• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    海南岛罗葵洞斑岩钼矿床地球化学特征及成矿物质来源

    朱昱桦 陈根文 单强 许德如 王历星 何妙玲 兰永文 孙俊

    朱昱桦, 陈根文, 单强, 许德如, 王历星, 何妙玲, 兰永文, 孙俊, 2020. 海南岛罗葵洞斑岩钼矿床地球化学特征及成矿物质来源. 地球科学, 45(4): 1187-1212. doi: 10.3799/dqkx.2019.101
    引用本文: 朱昱桦, 陈根文, 单强, 许德如, 王历星, 何妙玲, 兰永文, 孙俊, 2020. 海南岛罗葵洞斑岩钼矿床地球化学特征及成矿物质来源. 地球科学, 45(4): 1187-1212. doi: 10.3799/dqkx.2019.101
    Zhu Yuhua, Chen Genwen, Shan Qiang, Xu Deru, Wang Lixing, He Miaoling, Lan Yongwen, Sun Jun, 2020. Geochemical Characteristics and Ore-Forming Materials of Luokuidong Molybdenum Ore Deposit in Hainan Island. Earth Science, 45(4): 1187-1212. doi: 10.3799/dqkx.2019.101
    Citation: Zhu Yuhua, Chen Genwen, Shan Qiang, Xu Deru, Wang Lixing, He Miaoling, Lan Yongwen, Sun Jun, 2020. Geochemical Characteristics and Ore-Forming Materials of Luokuidong Molybdenum Ore Deposit in Hainan Island. Earth Science, 45(4): 1187-1212. doi: 10.3799/dqkx.2019.101

    海南岛罗葵洞斑岩钼矿床地球化学特征及成矿物质来源

    doi: 10.3799/dqkx.2019.101
    基金项目: 

    国家重点研发计划深地资源勘查开采重点专项 2016YFC0600401

    国土资源部全国矿产资源潜力评价项目 1212010881625

    详细信息
      作者简介:

      朱昱桦(1989-), 男, 工程师, 矿物学、岩石学、矿床学专业

      通讯作者:

      许德如(1966-), 男, E-mail:xuderu@gig.ac.cn

    • 中图分类号: P611

    Geochemical Characteristics and Ore-Forming Materials of Luokuidong Molybdenum Ore Deposit in Hainan Island

    • 摘要: 为了正确理解海南岛罗葵洞钼矿床赋矿斑岩体的岩石学成因与成矿之间的关系以及成矿物质来源,对矿床中含矿斑状花岗岩进行了全岩主量、微量、Sr-Nd-Pb同位素和金属硫化物S-Pb同位素等测试分析,结果表明:(1)罗葵洞斑状花岗岩具有高SiO2(70.94%~72.59%)、Al2O3(15.11%~16.26%)和低MgO(0.56%~0.68%),高Sr(421×10-6~564×10-6)、低Y(7.50×10-6~14.57×10-6)和Yb(0.76×10-6~1.30×10-6)含量,较弱的负Eu异常(平均0.75),亏损HFSE,富集LREE和LILE,较高的La/Yb(26.1~46.4)与Sr/Y(36.9~67.1)比值特征,表现出与埃达克岩相似的地球化学特征;(2)斑状花岗岩的(87Sr/86Sr)i=0.708 38~0.708 44,(143Nd/144Nd)i=0.512 22~0.512 23,εNdt)=-5.6~-5.5,对应的TDM2模式年龄为1.35~1.36 Ga,表明其可能形成于底侵的增厚玄武质下地壳岩石(中元古代)的重熔;(3)全岩锆饱和温度(平均795±12℃(σ))和锆石Ti温度(平均690±21℃(σ))表明斑状花岗岩岩浆来源于在水近饱和条件下发生的部分熔融;(4)锆石Ce4+/Ce3+比值范围为174~621(平均383),表明其在形成时的岩浆-热液体系的氧逸度较高,有利于Mo等成矿元素在岩浆熔体中富集,成矿潜力较大;(5)金属硫化物δ34S(平均1.7‰)和Pb同位素特征指示成矿物质来源以下地壳为主,同时伴有少量地幔成分的参与;(6)对比年代学、矿物学、地球化学和形成环境等方面后,初步认为该矿床属于Endako型斑岩钼矿床.

       

    • 图  1  海南岛位置简图(a)和海南岛地层、构造及相关钼矿床位置地质简图(b)

      均据Xu et al.(2016)修改. 1.中生代-新生代地层;2.新生代玄武岩;3.白垩纪盆地;4.古生代地层;5.晚中元古-新元古代石碌群和上覆石灰顶组;6.古-中元古代抱板群;7.新太古代杂岩(?);8.晚中生代花岗质岩类;9.白垩纪火山岩;10.晚古生代-早古生代花岗质岩类;11.变基性岩和相关沉积岩;12.地质界线;13.钼(多金属)矿床(矿化点),包括①红门岭、②红岭、③报告村、④文且、⑤石门山、⑥新村、⑦罗葵洞、⑧龙门岭、⑨高通岭、⑩梅岭

      Fig.  1.  Location map of Hainan Island (a); geological sketch map showing major stratigraphic and magmatic units, structures and molybdenum (Mo)-related ore deposits or occurrences on Hainan Island (b)

      图  2  罗葵洞钼矿区及邻区地质简图

      朱昱桦等(2018)修改. 1.第四系含砂粘土、砂砾石;2.白垩系六罗村组中-酸性火山碎屑岩、火山岩类;3.白垩纪石英二长(斑)岩、石英正长岩;4.白垩纪斑状花岗岩(主);5.白垩纪花岗闪长岩;6.侏罗纪(白垩纪?)中-粗粒花岗岩;7.英安斑岩;8.安山玢岩;9.辉绿岩;10.含钼强硅蚀变带;11.含钼硅钾蚀变带;12.含钼硅化蚀变带;13.遥感环形影像;14.实测(F1)与推测(物探WF1/遥感YF1)断层;15.7’号剖面线;16.斑状花岗岩采样位置;17.矿石样采样位置;18.钻孔位置及编号

      Fig.  2.  Simplified geological map showing the Luokuidong mining district and its adjacent areas

      图  3  罗葵洞钼矿床矿区7’号线地质剖面图

      据辽宁省有色地质局勘查总院(2008)海南省保亭县罗葵洞矿区钼矿详查地质报告.1.第四系残坡积层;2.白垩系六罗村组中-酸性火山碎屑岩、火山岩类;3.白垩纪花岗质岩石;4.工业矿体(0.040%≤Mo≤0.170%,平均0.058%);5.低品位矿体(0.020%≤Mo < 0.040%,平均0.025%);6.矿化体;7.层序界线;8.钻孔位置及编号

      Fig.  3.  Geological section map of the No. 7' prospecting line in the Luokuidong molybdenum ore deposit

      图  4  斑状花岗岩标本截面(a);斑状花岗岩正交偏光显微镜下特征(b~c);斑状花岗岩上见少量浸染状辉钼矿(d);石英-辉钼矿阶段中的金属硫化物(e~f)

      Bt.黑云母;Ccp.黄铜矿;Chl.绿泥石;Kfs.钾长石;Mo.辉钼矿;Pl.斜长石;Py.黄铁矿;Qz.石英

      Fig.  4.  The section of porphyritic granite (a); photographs from orthogonal polarizing microscope of porphyritic granite (b-c); A small amount of molybdenite in porphyritic granite (d); Metal sulfide from quartz-molybdenite stage (e-f)

      图  5  岩浆岩TAS图解(a);硅-钾图(b);球粒陨石标准化稀土元素分布模式(c);原始地幔标准化微量元素蛛网图(d);Sr/Y-Y图解(e);(La/Yb)N-YbN图解(f)

      图a据Martin(1993);图b据Peccerillo and Taylor(1976)Middlemost(1985);图c据Sun et al.(1989),其中海南屯昌埃达克质岩贾小辉等(2010)Wang et al.(2012),六罗村组流纹岩周云等(2015)Zhou et al.(2015);图d据Sun et al.(1989);图e据Defant and Drummond(1990)Defant et al.(2002);图f据Martin(1993).1.橄榄辉长岩;2a.碱性辉长岩;2b.亚碱性辉长岩;3.辉长闪长岩;4.闪长岩;5.花岗闪长岩;6.花岗岩;7.硅英岩;8.二长辉长岩;9.二长闪长岩;10.二长岩;11.石英二长岩;12.正长岩;13.副长石辉长岩;14.副长石二长闪长岩;15.副长石二长正长岩;16.副长石正长岩;17.副长石深成岩;18.霓方钠岩/磷霞岩/粗白榴岩;Ir分界线上方为碱性系列,下方为亚碱性系列岩石

      Fig.  5.  Diagrams of TAS (a); SiO2-K2O (b); the chondrite-normalized rare earth elements (REE) (c); The primitive mantle-normalized multi-element diagrams(d); Sr/Y vs. Y (f) and (La/Yb)N vs.YbN(e)

      图  6  La-La/Yb、Th-Rb、Rb/V-Rb和Rb/V-1/V图解

      Schiano et al.(2010)

      Fig.  6.  La-La/Yb, Th-Rb, Rb/V-Rb and Rb/V-1/V diagrams

      图  7  罗葵洞钼矿区斑状花岗岩εNd(t)-(87Sr/86Sr)i图解(a);SiO2-MgO图解(b)

      图a中华南下地壳数据周云等(2015)及其参考文献,六罗村组火山岩数据周云等(2015)Zhou et al.(2015),屯昌早白垩世埃达克质侵入岩及镁铁质包体数据贾小辉等(2010)Wang et al. (2012)及其中的参考文献.图b据Wang et al.(2006, 2007)侯增谦等(2007)及其中的参考文献

      Fig.  7.  εNd(t)-(87Sr/86Sr)i diagram for the Luokuidong magmatic rocks (a) and MgO vs. SiO2 diagram for the Luokuidong(b)

      图  8  罗葵洞钼矿区Pb同位素图解

      Zartman and Doe(1981). UC.上地壳;OR.造山带;M.地幔;LC.下地壳

      Fig.  8.  Diagrams showing lead isotopic compositions of the Luokuidong

      图  9  构造背景示意图(a);成岩成矿过程示意图(b~c)

      图a据Xu et al.(2016)修改

      Fig.  9.  Tectonic setting(a) and rock formation and mineralization of Luokuidong(b-c)

      图  10  斑岩型钼矿床分类特征

      Fig.  10.  Characteristic of porphyry molybdenum deposit

      表  1  罗葵洞斑状花岗岩主量(%)、微量(10-6)元素测试结果

      Table  1.   Major (%) and trace elements (106) compositions from Luokuidong porphyritic granite

      样品号 16LK-21 16LK-22 16LK-23 16LK-24 16LK-25 16LK-26 16LK-27 17LK-01 17LK-02
      SiO2 72.41 71.94 71.50 72.07 72.59 71.66 70.94 72.16 72.34
      TiO2 0.29 0.33 0.33 0.27 0.30 0.32 0.33 0.30 0.31
      Al2O3 15.41 15.64 16.26 15.51 15.48 15.92 15.77 15.11 15.71
      MnO 0.04 0.05 0.05 0.04 0.05 0.06 0.04 0.05 0.05
      TFe2O3 2.01 2.23 1.79 1.83 2.25 1.99 2.73 1.97 1.80
      MgO 0.62 0.68 0.68 0.56 0.59 0.63 0.62 0.64 0.58
      CaO 0.84 1.44 1.53 1.32 1.05 1.47 1.68 1.97 1.17
      Na2O 3.23 3.20 3.36 2.94 2.65 3.45 3.44 3.69 2.72
      K2O 5.08 4.40 4.43 5.39 4.99 4.46 4.38 4.03 5.28
      P2O5 0.07 0.09 0.09 0.07 0.05 0.05 0.07 0.09 0.04
      Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
      LOI 1.41 1.60 1.62 1.25 1.73 1.27 1.19 0.56 1.43
      Alk 8.31 7.59 7.78 8.32 7.64 7.91 7.82 7.72 8.00
      δ 2.35 1.99 2.13 2.38 1.97 2.18 2.19 2.04 2.18
      A/CNK 1.25 1.24 1.24 1.19 1.33 1.21 1.17 1.08 1.27
      A/NK 1.42 1.56 1.57 1.45 1.58 1.51 1.51 1.45 1.54
      Mg# 0.34 0.34 0.39 0.34 0.31 0.35 0.28 0.35 0.35
      K2O/Na2O 1.58 1.38 1.32 1.83 1.88 1.29 1.27 1.09 1.94
      TZr 799 799 799 783 801 801 812 772 790
      Sc 4.04 3.44 3.42 3.72 3.98 4.16 4.56 4.26 3.51
      Ti 1 658 1 940 1 948 1 621 1 809 1 851 1 935 1 836 1 721
      V 19.1 20.2 19.0 17.9 20.4 21.3 26.1 24.2 19.0
      Cr 17.2 13.0 10.9 12.7 14.2 11.2 12.7 13.9 13.0
      Mn 308 365 318 302 328 417 321 393 345
      Co 1.32 3.12 2.11 3.00 1.43 2.05 2.53 1.41 1.46
      Ni 5.24 2.62 2.14 2.46 3.60 2.36 2.97 2.30 2.70
      Cu 84.9 61.9 44.6 99.4 66.5 52.0 13.5 56.0 92.8
      Zn 51.9 43.0 50.8 49.5 76.7 181.9 58.5 175.8 49.6
      Ga 19.0 20.3 20.7 19.6 19.9 20.4 20.8 20.5 20.0
      Ge 1.38 1.55 1.32 1.27 1.42 1.35 1.52 1.48 1.30
      Rb 199 183 182 207 208 202 162 189 196
      Sr 436 487 533 503 421 519 537 564 438
      Y 10.4 10.0 8.0 7.5 8.1 11.0 14.6 14.5 8.0
      Zr 153 156 157 135 147 165 194 133 136
      Nb 8.1 8.3 7.9 8.2 8.9 9.1 9.6 9.3 7.8
      Cs 3.45 3.34 3.40 3.05 3.03 3.62 2.59 3.34 3.39
      Ba 995 708 904 1127 742 805 873 686 946
      La 35.3 41.9 28.3 30.9 36.0 27.8 39.4 40.5 30.5
      Ce 62.9 73.0 52.3 55.5 66.5 51.8 69.4 72.7 60.9
      Pr 6.70 8.21 5.78 5.75 7.10 5.37 7.74 7.89 6.31
      Nd 22.5 27.8 20.5 19.4 24.4 18.5 25.9 26.8 21.8
      Sm 3.48 4.17 3.22 2.95 3.56 2.69 3.75 3.93 3.23
      Eu 0.76 0.92 0.78 0.70 0.74 0.61 0.86 0.82 0.71
      Gd 2.69 3.06 2.42 2.19 2.64 2.24 3.02 3.13 2.46
      Tb 0.34 0.37 0.29 0.28 0.32 0.29 0.38 0.42 0.30
      Dy 1.78 1.83 1.51 1.40 1.60 1.64 2.04 2.27 1.57
      Ho 0.35 0.34 0.28 0.27 0.30 0.35 0.43 0.46 0.30
      Er 0.96 0.91 0.75 0.72 0.80 1.01 1.15 1.26 0.82
      Tm 0.15 0.14 0.11 0.11 0.12 0.15 0.18 0.20 0.12
      Yb 1.01 0.90 0.78 0.76 0.81 1.07 1.12 1.30 0.82
      Lu 0.15 0.14 0.12 0.12 0.12 0.17 0.19 0.20 0.13
      Hf 4.73 4.50 4.36 4.30 4.19 4.75 5.58 3.95 4.04
      Ta 0.78 0.61 0.58 0.73 0.63 0.69 0.75 0.67 0.61
      Pb 13.7 12.9 13.0 15.0 15.3 12.5 14.0 13.2 14.9
      Th 16.3 14.0 12.9 15.0 14.5 14.2 15.1 17.1 9.1
      U 2.25 1.83 1.68 2.10 2.25 3.39 2.44 2.69 2.02
      ∑REE 139 164 117 121 145 114 156 162 130
      δEu 0.73 0.75 0.82 0.80 0.70 0.73 0.75 0.69 0.75
      (La/Yb)N 25.2 33.3 26.1 29.2 31.9 18.7 25.4 22.4 26.6
      La/Yb 35.1 46.4 36.4 40.7 44.4 26.0 35.4 31.2 37.1
      Sr/Y 42.1 48.5 66.6 67.1 52.1 47.2 36.9 39.0 54.7
      Th/Ta 20.9 23.0 22.4 20.5 23.3 20.4 20.3 25.7 14.9
      Th/Nb 2.0 1.7 1.6 1.8 1.6 1.6 1.6 1.8 1.2
      注:LOI.烧失量;碱度Alk=Na2O+K2O;里特曼指数δ=(Na2O+K2O)2/(SiO2-43)(ωB,%);A/CNK=Al2O3/(CaO+K2O+Na2O),分子数比值;A/NK=Al2O3/(K2O+Na2O),分子数比值;Mg#=Mg2+/(Mg2++Fe2+)的摩尔数比值;TZr为全岩锆饱和温度计.
      下载: 导出CSV

      表  2  罗葵洞斑状花岗岩Sr-Nd同位素组成

      Table  2.   Sr-Nd isotopic compositions of the Luokuidong porphyritic granite

      样品编号 Rb(10-6 Sr(10-6 87Rb/86Sr 87Sr/86Srs (87Sr/86Sr)i Sm(10-6 Nd(10-6 147Sm/144Nd 143Nd/144Nd (143Nd/144Nd)i εNd(0) εNd(t) TDM2(Ma)
      16LK-22 183 487 1.09 0.709 963 0.000 020 0.708 38 4.17 27.8 0.090 655 0.512 281 0.000 010 0.512 22 -6.97 -5.6 1 354
      16LK-23 182 533 0.99 0.709 855 0.000 016 0.708 43 3.22 20.5 0.094 797 0.512 282 0.000 011 0.512 22 -6.95 -5.6 1 357
      17LK-01 189 564 0.97 0.709 839 0.000 020 0.708 44 3.93 26.8 0.088 580 0.512 284 0.000 011 0.512 23 -6.91 -5.5 1 347
      下载: 导出CSV

      表  3  罗葵洞斑状花岗岩Pb同位素组成

      Table  3.   Pb isotopic compositions of the Luokuidong porphyritic granite

      样品
      编号
      U
      (10-6
      Th
      (10-6
      Pb
      (10-6
      206Pb/
      204Pb
      207Pb/
      204Pb
      208Pb/
      204Pb
      (206Pb/
      204Pb)i
      (207Pb/
      204Pb)i
      (208Pb/
      204Pb)i
      μ ω
      16LK-22 1.83 14.0 12.9 18.941 0.000 8 15.635 0.000 8 38.991 0.002 3 18.795 15.628 38.626 9.48 36.23
      16LK-23 1.68 12.9 13.0 18.894 0.000 9 15.635 0.000 9 38.940 0.002 7 18.762 15.629 38.606 9.49 36.28
      17LK-01 2.69 17.1 13.2 19.042 0.000 9 15.647 0.000 8 39.040 0.002 2 18.832 15.637 38.603 9.50 36.02
      注:μ=238U/204Pb,ω=232Th/204Pb.
      下载: 导出CSV

      表  4  罗葵洞金属硫化物S-Pb同位素组成

      Table  4.   S and Pb istopic compositions for Luokuidong metal sulfides

      矿物 δSV-CDT34(‰) 206Pb/204Pb 平均 207Pb/204Pb 平均 208Pb/204Pb 平均 μ 平均 平均 ω 平均 平均 Th/U
      辉钼矿 3.3 18.692(0.011) 18.635 15.660(0.009) 15.628 38.811(0.024) 38.674 9.55 9.50 9.50 37.06 36.52 36.47 3.76
      1.6 18.679(0.001) 15.621(0.001) 38.674(0.003) 9.48 36.23 3.70
      2.5 18.658(0.004) 15.685(0.004) 38.901(0.007) 9.61 37.84 3.81
      2.9 18.744(0.006) 15.645(0.006) 38.777(0.018) 9.52 36.52 3.71
      2.4 18.543(0.004) 15.577(0.003) 38.406(0.007) 9.41 35.47 3.65
      3.7 18.492(0.002) 15.578(0.002) 38.472(0.004) 9.41 36.01 3.70
      黄铁矿 2.1 18.654(0.002) 18.687 15.646(0.002) 15.632 38.809(0.004) 38.708 9.53 9.50 37.13 36.42 3.77
      1.6 18.714(0.002) 15.652(0.002) 38.768(0.005) 9.54 36.70 3.72
      2.2 18.653(0.003) 15.620(0.002) 38.643(0.006) 9.48 36.23 3.70
      -4.7 18.698(0.003) 15.643(0.003) 38.724(0.009) 9.52 36.53 3.71
      1 18.658(0.002) 15.604(0.002) 38.610(0.004) 9.45 35.93 3.68
      2.1 18.744(0.002) 15.626(0.002) 38.695(0.004) 9.48 36.02 3.68
      注:μ=238U/204Pb,ω=232Th/204Pb.
      下载: 导出CSV

      表  5  罗葵洞斑状花岗岩(16LK-22)锆石Ce4+/Ce3+比值计算值

      Table  5.   Calculated Ce4+/Ce3+ ratios of zircons in the Luokuidong granite sample 16LK-22

      锆石编号 锆石Ce4+/
      Ce3+
      熔体Ce4+/Ce3+ D(Ce4+ D(Ce3+ D(Ce锆石/熔体
      16LK-22-2 174 0.000 890 810.113 738 0.004 148 0.725 508
      16LK-22-4 500 0.000 913 896.461 715 0.001 636 0.819 900
      16LK-22-5 198 0.000 927 782.932 100 0.003 661 0.729 655
      16LK-22-6 209 0.000 654 753.944 164 0.002 366 0.495 818
      16LK-22-7 544 0.000 878 801.997 038 0.001 295 0.705 816
      16LK-22-8 621 0.000 675 686.383 176 0.000 747 0.463 996
      16LK-22-11 347 0.000 810 770.383 170 0.001 798 0.625 953
      16LK-22-13 577 0.000 637 748.363 413 0.000 827 0.477 231
      16LK-22-16 384 0.000 750 706.709 990 0.001 382 0.531 316
      16LK-22-18 306 0.000 900 718.052 331 0.002 115 0.648 074
      16LK-22-19 188 0.000 918 724.125 709 0.003 541 0.668 523
      16LK-22-20 304 0.001 012 719.665 184 0.002 396 0.731 012
      16LK-22-21 375 0.000 934 717.837 055 0.001 787 0.672 084
      16LK-22-23 465 0.000 803 766.278 035 0.001 323 0.616 388
      16LK-22-27 213 0.001 121 829.556 966 0.004 381 0.934 451
      16LK-22-28 571 0.000 873 739.250 902 0.001 132 0.646 488
      16LK-22-29 533 0.001 093 699.556 320 0.001 437 0.766 053
      16LK-22-30 295 0.001 064 726.850 626 0.002 623 0.776 350
      16LK-22-35 467 0.000 960 691.609 170 0.001 422 0.665 422
      下载: 导出CSV
    • [1] Atherton, M.P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416): 144-146. https://doi.org/10.1038/362144a0
      [2] Audétat, A., Li, W. T., 2017. The Genesis of Climax-Type Porphyry Mo Deposits: Insights from Fluid Inclusions and Melt Inclusions. Ore Geology Reviews, 88: 436-460. https://doi.org/10.1016/j.oregeorev.2017.05.018
      [3] Ballard, J.R., Palin, M.J., Campbell, I.H., 2002. Relative Oxidation States of Magmas Inferred from Ce(IV)/Ce(III) in Zircon: Application to Porphyry Copper Deposits of Northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347-364. https://doi.org/10.1007/s00410-002-0402-5
      [4] Bao, Z.W., Zhao, Z.H., Xiong, X.L., et al., 2000.Geochemistry of Ejinao Alkali Syenite and Its Geodynamic Significance.Geochimica, 29(5):462-468(in Chinese with English abstract).
      [5] Beard, J.S., Lofgren, G.E., 1989. Effect of Water on the Composition of Partial Melts of Greenstone and Amphibolite. Science, 244(4901): 195-197. https://doi.org/10.1126/science.244.4901.195
      [6] Beard, J.S., Lofgren, G.E., 1991. Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6. 9 kb. Journal of Petrology, 32(2): 365-401. https://doi.org/10.1093/petrology/32.2.365
      [7] Brooks, C.K., Tegner, C., Stein, H., et al., 2004. Re-Os and 40Ar/39Ar Ages of Porphyry Molybdenum Deposits in the East Greenland Volcanic-Rifted Margin. Economic Geology, 99(6): 1215-1222. https://doi.org/10.2113/gsecongeo.99.6.1215
      [8] Cai, J.X., Wu, C.J., Xu, D.R., et al., 2017. Structural Analysis of the Baolun Gold Deposit, Hainan Island, South China: Implications for Metallogeny. Ore Geology Reviews, 89: 253-269. https://doi.org/10.1016/j.oregeorev.2017.06.005
      [9] Cao, C., Shen, P., 2018.Advances and Problems in Study of Porphyry Molybdenum Deposits.Geological Review, 64(2):477-497(in Chinese with English abstract).
      [10] Castillo, P.R., Janney, P.E., Solidum, R.U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. https://doi.org/10.1007/s004100050467
      [11] Chaussidon, M., Lorand, J.P., 1990. Sulphur Isotope Composition of Orogenic Spinel Lherzolite Massifs from Ariege (North-Eastern Pyrenees, France): An Ion Microprobe Study. Geochimica et Cosmochimica Acta, 54(10): 2835-2846. https://doi.org/10.1016/0016-7037(90)90018-g
      [12] Chen, L., Zhao, Z.F., Zheng, Y.F., 2014. Origin of Andesitic Rocks: Geochemical Constraints from Mesozoic Volcanics in the Luzong Basin, South China. Lithos, 190-191(2): 220-239. https://doi.org/10.1016/j.lithos.2013.12.011
      [13] Chen, M.L., Lv, Z.Y., Ma, C.Q., et al., 2015. Re-Os Isotopic Dating and Geological Implications of Shimenshan Mo Polymetallic Deposit in Hainan Island. Mineral Resources and Geology, 61(4):546-551(in Chinese with English abstract).
      [14] Chen, Y.J., Pirajno, F., Li, N., et al., 2017. Molybdenum Deposits in China. Ore Geology Reviews, 81: 401-404. https://doi.org/10.1016/j.oregeorev.2016.11.002
      [15] Chung, S.L., Liu, D. Y., Ji, J.Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 31(11): 1021-1024. https://doi.org/10.1130/g19796.1
      [16] Condie, K.C., 2005. TTGs and Adakites: Are they Both Slab Melts?. Lithos, 80(1-4): 33-44. https://doi.org/10.1016/j.lithos.2003.11.001
      [17] Defant, M.J., Drummond, M.S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0
      [18] Defant, M.J., Kepezhinskas, P., Defant, M.J., et al., 2002. Adakites:SomeVariations on a Theme. Acta Petrologica Sinica, 18(2):129-142.
      [19] DePaolo, D.J., Wasserburg, G.J., 1979. Petrogenetic Mixing Models and Nd-Sr Isotopic Patterns. Geochimica et Cosmochimica Acta, 43(4): 615-627. https://doi.org/10.1016/0016-7037(79)90169-8
      [20] Ferry, J.M., Watson, E.B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0
      [21] Fu, W.W., Xu, D.R., Fu, Y.R., et al. 2013. Molybdenite Re-Os Isotopic Dating Of Hongmenling Mo-W Deposit in Hainan Province and Its Geological Implications. Journal of East China Institute of Technology(Natural Science), 36(2):135-142(in Chinese with English abstract).
      [22] Fu, W.W., Xu, D.R., Wu, C.J., et al. 2014. LA-ICP-MS Zircon U-Pb Dating of Syenogranites Hosting Gaotongling Mo Deposit in Hainan Province:Implications for Metallogenesis. Mineral Deposits, 33(2):419-427(in Chinese with English abstract).
      [23] Gao, S., Ducea, M.N., Jin, Z.M., et al., 1998.Lower Crustal Delamination and Evolutionof Continental Crust.Geological Journal of China Universities, 4(3):241-249(in Chinese with English abstract).
      [24] Gao, J., Klemd, R., Long, L. L., et al., 2009. Adakitic Signature Formed by Fractional Crystallization: An Interpretation for the Neo-Proterozoic Meta-Plagiogranites of the NE Jiangxi Ophiolitic Mélange Belt, South China. Lithos, 110(1-4): 277-293. https://doi.org/10.1016/j.lithos.2009.01.009
      [25] Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162
      [26] Guo, F., Nakamuru, E., Fan, W., et al., 2007. Generation of Palaeocene Adakitic Andesites by Magma Mixing; Yanji Area, NE China. Journal of Petrology, 48(4): 661-692. https://doi.org/10.1093/petrology/egl077
      [27] Harrison, T.M., Watson, E.B., Aikman, A.B., 2007. Temperature Spectra of Zircon Crystallization in Plutonic Rocks. Geology, 35(7): 635-638. https://doi.org/10.1130/g23505a.1
      [28] Hou, Z.Q., Gao, Y.F., Qu, X.M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155. https://doi.org/10.1016/s0012-821x(04)00007-x
      [29] Hou, Z.Q., Mo, X.X., Gao, Y.F., et al., 2003.Adakite, a Possible Host Rock for Porphyry Copper Deposits:Case Studies of Porphyry Copper Belts in Tibetan Plateau and in Northern Chile.Mineral Deposits, 22(1):1-12(in Chinese with English abstract).
      [30] Hou, Z.Q., Pan, X.F., Yang, Z.M., et al., 2007.Porphyry Cu-(Mo-Au) Deposits no Related to Oceanic-Slab Subduction:Examples from Chinese Porphyry Deposits in Continental Settings.Geoscience, 21(2):332-351(in Chinese with English abstract).
      [31] Hsü, K.J., Li, J. L., Chen, H. H., et al., 1990. Tectonics of South China: Key to Understanding West Pacific Geology. Tectonophysics, 183(1-4): 9-39. https://doi.org/10.1016/0040-1951(90)90186-c
      [32] Hu, J., Xu, D.M., Zhang, K., et al., 2017. LA-ICP-MS Zircon U-Pb and Molybdenite Re-Os Dating of Xincun Mo Ore Deposit in Hainan Province and Its Geological Significance. Mineral Deposits, 36(2):303-316(in Chinese with English abstract).
      [33] Huang, F., Wang, D.H., Wang, C.H., et al., 2014.Resources Characteristics of Molybdenum Deposits and Their Regional Metallogeny in China.Acta Geologica Sinica, 88(12):2296-2314(in Chinese with English abstract).
      [34] Jacobsen, S.B., Wasserburg, G.J., 1980. Sm-Nd Isotopic Evolution of Chondrites. Earth and Planetary Science Letters, 50(1): 139-155. https://doi.org/10.1016/0012-821X(80)90125-9
      [35] Jia, X.H., Wang, J.Q., Tang, G.J., et al., 2010.Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of the Late Early Cretaceous Adakitic Intrusive Rocks in the Tunchang Area, Hainan Province.Geochimica, 39(6):497-519(in Chinese with English abstract).
      [36] Kay, R.W., Kay, S.M., 1993. Delamination and Delamination Magmatism. Tectonophysics, 219(1-3): 177-189. https://doi.org/10.1016/0040-1951(93)90295-u
      [37] König, S., Schuth, S., Münker, C., et al., 2007. The Role of Slab Melting in the Petrogenesis of High-Mg Andesites: Evidence from Simbo Volcano, Solomon Islands. Contributions to Mineralogy and Petrology, 153(1): 85-103. https://doi.org/10.1007/s00410-006-0136-x
      [38] Li, J.W., Zhao, X.F., Zhou, M.F., et al., 2008. Origin of the Tongshankou Porphyry-Skarn Cu-Mo Deposit, Eastern Yangtze Craton, Eastern China: Geochronological, Geochemical, and Sr-Nd-Hf Isotopic Constraints. Mineralium Deposita, 43(3): 315-336. https://doi.org/10.1007/s00126-007-0161-3
      [39] Li, N., Ulrich, T., Chen, Y.J., et al., 2012. Fluid Evolution of the Yuchiling Porphyry Mo Deposit, East Qinling, China. Ore Geology Reviews, 48: 442-459. https://doi.org/10.1016/j.oregeorev.2012.06.002
      [40] Li, S.X., Chen, M.L., Yang, D.S., et al., 2014. The Molybdenite Re-Os Age and Analysis of Geodynamic Background in Hainan Island. Geology and Mineral Resources of South China, 30(3):272-279(in Chinese with English abstract).
      [41] Li, X.H., 1997. Geochemistry of the Longsheng Ophiolite from the Southern Margin of Yangtze Craton, SE China. Geochemical Journal, 31(5): 323-337. https://doi.org/10.2343/geochemj.31.323
      [42] Li, X.H., Zhou, H. W., Chung, S.L., et al., 2002. Geochemical and Sm-Nd Isotopic Characteristics of Metabasites from Central Hainan Island, South China and Their Tectonic Significance.The Island Arc, 11(3): 193-205. https://doi.org/10.1046/j.1440-1738.2002.00365.x
      [43] Li, X.Y., Chi, G.X., Zhou, Y.Z., et al., 2017. Oxygen Fugacity of Yanshanian Granites in South China and Implications for Metallogeny. Ore Geology Reviews, 88: 690-701. https://doi.org/10.1016/j.oregeorev.2017.02.002
      [44] Li, Z.X., Li, X.H., 2007. Formation of the 1300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/g23193a.1
      [45] Li, Y., Ling, M.X., Ding, X., et al., 2009.Adakites or Adakitic Rocks and Associated Metallogenesis in Eastern China.Geotectonica et Metallogenia, 33(3):448-464(in Chinese with English abstract).
      [46] Liang, H.Y., Campbell, I.H., Allen, C., et al., 2006. Zircon Ce4+/Ce3+ Ratios and Ages for Yulong Ore-Bearing Porphyries in Eastern Tibet. Mineralium Deposita, 41(2): 152-159. https://doi.org/10.1007/s00126-005-0047-1
      [47] Liang, X.R., Wei, G.J., Li, X.H., et al., 2003. Precise Measurement of 143Nd/144Nd and Sm/Nd Ratios Using Multiple-Collectors Inductively Coupled Plasma-Mass Spectrometer (MC-ICPMS). Geochimica, 32(1):91-96(in Chinese with English abstract).
      [48] Liao, X.J., Wang, P.G., Qin, H.C., et al., 2008.Geology, Geochemistry and Ore-Forming Age of the Gaotongling Molybdenum Deposit, Tunchang Area, Hainan, China.Geological Bulletin of China, 27(4):560-570(in Chinese with English abstract).
      [49] Ludington, S., Plumlee, G.S., 2009. Climax-Type Porphyry Molybdenum Deposits. US Geological Survey, Virginia.
      [50] Lugmair, G.W., Marti, K., 1978. Lunar Initial 143Nd/144Nd: Differential Evolution of the Lunar Crust and Mantle. Earth and Planetary Science Letters, 39(3): 349-357. https://doi.org/10.1016/0012-821x(78)90021-3
      [51] Ma, D.Q., Huang, X.D., Chen, Z.P., et al., 1997. New Advanced in the Study of the Baoban Group in Hainan Province. Regional Geology of China, 16(2):130-136(in Chinese with English abstract).
      [52] Macpherson, C.G., Dreher, S.T., Thirlwall, M.F., 2006. Adakites without Slab Melting: High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3-4): 581-593. https://doi.org/10.1016/j.epsl.2005.12.034
      [53] Mao, J.W., Pirajno, F., Cook, N., 2011. Mesozoic Metallogeny in East China and Corresponding Geodynamic Settings-An Introduction to the Special Issue. Ore Geology Reviews, 43(1): 1-7. https://doi.org/10.1016/j.oregeorev.2011.09.003
      [54] Mao, J.W., Xie, G.Q., Li, X.F., et al., 2004.Mesozoic Large Scale Mineralization and Multiple Lithospheric Extension in South China.Earth Science Frontiers, 11(1):45-55(in Chinese with English abstract).
      [55] Martin, H., 1993. The Mechanisms of Petrogenesis of the Archaean Continental Crust-Comparison with Modern Processes. Lithos, 30(3-4): 373-388. https://doi.org/10.1016/0024-4937(93)90046-f
      [56] Metcalfe, I., 1996. Gondwanaland Dispersion, Asian Accretion and Evolution of Eastern Tethys.Australian Journal of Earth Sciences, 43(6): 605-623. https://doi.org/10.1080/08120099608728282
      [57] Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33. https://doi.org/10.1016/j.jseaes.2012.12.020
      [58] Middlemost, E.A.K., 1985. Magmas and Magmatic Rocks. Longman, London.
      [59] Miller, C.F., McDowell, S.M., Mapes, R.W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6): 529. https://doi.org/10.1130/0091-7613(2003)031<0529: hacgio>2.0.co; 2
      [60] Mungall, J.E., 2002. Roasting the Mantle: Slab Melting and the Genesis of Major Au and Au-Rich Cu Deposits. Geology, 30(10): 915-918. <0915: rtmsma>2.0.co;2
      [61] Mutschler, F.E., Wright, E.G., Ludington, S., et al., 1981. Granite Molybdenite Systems. Economic Geology, 76(4): 874-897. https://doi.org/10.2113/gsecongeo.76.4.874
      [62] Ohmoto, H., 1986. Stable Isotope Geochemistry of Ore Deposits. Reviews in Mineralogy & Geochemistry, 16(6):491-559.
      [63] Pearce, J.A., Peate, D.W., 1995. Tectonic Implications of the Composition of Volcanic ARC Magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343
      [64] Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
      [65] Qin, K.Z., Li, G.M., Zhao, J.X., et al., 2008.Discovery of Sharang Large-Scale Porphyry Molybdenum Deposit, the First Single Mo Deposit in Tibet and Its Significance.Geology in China, 35(6):1101-1112(in Chinese with English abstract).
      [66] Qu, X. M., Hou, Z.Q., Li, Y.G., 2004. Melt Components Derived from a Subducted Slab in Late Orogenic Ore-Bearing Porphyries in the Gangdese Copper Belt, Southern Tibetan Plateau. Lithos, 74(3-4): 131-148. https://doi.org/10.1016/j.lithos.2004.01.003
      [67] Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/s0009-2541(99)00106-0
      [68] Rapp, R.P., Watson, E.B., Miller, C.F., 1991. Partial Melting of Amphibolite/Eclogite and the Origin of Archean Trondhjemites and Tonalites. Precambrian Research, 51(1-4): 1-25. https://doi.org/10.1016/0301-9268(91)90092-o
      [69] Rushmer, T., 1991. Partial Melting of Two Amphibolites: Contrasting Experimental Results under Fluid-Absent Conditions. Contributions to Mineralogy and Petrology, 107(1): 41-59. https://doi.org/10.1007/bf00311184
      [70] Schiano, P., Monzier, M., Eissen, J.P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160(2): 297-312. https://doi.org/10.1007/s00410-009-0478-2
      [71] Sen, C., Dunn, T., 1994. Dehydration Melting of a Basaltic Composition Amphibolite at 1.5 and 2.0 GPa: Implications for the Origin of Adakites. Contributions to Mineralogy and Petrology, 117(4): 394-409. https://doi.org/10.1007/bf00307273
      [72] Shan, H.Z., 1990.Study on the Gold-Bearing Stratigraphic Age in Baoban Region, Hainan Province.Acta Scifntiarum Naturalium Universitatis Sunyaatseni, 29(2):71-77(in Chinese with English abstract).
      [73] Shen, P., Hattori, K., Pan, H. D., et al., 2015. Oxidation Condition and Metal Fertility of Granitic Magmas: Zircon Trace-Element Data from Porphyry Cu Deposits in the Central Asian Orogenic Belt. Economic Geology, 110(7): 1861-1878. https://doi.org/10.2113/econgeo.110.7.1861
      [74] Shinohara, H., Kazahaya, K., Lowenstern, J.B., 1995. Volatile Transport in a Convecting Magma Column: Implications for Porphyry Mo Mineralization. Geology, 23(12): 1091. https://doi.org/10.1130/0091-7613(1995)023<1091: vtiacm>2.3.co; 2
      [75] Simon, A.C., Ripley, E.M., 2011. The Role of Magmatic Sulfur in the Formation of Ore Deposits. Reviews in Mineralogy and Geochemistry, 73(1): 513-578. https://doi.org/10.2138/rmg.2011.73.16
      [76] Sinclair, W.D., 2007. Porphyry Deposits. In:Goodfellow, W.D., ed., Mineral Deposits of Canada:A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Mineral Deposits Division, Special Publication, 5:223-243.
      [77] Stacey, J.S., Kramers, J.D., 1975. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth and Planetary Science Letters, 26(2): 207-221. https://doi.org/10.1016/0012-821x(75)90088-6
      [78] Steiger, R.H., J?ger, E., 1977. Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo- and Cosmochronology. Earth and Planetary Science Letters, 36(3): 359-362. https://doi.org/10.1016/0012-821x(77)90060-7
      [79] Streck, M.J., Leeman, W.P., Chesley, J., 2007. High-Magnesian Andesite from Mount Shasta: A Product of Magma Mixing and Contamination, not a Primitive Mantle Melt. Geology, 35(4): 351-354. https://doi.org/10.1130/g23286a.1
      [80] Sun, S.S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [81] Sun, W.D., Arculus, R.J., Kamenetsky, V.S., et al., 2004. Release of Gold-Bearing Fluids in Convergent Margin Magmas Prompted by Magnetite Crystallization. Nature, 431(7011): 975-978. https://doi.org/10.1038/nature02972
      [82] Sun, W.D., Huang, R.F., Li, H., et al., 2015. Porphyry Deposits and Oxidized Magmas. Ore Geology Reviews, 65: 97-131. https://doi.org/10.1016/j.oregeorev.2014.09.004
      [83] Sun, Y., Liu, J.M., Zeng, Q.D., et al., 2012.An Approach to the Metallogenic Mechanism of Porphyry Copper (Molybdenum) Deposits and Porphyry Molybdenum (Copper) Deposits:Influence of Evolving Processes of Ore-Forming Fluids and Tectonic Settings.Earth Science Frontiers, 19(6):179-193(in Chinese with English abstract).
      [84] Tang, L.M., Chen, H.L., Dong, C.W., et al., 2010.Triassic Neutral and Basic Rocks in Hainan Island, Geochemistry and Their Geological Signinficance.Chinese Journal of Geology, 45(4):1139-1155(in Chinese with English abstract).
      [85] Thompson, J.F.H., Sillitoe, R.H., Baker, T., et al., 1999. Intrusion-Related Gold Deposits Associated with Tungsten-Tin Provinces. Mineralium Deposita, 34(4): 323-334. https://doi.org/10.1007/s001260050207
      [86] Wang, G.G., Ni, P., Zhao, C., et al., 2017a. A Combined Fluid Inclusion and Isotopic Geochemistry Study of the Zhilingtou Mo Deposit, South China: Implications for Ore Genesis and Metallogenic Setting. Ore Geology Reviews, 81: 884-897 http://dx.doi.org/10.1016/j.oregeorev.2015.11.023
      [87] Wang, G. R., Wu, G., Xu, L. Q., et al., 2017b. Molybdenite Re-Os Age, H-O-C-S-Pb Isotopes, and Fluid Inclusion Study of the Caosiyao Porphyry Mo Deposit in Inner Mongolia, China. Ore Geology Reviews, 81: 728-744. https://doi.org/10.1016/j.oregeorev.2016.07.008
      [88] Wang, G.G., Ni, P., Yu, W., et al., 2014. Petrogenesis of Early Cretaceous Post-Collisional Granitoids at Shapinggou, Dabie Orogen: Implications for Crustal Architecture and Porphyry Mo Mineralization. Lithos, 184-187: 393-415. https://doi.org/10.1016/j.lithos.2013.11.009
      [89] Wang, Q., Li, X.H., Jia, X.H., et al., 2012. Late Early Cretaceous Adakitic Granitoids and Associated Magnesian and Potassium-Rich Mafic Enclaves and Dikes in the Tunchang-Fengmu Area, Hainan Province (South China): Partial Melting of Lower Crust and Mantle, and Magma Hybridization. Chemical Geology, 328: 222-243. https://doi.org/10.1016/j.chemgeo.2012.04.029
      [90] Wang, Q., McDermott, F., Xu, J.F., et al., 2005. Cenozoic K-Rich Adakitic Volcanic Rocks in the Hohxil Area, Northern Tibet: Lower-Crustal Melting in an Intracontinental Setting. Geology, 33(6): 465. https://doi.org/10.1130/g21522.1
      [91] Wang, Q., Wyman, D.A., Xu, J.F., et al., 2007. Partial Melting of Thickened or Delaminated Lower Crust in the Middle of Eastern China: Implications for Cu-Au Mineralization.The Journal of Geology, 115(2): 149-161. https://doi.org/10.1086/510643
      [92] Wang, Q., Xu, J.F., Jian, P., et al., 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119-144. https://doi.org/10.1093/petrology/egi070
      [93] Wang, G.J., Liu, J., Cao, Y.L., et al., 2010.Metallogenic Characteristics of Luokuidong Porphyry Molybdenum Deposit in the Baoting County, Hainan Province.Geotechnical Engineering World, 1(5):453-457(in Chinese with English abstract).
      [94] Wang, Q., Xu, J.F., Zhao, Z.H., et al., 2001a.The Summary and Comment on Research on a New Kind of Igneous Rock-Adakite.Advance in Earth Sciences, 16(2):201-208(in Chinese with English abstract).
      [95] Wang, Q., Zhao, Z.H., Xiong, X.L., et al., 2001b.Melting of the Underplated Basaltic Lower Crust:Evidence from the Shaxi Adakitic Sodic Quartz Diorite-Porphyrites, Anhui Province, China.Geochimica, 30(4):353-362(in Chinese with English abstract).
      [96] Wang, Q., Zhao, Z.H., Xiong, X.L., et al., 2002.Ascertainment of the Shaoxing Enping Alkali Rich Intrusive Rock Zone and Preliminary Discussion on Its Geodynamic Implications.Geochimica, 31(5):433-442(in Chinese with English abstract).
      [97] Wang, Y., Zhang, Q., Qian, Q., et al., 2000.Adakite:Geochemical Characteristics and Tectonic Significances.Scientia Geologica Sinica, 35(2):251-256(in Chinese with English abstract).
      [98] Wang, Y.W., Wang, J.B., 2007.Magma-Mixing Genesis of Quartz Monzodiorite in the Weiya Xinjiang.Acta Petrologica Sinica, 23(4):733-746(in Chinese with English abstract).
      [99] Watson, E.B., Harrison, T.M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821x(83)90211-x
      [100] Watson, E. B., Harrison, T.M., 2005. Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth. Science, 308(5723): 841-844. https://doi.org/10.1126/science.1110873
      [101] Watson, E.B., Wark, D.A., Thomas, J.B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. https://doi.org/10.1007/s00410-006-0068-5
      [102] Wei, G.J., Liang, X.R., Li, X.H., et al., 2002. Precise Measurement of Sr Isotopic Composition of Liquid and Solid Base Using (LP)MC-ICPMS. Geochimica, 31(3):295-299(in Chinese with English abstract).
      [103] Westra, G., Keith, S.B., 1981. Classification and Genesis of Stockwork Molybdenum Deposits. Economic Geology, 76(4): 844-873. https://doi.org/10.2113/gsecongeo.77.5.1252
      [104] Whalen, J.B., Anderson, R.G., Struik, L.C., et al., 2001. Geochemistry and Nd Isotopes of the Fran?ois Lake Plutonic Suite, Endako Batholith: Host and Progenitor to the Endako Molybdenum Camp, Central British Columbia. Canadian Journal of Earth Sciences, 38(4): 603-618. https://doi.org/10.1139/e00-080
      [105] Winther, K.T., Newton, R.C., 1991. Experimental Melting Of Hydrous Low-K Tholeiite:Evidence on the Origin of Archean Cratons. Bulletin of the Geological Society of Denmark, 39(5):2932-2945.
      [106] Wolf, M.B., Wyllie, P.J., 1991. Dehydration-Melting of Solid Amphibolite at 10 kbar: Textural Development, Liquid Interconnectivity and Applications to the Segregation of Magmas. Mineralogy and Petrology, 44(3-4): 151-179. https://doi.org/10.1007/bf01166961
      [107] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6):1217-1238(in Chinese with English abstract).
      [108] Xi, A.H., Ge, Y.H., Liu, J., et al., 2018.Discovery of Adakite in Tieli Luming-Molybdenum Mine, Heilongjiang Province and Its Geological Implications.Acta Petrologica Sinica, 34(3):719-732(in Chinese with English abstract).
      [109] Xiong, X.L., 2006. Trace Element Evidence for Growth of Early Continental Crust by Melting of Rutile-Bearing Hydrous Eclogite. Geology, 34(11): 945-948. https://doi.org/10.1130/g22711a.1
      [110] Xu, D.R., Kusiak, M.A., Wang, Z.L., et al., 2015. Microstructural Observation and Chemical Dating on Monazite from the Shilu Group, Hainan Province of South China: Implications for Origin and Evolution of the Shilu Fe-Co-Cu Ore District. Lithos, 216-217: 158-177. https://doi.org/10.1016/j.lithos.2014.12.017
      [111] Xu, D.R., Wang, Z.L., Cai, J.X., et al., 2013. Geological Characteristics and Metallogenesis of the Shilu Fe-Ore Deposit in Hainan Province, South China. Ore Geology Reviews, 53: 318-342. https://doi.org/10.1016/j.oregeorev.2013.01.015
      [112] Xu, D.R., Wang, Z.L., Wu, C.J., et al., 2016. Mesozoic Gold Mineralization in Hainan Province of South China: Genetic Types, Geological Characteristics and Geodynamic Settings. Journal of Asian Earth Sciences, 137: 80-108. https://doi.org/10.1016/j.jseaes.2016.09.004
      [113] Xu, J.F., Shinjo, R., Defant, M.J., et al., 2002. Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust?. Geology, 30(12): 1111-1114. https://doi.org/10.1130/0091-7613(2002)030<1111: oomair>2.0.co; 2
      [114] Xu, J.F., Wu, J.B., Wang, Q., et al., 2014. Research Advances of Adakites and Adakitic Rocks in China. Bulletin of Mineralogy, Petrology and Geochemistry, 33(1):6-13(in Chinese with English abstract).
      [115] Xu, D.R., Liang, X.Q., Tang, H.F., et al., 2000.Geochemical Characteristics of Metamorphic Basic Volcanics from the Baoban Group, Western Hainan and Its Tectonic Implications.Geotectonica et Metallogenia, 24(4):303-313(in Chinese with English abstract).
      [116] Xu, D.R., Wu, C.J., Hu, G.C., et al., 2016. Late Mesozoic Molybdenum Mineralization on Hainan Island, South China: Geochemistry, Geochronology and Geodynamic Setting. Ore Geology Reviews, 72: 402-433. https://doi.org/10.1016/j.oregeorev.2015.07.023
      [117] Xu, W.G., Fan, H.R., Hu, F.F., et al., 2011.Ore-Forming Fluids of the Oxidized and Reduced Porphyry Deposits.Earth Science Frontiers, 18(5):103-120(in Chinese with English abstract).
      [118] Yang, Z., Jiang, H., Yang, M.G., et al., 2017.Zircon U-Pb and Molybdenite Re-Os Dating of the Gangjiang Porphyry Cu-Mo Deposit in Central Gangdese and Its Geological Significance.Earth Science, 42(3):339-356(in Chinese with English abstract).
      [119] Yang, Z.M., Hou, Z.Q., 2009.Porphyry Cu Deposits in Collisional Orogen Setting:A Preliminary Genetic Model.Mineral Deposits, 28(5):515-538(in Chinese with English abstract).
      [120] Yang, Z.M., Hou, Z.Q., Yang, Z.S., et al., 2008.Genesis of Porphyries and Tectonic Controls on the Narigongma Porphyry Mo(-Cu) Deposit, Southern Qinghai.Acta Petrologica Sinica, 24(3):489-502(in Chinese with English abstract).
      [121] Ye, T.Z., Wei, C.S., Wang, Y.W., et al., 2017.. Metallogenic Prognosis Theries and Methods in Exploration Areas(Pandect). Geological Publishing House, Beijing, 406(in Chinese).
      [122] Zartman, R.E., Doe, B.R., 1981. Plumbotectonics-The Model. Tectonophysics, 75(1-2): 135-162. https://doi.org/10.1016/0040-1951(81)90213-4
      [123] Zeng, Q.D., Liu, J.M., Qin, K.Z., et al., 2013. Types, Characteristics, and Time-Space Distribution of Molybdenum Deposits in China. International Geology Review, 55(11): 1311-1358. https://doi.org/10.1080/00206814.2013.774195
      [124] Zhang, H., Li, C. Y., Yang, X.Y., et al., 2014. Shapinggou: The Largest Climax-Type Porphyry Mo Deposit in China. International Geology Review, 56(3): 313-331. https://doi.org/10.1080/00206814.2013.855363
      [125] Zhang, Q., Qian, Q., Wang, E.Q., et al., 2001.An East China Plateau in Mid-Late Yanshanian Period:Implication from Adakites.Scientia Geologica Sinica, 36(2):248-255(in Chinese with English abstract).
      [126] Zhang, Q., Wang, Y., Liu, W., et al., 2002.Adakite:Its Characteristics and Implications.Regional Geology of China, 21(7):431-435(in Chinese with English abstract).
      [127] Zhao, Z.H., 2010.Trace Element Geochemistry of Accessory Minerals and Its Applications in Petrogenesis and Metallogenesis.Earth Science Frontiers, 17(1):267-286(in Chinese with English abstract).
      [128] Zheng, Y.Y., Ci, Q., Wu, S., et al., 2017.The Discovery and Significance of Rongga Porphyry Mo Deposit in the Bangong-Nujiang Metallogenic Belt, Tibet.Earth Science, 42(9):1441-1453(in Chinese with English abstract).
      [129] Zhou, T.C., Zeng, Q.D., Chu, S.X., et al., 2018. Magmatic Oxygen Fugacities of Porphyry Mo Deposits in the East Xing'an-Mongolian Orogenic Belt (NE China) with Metallogenic Implications. Journal of Asian Earth Sciences, 165: 145-159. https://doi.org/10.1016/j.jseaes.2018.04.004
      [130] Zhou, X.M., Li, W.X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326(3-4): 269-287. https://doi.org/10.1016/s0040-1951(00)00120-7
      [131] Zhou, X.M., Sun, T., Shen, W.Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.1007/s00254-006-0175-7
      [132] Zhou, Y., Liang, X. Q., Kr?ner, A., et al., 2015. Late Cretaceous Lithospheric Extension in SE China: Constraints from Volcanic Rocks in Hainan Island. Lithos, 232: 100-110.https://doi.org/10.1016/j.lithos.2015.06.028
      [133] Zhou, Y., Liang, X.Q., Liang, X.R., et al., 2015.Geochronology and Geochemistry of Cretaceous Volcanic Rocks from Liuluo Formation in Hainan Island and Their Tectonic Implications.Geotectonica et Metallogenia, 39(5):903-918(in Chinese with English abstract).
      [134] Zhu, Y.H., Yu, L.L, Yu, D.S., et al., 2017. LA-ICP-MS Zircon U-Pb Dating, Hf Isotopic Composition and Ce4+/Ce3+ Characteristics of Gaotongling Molybdenum Ore Deposit in Hainan Province and Their Implications for Metallogeny. Mineral Deposits, 36(1):185-199(in Chinese with English abstract).
      [135] Zhu, Y.H., Shan, Q., Wang, L.X., et al., 2018.Age of Host-Rocks and Mineralization from the Luokuidong Molybdenum Ore Deposit in Hainan Island:Implication for Deposit Genesis.Geochimica, 47(3):268-287(in Chinese with English abstract).
      [136] 包志伟, 赵振华, 熊小林, 等, 2000.广东恶鸡脑碱性正长岩的地球化学及其地球动力学意义.地球化学, 29(5):462-468.
      [137] 曹冲, 申萍, 2018.斑岩型钼矿床研究进展与问题.地质论评, 64(2):477-497.
      [138] 陈沐龙, 吕昭英, 马昌前, 等, 2015.海南岛石门山钼多金属矿床的Re-Os同位素定年及地质意义.矿产与地质, 61(4): 546-551.
      [139] 付王伟, 许德如, 傅杨荣, 等, 2013.海南省红门岭钼钨矿床辉钼矿Re-Os同位素定年及地质意义.东华理工大学学报(自然科学版), 36(2): 135-142.
      [140] 付王伟, 许德如, 吴传军, 等, 2014.海南省高通岭钼矿床赋矿岩体LA-ICP-MS锆石U-Pb定年及成矿意义.矿床地质, 33(2): 419-427.
      [141] 高山, Ducea, M.N., 金振民, 等, 1998.下地壳拆沉作用及大陆地壳演化.高校地质学报, 4(3): 241-249.
      [142] 侯增谦, 莫宣学, 高永丰, 等, 2003.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩——以西藏和智利斑岩铜矿为例.矿床地质, 22(1):1-12.
      [143] 侯增谦, 潘小菲, 杨志明, 等, 2007.初论大陆环境斑岩铜矿.现代地质, 21(2):332-351.
      [144] 胡军, 徐德明, 张鲲, 等, 2017.海南省新村钼矿床LA-ICP-MS锆石U-Pb和辉钼矿Re-Os年龄及其地质意义.矿床地质, 36(2): 303-316.
      [145] 黄凡, 王登红, 王成辉, 等, 2014.中国钼矿资源特征及其成矿规律概要.地质学报, 88(12):2296-2314.
      [146] 贾小辉, 王强, 唐功建, 等, 2010.海南屯昌早白垩世晚期埃达克质侵入岩的锆石U-Pb年代学、地球化学与岩石成因.地球化学, 39(6):497-519.
      [147] 李孙雄, 陈沐龙, 杨东生, 等, 2014.海南岛钼矿床Re-Os年龄及其成矿地球动力学背景探讨.华南地质与矿产, 30(3): 272-279.
      [148] 李印, 凌明星, 丁兴, 等, 2009.中国东部埃达克岩及成矿作用.大地构造与成矿学, 33(3):448-464.
      [149] 梁细荣, 韦刚健, 李献华, 等, 2003.利用MC-ICPMS精确测定143Nd/144Nd和Sm/Nd比值.地球化学, 32(1): 91-96.
      [150] 廖香俊, 王平安, 覃海灿, 等, 2008.海南屯昌地区高通岭钼矿床的地质、地球化学特征及成矿时代.地质通报, 27(4):560-570.
      [151] 马大铨, 黄香定, 陈哲培, 等, 1997.海南省抱板群研究的新进展.地质通报, 16(2): 130-136.
      [152] 毛景文, 谢桂青, 李晓峰, 等, 2004.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘, 11(1):45-55.
      [153] 秦克章, 李光明, 赵俊兴, 等, 2008.西藏首例独立钼矿——冈底斯沙让大型斑岩钼矿的发现及其意义.中国地质, 35(6):1101-1112.
      [154] 单惠珍, 1990.海南抱板地区金矿地层时代归属的研究.中山大学学报(自然科学版), 29(2):71-77.
      [155] 孙燕, 刘建明, 曾庆栋, 等, 2012.斑岩型铜(钼)矿床和斑岩型钼(铜)矿床的形成机制探讨:流体演化及构造背景的影响.地学前缘, 19(6):179-193.
      [156] 唐立梅, 陈汉林, 董传万, 等, 2010.海南岛三叠纪中基性岩的年代学、地球化学及其她质竟义.地质科学, 45(4):1139-1155.
      [157] 王国君, 刘君, 曹玉莲, 等, 2010.海南罗葵洞斑岩型钼矿地质特征及矿床成因.矿产勘查, 1(5):453-457.
      [158] 王强, 许继锋, 赵振华, 等, 2001a.一种新的火成岩——埃达克岩的研究综述.地球科学进展, 16(2):201-208.
      [159] 王强, 赵振华, 熊小林, 等, 2001b.底侵玄武质下地壳的熔融:来自安徽沙溪adakite质富钠石英闪长玢岩的证据.地球化学, 30(4):353-362.
      [160] 王强, 赵振华, 熊小林, 等, 2002.华南绍兴-恩平富碱侵入岩带的厘定及其动力学意义初探.地球化学, 31(5):433-442.
      [161] 王焰, 张旗, 钱青, 等, 2000.埃达克岩(adakite)的地球化学特征及其构造意义.地质科学, 35(2):251-256.
      [162] 王玉往, 王京彬, 2007.新疆尾亚地区石英二长闪长岩的岩浆混合成因.岩石学报, 23(4):733-746.
      [163] 韦刚健, 梁细荣, 李献华, 等, 2002. (LP)MC-ICPMS方法精确测定液体和固体样品的Sr同位素组成.地球化学, 31(3): 295-299.
      [164] 吴福元, 李献华, 杨进辉, 等, 2007.花岗岩成因研究的若干问题.岩石学报, 23(6): 1217-1238.
      [165] 郗爱华, 葛玉辉, 刘珏, 等, 2018.黑龙江铁力鹿鸣斑岩型钼矿床埃达克岩的发现及其地质意义.岩石学报, 34(3):719-732.
      [166] 徐文刚, 范宏瑞, 胡芳芳, 等, 2011.氧化性和还原性斑岩型矿床流体成矿特征分析.地学前缘, 18(5):103-120.
      [167] 许德如, 梁新权, 唐红峰, 等, 2000.琼西抱板群变质基性火山岩的地球化学特征及其大地构造意义.大地构造与成矿学, 24(4):303-313.
      [168] 许继峰, 邬建斌, 王强, 等, 2014.埃达克岩与埃达克质岩在中国的研究进展.矿物岩石地球化学通报, 33(1):6-13.
      [169] 杨震, 姜华, 杨明国, 等, 2017.冈底斯中段岗讲斑岩铜钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义.地球科学, 42(3):339-356.
      [170] 杨志明, 侯增谦, 2009.初论碰撞造山环境斑岩铜矿成矿模型.矿床地质, 28(5):515-538.
      [171] 杨志明, 侯增谦, 杨竹森, 等, 2008.青海纳日贡玛斑岩钼(铜)矿床:岩石成因及构造控制.岩石学报, 24(3):489-502.
      [172] 叶天竺, 韦昌山, 王玉往, 等, 2017.勘查区找矿预测理论与方法(各论).地质出版社, 北京.
      [173] 张旗, 钱青, 王二七, 等, 2001.燕山中晚期的中国东部高原:埃达克岩的启示.地质科学, 36(2):248-255.
      [174] 张旗, 王焰, 刘伟, 等, 2002.埃达克岩的特征及其意义.地质通报, 21(7):431-435.
      [175] 赵振华, 2010.副矿物微量元素地球化学特征在成岩成矿作用研究中的应用.地学前缘, 17(1):267-286.
      [176] 郑有业, 次琼, 吴松, 等, 2017.西藏班公湖-怒江成矿带荣嘎斑岩型钼矿床的发现及意义.地球科学, 42(9):1441-1453.
      [177] 周云, 梁新权, 梁细荣, 等, 2015.海南白垩纪六罗村组火山岩的年代学、地球化学特征及其大地构造意义.大地构造与成矿学, 39(5):903-918.
      [178] 朱昱桦, 于亮亮, 于得水, 等, 2017.海南岛高通岭钼矿床赋矿岩体LA-ICP-MS锆石U-Pb年龄、Hf同位素和Ce4+/Ce3+特征.矿床地质, 36(1): 185-199.
      [179] 朱昱桦, 单强, 王历星, 等, 2018.海南岛罗葵洞钼矿床成岩成矿时代及矿床成因探讨.地球化学, 47(3):268-287.
    • 加载中
    图(10) / 表(5)
    计量
    • 文章访问数:  1682
    • HTML全文浏览量:  671
    • PDF下载量:  55
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-04-29
    • 刊出日期:  2020-04-15

    目录

      /

      返回文章
      返回