposit in Hainan Island. Mineral Resources and Geology, 61(4):546-551(in Chinese with English abstract).
      [14] Chen, Y.J., Pirajno, F., Li, N., et al., 2017. Molybdenum Deposits in China. Ore Geology Reviews, 81: 401-404. https://doi.org/10.1016/j.oregeorev.2016.11.002
      [15] Chung, S.L., Liu, D. Y., Ji, J.Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 31(11): 1021-1024. https://doi.org/10.1130/g19796.1
      [16] Condie, K.C., 2005. TTGs and Adakites: Are they Both Slab Melts?. Lithos, 80(1-4): 33-44. https://doi.org/10.1016/j.lithos.2003.11.001
      [17] Defant, M.J., Drummond, M.S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0
      [18] Defant, M.J., Kepezhinskas, P., Defant, M.J., et al., 2002. Adakites:SomeVariations on a Theme. Acta Petrologica Sinica, 18(2):129-142.
      [19] DePaolo, D.J., Wasserburg, G.J., 1979. Petrogenetic Mixing Models and Nd-Sr Isotopic Patterns. Geochimica et Cosmochimica Acta, 43(4): 615-627. https://doi.org/10.1016/0016-7037(79)90169-8
      [20] Ferry, J.M., Watson, E.B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0
      [21] Fu, W.W., Xu, D.R., Fu, Y.R., et al. 2013. Molybdenite Re-Os Isotopic Dating Of Hongmenling Mo-W Deposit in Hainan Province and Its Geological Implications. Journal of East China Institute of Technology(Natural Science), 36(2):135-142(in Chinese with English abstract).
      [22] Fu, W.W., Xu, D.R., Wu, C.J., et al. 2014. LA-ICP-MS Zircon U-Pb Dating of Syenogranites Hosting Gaotongling Mo Deposit in Hainan Province:Implications for Metallogenesis. Mineral Deposits, 33(2):419-427(in Chinese with English abstract).
      [23] Gao, S., Ducea, M.N., Jin, Z.M., et al., 1998.Lower Crustal Delamination and Evolutionof Continental Crust.Geological Journal of China Universities, 4(3):241-249(in Chinese with English abstract).
      [24] Gao, J., Klemd, R., Long, L. L., et al., 2009. Adakitic Signature Formed by Fractional Crystallization: An Interpretation for the Neo-Proterozoic Meta-Plagiogranites of the NE Jiangxi Ophiolitic Mélange Belt, South China. Lithos, 110(1-4): 277-293. https://doi.org/10.1016/j.lithos.2009.01.009
      [25] Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162
      [26] Guo, F., Nakamuru, E., Fan, W., et al., 2007. Generation of Palaeocene Adakitic Andesites by Magma Mixing; Yanji Area, NE China. Journal of Petrology, 48(4): 661-692. https://doi.org/10.1093/petrology/egl077
      [27] Harrison, T.M., Watson, E.B., Aikman, A.B., 2007. Temperature Spectra of Zircon Crystallization in Plutonic Rocks. Geology, 35(7): 635-638. https://doi.org/10.1130/g23505a.1
      [28] Hou, Z.Q., Gao, Y.F., Qu, X.M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155. https://doi.org/10.1016/s0012-821x(04)00007-x
      [29] Hou, Z.Q., Mo, X.X., Gao, Y.F., et al., 2003.Adakite, a Possible Host Rock for Porphyry Copper Deposits:Case Studies of Porphyry Copper Belts in Tibetan Plateau and in Northern Chile.Mineral Deposits, 22(1):1-12(in Chinese with English abstract).
      [30] Hou, Z.Q., Pan, X.F., Yang, Z.M., et al., 2007.Porphyry Cu-(Mo-Au) Deposits no Related to Oceanic-Slab Subduction:Examples from Chinese Porphyry Deposits in Continental Settings.Geoscience, 21(2):332-351(in Chinese with English abstract).
      [31] Hsü, K.J., Li, J. L., Chen, H. H., et al., 1990. Tectonics of South China: Key to Understanding West Pacific Geology. Tectonophysics, 183(1-4): 9-39. https://doi.org/10.1016/0040-1951(90)90186-c
      [32] Hu, J., Xu, D.M., Zhang, K., et al., 2017. LA-ICP-MS Zircon U-Pb and Molybdenite Re-Os Dating of Xincun Mo Ore Deposit in Hainan Province and Its Geological Significance. Mineral Deposits, 36(2):303-316(in Chinese with English abstract).
      [33] Huang, F., Wang, D.H., Wang, C.H., et al., 2014.Resources Characteristics of Molybdenum Deposits and Their Regional Metallogeny in China.Acta Geologica Sinica, 88(12):2296-2314(in Chinese with English abstract).
      [34] Jacobsen, S.B., Wasserburg, G.J., 1980. Sm-Nd Isotopic Evolution of Chondrites. Earth and Planetary Science Letters, 50(1): 139-155. https://doi.org/10.1016/0012-821X(80)90125-9
      [35] Jia, X.H., Wang, J.Q., Tang, G.J., et al., 2010.Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of the Late Early Cretaceous Adakitic Intrusive Rocks in the Tunchang Area, Hainan Province.Geochimica, 39(6):497-519(in Chinese with English abstract).
      [36] Kay, R.W., Kay, S.M., 1993. Delamination and Delamination Magmatism. Tectonophysics, 219(1-3): 177-189. https://doi.org/10.1016/0040-1951(93)90295-u
      [37] König, S., Schuth, S., Münker, C., et al., 2007. The Role of Slab Melting in the Petrogenesis of High-Mg Andesites: Evidence from Simbo Volcano, Solomon Islands. Contributions to Mineralogy and Petrology, 153(1): 85-103. https://doi.org/10.1007/s00410-006-0136-x
      [38] Li, J.W., Zhao, X.F., Zhou, M.F., et al., 2008. Origin of the Tongshankou Porphyry-Skarn Cu-Mo Deposit, Eastern Yangtze Craton, Eastern China: Geochronological, Geochemical, and Sr-Nd-Hf Isotopic Constraints. Mineralium Deposita, 43(3): 315-336. https://doi.org/10.1007/s00126-007-0161-3
      [39] Li, N., Ulrich, T., Chen, Y.J., et al., 2012. Fluid Evolution of the Yuchiling Porphyry Mo Deposit, East Qinling, China. Ore Geology Reviews, 48: 442-459. https://doi.org/10.1016/j.oregeorev.2012.06.002
      [40] Li, S.X., Chen, M.L., Yang, D.S., et al., 2014. The Molybdenite Re-Os Age and Analysis of Geodynamic Background in Hainan Island. Geology and Mineral Resources of South China, 30(3):272-279(in Chinese with English abstract).
      [41] Li, X.H., 1997. Geochemistry of the Longsheng Ophiolite from the Southern Margin of Yangtze Craton, SE China. Geochemical Journal, 31(5): 323-337. https://doi.org/10.2343/geochemj.31.323
      [42] Li, X.H., Zhou, H. W., Chung, S.L., et al., 2002. Geochemical and Sm-Nd Isotopic Characteristics of Metabasites from Central Hainan Island, South China and Their Tectonic Significance.The Island Arc, 11(3): 193-205. https://doi.org/10.1046/j.1440-1738.2002.00365.x
      [43] Li, X.Y., Chi, G.X., Zhou, Y.Z., et al., 2017. Oxygen Fugacity of Yanshanian Granites in South China and Implications for Metallogeny. Ore Geology Reviews, 88: 690-701. https://doi.org/10.1016/j.oregeorev.2017.02.002
      [44] Li, Z.X., Li, X.H., 2007. Formation of the 1300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/g23193a.1
      [45] Li, Y., Ling, M.X., Ding, X., et al., 2009.Adakites or Adakitic Rocks and Associated Metallogenesis in Eastern China.Geotectonica et Metallogenia, 33(3):448-464(in Chinese with English abstract).
      [46] Liang, H.Y., Campbell, I.H., Allen, C., et al., 2006. Zircon Ce4+/Ce3+ Ratios and Ages for Yulong Ore-Bearing Porphyries in Eastern Tibet. Mineralium Deposita, 41(2): 152-159. https://doi.org/10.1007/s00126-005-0047-1
      [47] Liang, X.R., Wei, G.J., Li, X.H., et al., 2003. Precise Measurement of 143Nd/144Nd and Sm/Nd Ratios Using Multiple-Collectors Inductively Coupled Plasma-Mass Spectrometer (MC-ICPMS). Geochimica, 32(1):91-96(in Chinese with English abstract).
      [48] Liao, X.J., Wang, P.G., Qin, H.C., et al., 2008.Geology, Geochemistry and Ore-Forming Age of the Gaotongling Molybdenum Deposit, Tunchang Area, Hainan, China.Geological Bulletin of China, 27(4):560-570(in Chinese with English abstract).
      [49] Ludington, S., Plumlee, G.S., 2009. Climax-Type Porphyry Molybdenum Deposits. US Geological Survey, Virginia.
      [50] Lugmair, G.W., Marti, K., 1978. Lunar Initial 143Nd/144Nd: Differential Evolution of the Lunar Crust and Mantle. Earth and Planetary Science Letters, 39(3): 349-357. https://doi.org/10.1016/0012-821x(78)90021-3
      [51] Ma, D.Q., Huang, X.D., Chen, Z.P., et al., 1997. New Advanced in the Study of the Baoban Group in Hainan Province. Regional Geology of China, 16(2):130-136(in Chinese with English abstract).
      [52] Macpherson, C.G., Dreher, S.T., Thirlwall, M.F., 2006. Adakites without Slab Melting: High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3-4): 581-593. https://doi.org/10.1016/j.epsl.2005.12.034
      [53] Mao, J.W., Pirajno, F., Cook, N., 2011. Mesozoic Metallogeny in East China and Corresponding Geodynamic Settings-An Introduction to the Special Issue. Ore Geology Reviews, 43(1): 1-7. https://doi.org/10.1016/j.oregeorev.2011.09.003
      [54] Mao, J.W., Xie, G.Q., Li, X.F., et al., 2004.Mesozoic Large Scale Mineralization and Multiple Lithospheric Extension in South China.Earth Science Frontiers, 11(1):45-55(in Chinese with English abstract).
      [55] Martin, H., 1993. The Mechanisms of Petrogenesis of the Archaean Continental Crust-Comparison with Modern Processes. Lithos, 30(3-4): 373-388. https://doi.org/10.1016/0024-4937(93)90046-f
      [56] Metcalfe, I., 1996. Gondwanaland Dispersion, Asian Accretion and Evolution of Eastern Tethys.Australian Journal of Earth Sciences, 43(6): 605-623. https://doi.org/10.1080/08120099608728282
      [57] Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33. https://doi.org/10.1016/j.jseaes.2012.12.020
      [58] Middlemost, E.A.K., 1985. Magmas and Magmatic Rocks. Longman, London.
      [59] Miller, C.F., McDowell, S.M., Mapes, R.W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6): 529. https://doi.org/10.1130/0091-7613(2003)031<0529: hacgio>2.0.co; 2
      [60] Mungall, J.E., 2002. Roasting the Mantle: Slab Melting and the Genesis of Major Au and Au-Rich Cu Deposits. Geology, 30(10): 915-918. <0915: rtmsma>2.0.co;2
      [61] Mutschler, F.E., Wright, E.G., Ludington, S., et al., 1981. Granite Molybdenite Systems. Economic Geology, 76(4): 874-897. https://doi.org/10.2113/gsecongeo.76.4.874
      [62] Ohmoto, H., 1986. Stable Isotope Geochemistry of Ore Deposits. Reviews in Mineralogy & Geochemistry, 16(6):491-559.
      [63] Pearce, J.A., Peate, D.W., 1995. Tectonic Implications of the Composition of Volcanic ARC Magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343
      [64] Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
      [65] Qin, K.Z., Li, G.M., Zhao, J.X., et al., 2008.Discovery of Sharang Large-Scale Porphyry Molybdenum Deposit, the First Single Mo Deposit in Tibet and Its Significance.Geology in China, 35(6):1101-1112(in Chinese with English abstract).
      [66] Qu, X. M., Hou, Z.Q., Li, Y.G., 2004. Melt Components Derived from a Subducted Slab in Late Orogenic Ore-Bearing Porphyries in the Gangdese Copper Belt, Southern Tibetan Plateau. Lithos, 74(3-4): 131-148. https://doi.org/10.1016/j.lithos.2004.01.003
      [67] Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/s0009-2541(99)00106-0
      [68] Rapp, R.P., Watson, E.B., Miller, C.F., 1991. Partial Melting of Amphibolite/Eclogite and the Origin of Archean Trondhjemites and Tonalites. Precambrian Research, 51(1-4): 1-25. https://doi.org/10.1016/0301-9268(91)90092-o
      [69] Rushmer, T., 1991. Partial Melting of Two Amphibolites: Contrasting Experimental Results under Fluid-Absent Conditions. Contributions to Mineralogy and Petrology, 107(1): 41-59. https://doi.org/10.1007/bf00311184
      [70] Schiano, P., Monzier, M., Eissen, J.P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160(2): 297-312. https://doi.org/10.1007/s00410-009-0478-2
      [71] Sen, C., Dunn, T., 1994. Dehydration Melting of a Basaltic Composition Amphibolite at 1.5 and 2.0 GPa: Implications for the Origin of Adakites. Contributions to Mineralogy and Petrology, 117(4): 394-409. https://doi.org/10.1007/bf00307273
      [72] Shan, H.Z., 1990.Study on the Gold-Bearing Stratigraphic Age in Baoban Region, Hainan Province.Acta Scifntiarum Naturalium Universitatis Sunyaatseni, 29(2):71-77(in Chinese with English abstract).
      [73] Shen, P., Hattori, K., Pan, H. D., et al., 2015. Oxidation Condition and Metal Fertility of Granitic Magmas: Zircon Trace-Element Data from Porphyry Cu Deposits in the Central Asian Orogenic Belt. Economic Geology, 110(7): 1861-1878. https://doi.org/10.2113/econgeo.110.7.1861
      [74] Shinohara, H., Kazahaya, K., Lowenstern, J.B., 1995. Volatile Transport in a Convecting Magma Column: Implications for Porphyry Mo Mineralization. Geology, 23(12): 1091. https://doi.org/10.1130/0091-7613(1995)023<1091: vtiacm>2.3.co; 2
      [75] Simon, A.C., Ripley, E.M., 2011. The Role of Magmatic Sulfur in the Formation of Ore Deposits. Reviews in Mineralogy and Geochemistry, 73(1): 513-578. https://doi.org/10.2138/rmg.2011.73.16
      [76] Sinclair, W.D., 2007. Porphyry Deposits. In:Goodfellow, W.D., ed., Mineral Deposits of Canada:A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Mineral Deposits Division, Special Publication, 5:223-243.
      [77] Stacey, J.S., Kramers, J.D., 1975. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth and Planetary Science Letters, 26(2): 207-221. https://doi.org/10.1016/0012-821x(75)90088-6
      [78] Steiger, R.H., J?ger, E., 1977. Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo- and Cosmochronology. Earth and Planetary Science Letters, 36(3): 359-362. https://doi.org/10.1016/0012-821x(77)90060-7
      [79] Streck, M.J., Leeman, W.P., Chesley, J., 2007. High-Magnesian Andesite from Mount Shasta: A Product of Magma Mixing and Contamination, not a Primitive Mantle Melt. Geology, 35(4): 351-354. https://doi.org/10.1130/g23286a.1
      [80] Sun, S.S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [81] Sun, W.D., Arculus, R.J., Kamenetsky, V.S., et al., 2004. Release of Gold-Bearing Fluids in Convergent Margin Magmas Prompted by Magnetite Crystallization. Nature, 431(7011): 975-978. https://doi.org/10.1038/nature02972
      [82] Sun, W.D., Huang, R.F., Li, H., et al., 2015. Porphyry Deposits and Oxidized Magmas. Ore Geology Reviews, 65: 97-131. https://doi.org/10.1016/j.oregeorev.2014.09.004
      [83] Sun, Y., Liu, J.M., Zeng, Q.D., et al., 2012.An Approach to the Metallogenic Mechanism of Porphyry Copper (Molybdenum) Deposits and Porphyry Molybdenum (Copper) Deposits:Influence of Evolving Processes of Ore-Forming Fluids and Tectonic Settings.Earth Science Frontiers, 19(6):179-193(in Chinese with English abstract).
      [84] Tang, L.M., Chen, H.L., Dong, C.W., et al., 2010.Triassic Neutral and Basic Rocks in Hainan Island, Geochemistry and Their Geological Signinficance.Chinese Journal of Geology, 45(4):1139-1155(in Chinese with English abstract).
      [85] Thompson, J.F.H., Sillitoe, R.H., Baker, T., et al., 1999. Intrusion-Related Gold Deposits Associated with Tungsten-Tin Provinces. Mineralium Deposita, 34(4): 323-334. https://doi.org/10.1007/s001260050207
      [86] Wang, G.G., Ni, P., Zhao, C., et al., 2017a. A Combined Fluid Inclusion and Isotopic Geochemistry Study of the Zhilingtou Mo Deposit, South China: Implications for Ore Genesis and Metallogenic Setting. Ore Geology Reviews, 81: 884-897 http://dx.doi.org/10.1016/j.oregeorev.2015.11.023
      [87] Wang, G. R., Wu, G., Xu, L. Q., et al., 2017b. Molybdenite Re-Os Age, H-O-C-S-Pb Isotopes, and Fluid Inclusion Study of the Caosiyao Porphyry Mo Deposit in Inner Mongolia, China. Ore Geology Reviews, 81: 728-744. https://doi.org/10.1016/j.oregeorev.2016.07.008
      [88] Wang, G.G., Ni, P., Yu, W., et al., 2014. Petrogenesis of Early Cretaceous Post-Collisional Granitoids at Shapinggou, Dabie Orogen: Implications for Crustal Architecture and Porphyry Mo Mineralization. Lithos, 184-187: 393-415. https://doi.org/10.1016/j.lithos.2013.11.009
      [89] Wang, Q., Li, X.H., Jia, X.H., et al., 2012. Late Early Cretaceous Adakitic Granitoids and Associated Magnesian and Potassium-Rich Mafic Enclaves and Dikes in the Tunchang-Fengmu Area, Hainan Province (South China): Partial Melting of Lower Crust and Mantle, and Magma Hybridization. Chemical Geology, 328: 222-243. https://doi.org/10.1016/j.chemgeo.2012.04.029
      [90] Wang, Q., McDermott, F., Xu, J.F., et al., 2005. Cenozoic K-Rich Adakitic Volcanic Rocks in the Hohxil Area, Northern Tibet: Lower-Crustal Melting in an Intracontinental Setting. Geology, 33(6): 465. https://doi.org/10.1130/g21522.1
      [91] Wang, Q., Wyman, D.A., Xu, J.F., et al., 2007. Partial Melting of Thickened or Delaminated Lower Crust in the Middle of Eastern China: Implications for Cu-Au Mineralization.The Journal of Geology, 115(2): 149-161. https://doi.org/10.1086/510643
      [92] Wang, Q., Xu, J.F., Jian, P., et al., 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119-144. https://doi.org/10.1093/petrology/egi070
      [93] Wang, G.J., Liu, J., Cao, Y.L., et al., 2010.Metallogenic Characteristics of Luokuidong Porphyry Molybdenum Deposit in the Baoting County, Hainan Province.Geotechnical Engineering World, 1(5):453-457(in Chinese with English abstract).
      [94] Wang, Q., Xu, J.F., Zhao, Z.H., et al., 2001a.The Summary and Comment on Research on a New Kind of Igneous Rock-Adakite.Advance in Earth Sciences, 16(2):201-208(in Chinese with English abstract).
      [95] Wang, Q., Zhao, Z.H., Xiong, X.L., et al., 2001b.Melting of the Underplated Basaltic Lower Crust:Evidence from the Shaxi Adakitic Sodic Quartz Diorite-Porphyrites, Anhui Province, China.Geochimica, 30(4):353-362(in Chinese with English abstract).
      [96] Wang, Q., Zhao, Z.H., Xiong, X.L., et al., 2002.Ascertainment of the Shaoxing Enping Alkali Rich Intrusive Rock Zone and Preliminary Discussion on Its Geodynamic Implications.Geochimica, 31(5):433-442(in Chinese with English abstract).
      [97] Wang, Y., Zhang, Q., Qian, Q., et al., 2000.Adakite:Geochemical Characteristics and Tectonic Significances.Scientia Geologica Sinica, 35(2):251-256(in Chinese with English abstract).
      [98] Wang, Y.W., Wang, J.B., 2007.Magma-Mixing Genesis of Quartz Monzodiorite in the Weiya Xinjiang.Acta Petrologica Sinica, 23(4):733-746(in Chinese with English abstract).
      [99] Watson, E.B., Harrison, T.M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821x(83)90211-x
      [100] Watson, E. B., Harrison, T.M., 2005. Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth. Science, 308(5723): 841-844. https://doi.org/10.1126/science.1110873
      [101] Watson, E.B., Wark, D.A., Thomas, J.B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. https://doi.org/10.1007/s00410-006-0068-5
      [102] Wei, G.J., Liang, X.R., Li, X.H., et al., 2002. Precise Measurement of Sr Isotopic Composition of Liquid and Solid Base Using (LP)MC-ICPMS. Geochimica, 31(3):295-299(in Chinese with English abstract).
      [103] Westra, G., Keith, S.B., 1981. Classification and Genesis of Stockwork Molybdenum Deposits. Economic Geology, 76(4): 844-873. https://doi.org/10.2113/gsecongeo.77.5.1252
      [104] Whalen, J.B., Anderson, R.G., Struik, L.C., et al., 2001. Geochemistry and Nd Isotopes of the Fran?ois Lake Plutonic Suite, Endako Batholith: Host and Progenitor to the Endako Molybdenum Camp, Central British Columbia. Canadian Journal of Earth Sciences, 38(4): 603-618. https://doi.org/10.1139/e00-080
      [105] Winther, K.T., Newton, R.C., 1991. Experimental Melting Of Hydrous Low-K Tholeiite:Evidence on the Origin of Archean Cratons. Bulletin of the Geological Society of Denmark, 39(5):2932-2945.
      [106] Wolf, M.B., Wyllie, P.J., 1991. Dehydration-Melting of Solid Amphibolite at 10 kbar: Textural Development, Liquid Interconnectivity and Applications to the Segregation of Magmas. Mineralogy and Petrology, 44(3-4): 151-179. https://doi.org/10.1007/bf01166961
      [107] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6):1217-1238(in Chinese with English abstract).
      [108] Xi, A.H., Ge, Y.H., Liu, J., et al., 2018.Discovery of Adakite in Tieli Luming-Molybdenum Mine, Heilongjiang Province and Its Geological Implications.Acta Petrologica Sinica, 34(3):719-732(in Chinese with English abstract).
      [109] Xiong, X.L., 2006. Trace Element Evidence for Growth of Early Continental Crust by Melting of Rutile-Bearing Hydrous Eclogite. Geology, 34(11): 945-948. https://doi.org/10.1130/g22711a.1
      [110] Xu, D.R., Kusiak, M.A., Wang, Z.L., et al., 2015. Microstructural Observation and Chemical Dating on Monazite from the Shilu Group, Hainan Province of South China: Implications for Origin and Evolution of the Shilu Fe-Co-Cu Ore District. Lithos, 216-217: 158-177. https://doi.org/10.1016/j.lithos.2014.12.017
      [111] Xu, D.R., Wang, Z.L., Cai, J.X., et al., 2013. Geological Characteristics and Metallogenesis of the Shilu Fe-Ore Deposit in Hainan Province, South China. Ore Geology Reviews, 53: 318-342. https://doi.org/10.1016/j.oregeorev.2013.01.015
      [112] Xu, D.R., Wang, Z.L., Wu, C.J., et al., 2016. Mesozoic Gold Mineralization in Hainan Province of South China: Genetic Types, Geological Characteristics and Geodynamic Settings. Journal of Asian Earth Sciences, 137: 80-108. https://doi.org/10.1016/j.jseaes.2016.09.004
      [113] Xu, J.F., Shinjo, R., Defant, M.J., et al., 2002. Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust?. Geology, 30(12): 1111-1114. https://doi.org/10.1130/0091-7613(2002)030<1111: oomair>2.0.co; 2
      [114] Xu, J.F., Wu, J.B., Wang, Q., et al., 2014. Research Advances of Adakites and Adakitic Rocks in China. Bulletin of Mineralogy, Petrology and Geochemistry, 33(1):6-13(in Chinese with English abstract).
      [115] Xu, D.R., Liang, X.Q., Tang, H.F., et al., 2000.Geochemical Characteristics of Metamorphic Basic Volcanics from the Baoban Group, Western Hainan and Its Tectonic Implications.Geotectonica et Metallogenia, 24(4):303-313(in Chinese with English abstract).
      [116] Xu, D.R., Wu, C.J., Hu, G.C., et al., 2016. Late Mesozoic Molybdenum Mineralization on Hainan Island, South China: Geochemistry, Geochronology and Geodynamic Setting. Ore Geology Reviews, 72: 402-433. https://doi.org/10.1016/j.oregeorev.2015.07.023
      [117] Xu, W.G., Fan, H.R., Hu, F.F., et al., 2011.Ore-Forming Fluids of the Oxidized and Reduced Porphyry Deposits.Earth Science Frontiers, 18(5):103-120(in Chinese with English abstract).
      [118] Yang, Z., Jiang, H., Yang, M.G., et al., 2017.Zircon U-Pb and Molybdenite Re-Os Dating of the Gangjiang Porphyry Cu-Mo Deposit in Central Gangdese and Its Geological Significance.Earth Science, 42(3):339-356(in Chinese with English abstract).
      [119] Yang, Z.M., Hou, Z.Q., 2009.Porphyry Cu Deposits in Collisional Orogen Setting:A Preliminary Genetic Model.Mineral Deposits, 28(5):515-538(in Chinese with English abstract).
      [120] Yang, Z.M., Hou, Z.Q., Yang, Z.S., et al., 2008.Genesis of Porphyries and Tectonic Controls on the Narigongma Porphyry Mo(-Cu) Deposit, Southern Qinghai.Acta Petrologica Sinica, 24(3):489-502(in Chinese with English abstract).
      [121] Ye, T.Z., Wei, C.S., Wang, Y.W., et al., 2017.. Metallogenic Prognosis Theries and Methods in Exploration Areas(Pandect). Geological Publishing House, Beijing, 406(in Chinese).
      [122] Zartman, R.E., Doe, B.R., 1981. Plumbotectonics-The Model. Tectonophysics, 75(1-2): 135-162. https://doi.org/10.1016/0040-1951(81)90213-4
      [123] Zeng, Q.D., Liu, J.M., Qin, K.Z., et al., 2013. Types, Characteristics, and Time-Space Distribution of Molybdenum Deposits in China. International Geology Review, 55(11): 1311-1358. https://doi.org/10.1080/00206814.2013.774195
      [124] Zhang, H., Li, C. Y., Yang, X.Y., et al., 2014. Shapinggou: The Largest Climax-Type Porphyry Mo Deposit in China. International Geology Review, 56(3): 313-331. https://doi.org/10.1080/00206814.2013.855363
      [125] Zhang, Q., Qian, Q., Wang, E.Q., et al., 2001.An East China Plateau in Mid-Late Yanshanian Period:Implication from Adakites.Scientia Geologica Sinica, 36(2):248-255(in Chinese with English abstract).
      [126] Zhang, Q., Wang, Y., Liu, W., et al., 2002.Adakite:Its Characteristics and Implications.Regional Geology of China, 21(7):431-435(in Chinese with English abstract).
      [127] Zhao, Z.H., 2010.Trace Element Geochemistry of Accessory Minerals and Its Applications in Petrogenesis and Metallogenesis.Earth Science Frontiers, 17(1):267-286(in Chinese with English abstract).
      [128] Zheng, Y.Y., Ci, Q., Wu, S., et al., 2017.The Discovery and Significance of Rongga Porphyry Mo Deposit in the Bangong-Nujiang Metallogenic Belt, Tibet.Earth Science, 42(9):1441-1453(in Chinese with English abstract).
      [129] Zhou, T.C., Zeng, Q.D., Chu, S.X., et al., 2018. Magmatic Oxygen Fugacities of Porphyry Mo Deposits in the East Xing'an-Mongolian Orogenic Belt (NE China) with Metallogenic Implications. Journal of Asian Earth Sciences, 165: 145-159. https://doi.org/10.1016/j.jseaes.2018.04.004
      [130] Zhou, X.M., Li, W.X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326(3-4): 269-287. https://doi.org/10.1016/s0040-1951(00)00120-7
      [131] Zhou, X.M., Sun, T., Shen, W.Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.1007/s00254-006-0175-7
      [132] Zhou, Y., Liang, X. Q., Kr?ner, A., et al., 2015. Late Cretaceous Lithospheric Extension in SE China: Constraints from Volcanic Rocks in Hainan Island. Lithos, 232: 100-110.https://doi.org/10.1016/j.lithos.2015.06.028
      [133] Zhou, Y., Liang, X.Q., Liang, X.R., et al., 2015.Geochronology and Geochemistry of Cretaceous Volcanic Rocks from Liuluo Formation in Hainan Island and Their Tectonic Implications.Geotectonica et Metallogenia, 39(5):903-918(in Chinese with English abstract).
      [134] Zhu, Y.H., Yu, L.L, Yu, D.S., et al., 2017. LA-ICP-MS Zircon U-Pb Dating, Hf Isotopic Composition and Ce4+/Ce3+ Characteristics of Gaotongling Molybdenum Ore Deposit in Hainan Province and Their Implications for Metallogeny. Mineral Deposits, 36(1):185-199(in Chinese with English abstract).
      [135] Zhu, Y.H., Shan, Q., Wang, L.X., et al., 2018.Age of Host-Rocks and Mineralization from the Luokuidong Molybdenum Ore Deposit in Hainan Island:Implication for Deposit Genesis.Geochimica, 47(3):268-287(in Chinese with English abstract).
      [136] 包志伟, 赵振华, 熊小林, 等, 2000.广东恶鸡脑碱性正长岩的地球化学及其地球动力学意义.地球化学, 29(5):462-468.
      [137] 曹冲, 申萍, 2018.斑岩型钼矿床研究进展与问题.地质论评, 64(2):477-497.
      [138] 陈沐龙, 吕昭英, 马昌前, 等, 2015.海南岛石门山钼多金属矿床的Re-Os同位素定年及地质意义.矿产与地质, 61(4): 546-551.
      [139] 付王伟, 许德如, 傅杨荣, 等, 2013.海南省红门岭钼钨矿床辉钼矿Re-Os同位素定年及地质意义.东华理工大学学报(自然科学版), 36(2): 135-142.
      [140] 付王伟, 许德如, 吴传军, 等, 2014.海南省高通岭钼矿床赋矿岩体LA-ICP-MS锆石U-Pb定年及成矿意义.矿床地质, 33(2): 419-427.
      [141] 高山, Ducea, M.N., 金振民, 等, 1998.下地壳拆沉作用及大陆地壳演化.高校地质学报, 4(3): 241-249.
      [142] 侯增谦, 莫宣学, 高永丰, 等, 2003.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩——以西藏和智利斑岩铜矿为例.矿床地质, 22(1):1-12.
      [143] 侯增谦, 潘小菲, 杨志明, 等, 2007.初论大陆环境斑岩铜矿.现代地质, 21(2):332-351.
      [144] 胡军, 徐德明, 张鲲, 等, 2017.海南省新村钼矿床LA-ICP-MS锆石U-Pb和辉钼矿Re-Os年龄及其地质意义.矿床地质, 36(2): 303-316.
      [145] 黄凡, 王登红, 王成辉, 等, 2014.中国钼矿资源特征及其成矿规律概要.地质学报, 88(12):2296-2314.
      [146] 贾小辉, 王强, 唐功建, 等, 2010.海南屯昌早白垩世晚期埃达克质侵入岩的锆石U-Pb年代学、地球化学与岩石成因.地球化学, 39(6):497-519.
      [147] 李孙雄, 陈沐龙, 杨东生, 等, 2014.海南岛钼矿床Re-Os年龄及其成矿地球动力学背景探讨.华南地质与矿产, 30(3): 272-279.
      [148] 李印, 凌明星, 丁兴, 等, 2009.中国东部埃达克岩及成矿作用.大地构造与成矿学, 33(3):448-464.
      [149] 梁细荣, 韦刚健, 李献华, 等, 2003.利用MC-ICPMS精确测定143Nd/144Nd和Sm/Nd比值.地球化学, 32(1): 91-96.
      [150] 廖香俊, 王平安, 覃海灿, 等, 2008.海南屯昌地区高通岭钼矿床的地质、地球化学特征及成矿时代.地质通报, 27(4):560-570.
      [151] 马大铨, 黄香定, 陈哲培, 等, 1997.海南省抱板群研究的新进展.地质通报, 16(2): 130-136.
      [152] 毛景文, 谢桂青, 李晓峰, 等, 2004.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘, 11(1):45-55.
      [153] 秦克章, 李光明, 赵俊兴, 等, 2008.西藏首例独立钼矿——冈底斯沙让大型斑岩钼矿的发现及其意义.中国地质, 35(6):1101-1112.
      [154] 单惠珍, 1990.海南抱板地区金矿地层时代归属的研究.中山大学学报(自然科学版), 29(2):71-77.
      [155] 孙燕, 刘建明, 曾庆栋, 等, 2012.斑岩型铜(钼)矿床和斑岩型钼(铜)矿床的形成机制探讨:流体演化及构造背景的影响.地学前缘, 19(6):179-193.
      [156] 唐立梅, 陈汉林, 董传万, 等, 2010.海南岛三叠纪中基性岩的年代学、地球化学及其她质竟义.地质科学, 45(4):1139-1155.
      [157] 王国君, 刘君, 曹玉莲, 等, 2010.海南罗葵洞斑岩型钼矿地质特征及矿床成因.矿产勘查, 1(5):453-457.
      [158] 王强, 许继锋, 赵振华, 等, 2001a.一种新的火成岩——埃达克岩的研究综述.地球科学进展, 16(2):201-208.
      [159] 王强, 赵振华, 熊小林, 等, 2001b.底侵玄武质下地壳的熔融:来自安徽沙溪adakite质富钠石英闪长玢岩的证据.地球化学, 30(4):353-362.
      [160] 王强, 赵振华, 熊小林, 等, 2002.华南绍兴-恩平富碱侵入岩带的厘定及其动力学意义初探.地球化学, 31(5):433-442.
      [161] 王焰, 张旗, 钱青, 等, 2000.埃达克岩(adakite)的地球化学特征及其构造意义.地质科学, 35(2):251-256.
      [162] 王玉往, 王京彬, 2007.新疆尾亚地区石英二长闪长岩的岩浆混合成因.岩石学报, 23(4):733-746.
      [163] 韦刚健, 梁细荣, 李献华, 等, 2002. (LP)MC-ICPMS方法精确测定液体和固体样品的Sr同位素组成.地球化学, 31(3): 295-299.
      [164] 吴福元, 李献华, 杨进辉, 等, 2007.花岗岩成因研究的若干问题.岩石学报, 23(6): 1217-1238.
      [165] 郗爱华, 葛玉辉, 刘珏, 等, 2018.黑龙江铁力鹿鸣斑岩型钼矿床埃达克岩的发现及其地质意义.岩石学报, 34(3):719-732.
      [166] 徐文刚, 范宏瑞, 胡芳芳, 等, 2011.氧化性和还原性斑岩型矿床流体成矿特征分析.地学前缘, 18(5):103-120.
      [167] 许德如, 梁新权, 唐红峰, 等, 2000.琼西抱板群变质基性火山岩的地球化学特征及其大地构造意义.大地构造与成矿学, 24(4):303-313.
      [168] 许继峰, 邬建斌, 王强, 等, 2014.埃达克岩与埃达克质岩在中国的研究进展.矿物岩石地球化学通报, 33(1):6-13.
      [169] 杨震, 姜华, 杨明国, 等, 2017.冈底斯中段岗讲斑岩铜钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义.地球科学, 42(3):339-356.
      [170] 杨志明, 侯增谦, 2009.初论碰撞造山环境斑岩铜矿成矿模型.矿床地质, 28(5):515-538.
      [171] 杨志明, 侯增谦, 杨竹森, 等, 2008.青海纳日贡玛斑岩钼(铜)矿床:岩石成因及构造控制.岩石学报, 24(3):489-502.
      [172] 叶天竺, 韦昌山, 王玉往, 等, 2017.勘查区找矿预测理论与方法(各论).地质出版社, 北京.
      [173] 张旗, 钱青, 王二七, 等, 2001.燕山中晚期的中国东部高原:埃达克岩的启示.地质科学, 36(2):248-255.
      [174] 张旗, 王焰, 刘伟, 等, 2002.埃达克岩的特征及其意义.地质通报, 21(7):431-435.
      [175] 赵振华, 2010.副矿物微量元素地球化学特征在成岩成矿作用研究中的应用.地学前缘, 17(1):267-286.
      [176] 郑有业, 次琼, 吴松, 等, 2017.西藏班公湖-怒江成矿带荣嘎斑岩型钼矿床的发现及意义.地球科学, 42(9):1441-1453.
      [177] 周云, 梁新权, 梁细荣, 等, 2015.海南白垩纪六罗村组火山岩的年代学、地球化学特征及其大地构造意义.大地构造与成矿学, 39(5):903-918.
      [178] 朱昱桦, 于亮亮, 于得水, 等, 2017.海南岛高通岭钼矿床赋矿岩体LA-ICP-MS锆石U-Pb年龄、Hf同位素和Ce4+/Ce3+特征.矿床地质, 36(1): 185-199.
      [179] 朱昱桦, 单强, 王历星, 等, 2018.海南岛罗葵洞钼矿床成岩成矿时代及矿床成因探讨.地球化学, 47(3):268-287.
    • 期刊类型引用(2)

      1. 朱昱桦,许德如,张嘉玮,何妙玲,陈根文,单强,王智琳. 海南岛石门山钼多金属矿床年代学、源区特征及其岩浆氧逸度对成矿作用的启示. 大地构造与成矿学. 2023(02): 376-395 . 百度学术
      2. 李守奎,刘学龙,卢映祥,张世涛,刘思晗,陈建航,李振焕,余海军,张传昱. 锆石氧逸度对义敦岛弧南段中甸矿集区斑岩型矿床差异性成矿控制因素的指示. 地球科学. 2022(04): 1435-1458 . 本站查看

      其他类型引用(3)

    • 加载中
    图(10) / 表(5)
    计量
    • 文章访问数:  1684
    • HTML全文浏览量:  675
    • PDF下载量:  55
    • 被引次数: 5
    出版历程
    • 收稿日期:  2019-04-29
    • 刊出日期:  2020-04-15

    目录

    /

    返回文章
    返回