• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    莺歌海盆地高温高压盖层封盖能力定量评价

    谢玉洪

    谢玉洪, 2019. 莺歌海盆地高温高压盖层封盖能力定量评价. 地球科学, 44(8): 2579-2589. doi: 10.3799/dqkx.2019.095
    引用本文: 谢玉洪, 2019. 莺歌海盆地高温高压盖层封盖能力定量评价. 地球科学, 44(8): 2579-2589. doi: 10.3799/dqkx.2019.095
    Xie Yuhong, 2019. Quantitative Evaluation of Sealing Capacity of High Temperature and Pressure Caprocks in Yinggehai Basin. Earth Science, 44(8): 2579-2589. doi: 10.3799/dqkx.2019.095
    Citation: Xie Yuhong, 2019. Quantitative Evaluation of Sealing Capacity of High Temperature and Pressure Caprocks in Yinggehai Basin. Earth Science, 44(8): 2579-2589. doi: 10.3799/dqkx.2019.095

    莺歌海盆地高温高压盖层封盖能力定量评价

    doi: 10.3799/dqkx.2019.095
    基金项目: 

    国家科技重大专项“莺琼盆地高温高压天然气富集规律与勘探开发关键技术(三期) 2016ZX05024005

    详细信息
      作者简介:

      谢玉洪(1961-), 男, 教授级高级工程师, 主要从事油气勘探研究工作

    • 中图分类号: P588

    Quantitative Evaluation of Sealing Capacity of High Temperature and Pressure Caprocks in Yinggehai Basin

    • 摘要: 莺歌海盆地是我国南海重要的新生代含油气盆地,随着浅层常压层系天然气开发程度的逐渐提高,中深层高温高压层系成为天然气勘探的主要目标,超压背景下盖层封闭的有效性受到广泛关注.近年来,不同学者针对莺歌海盆地盖层进行了大量的研究,但是对高温高压的气藏盖层的封闭机理、破坏条件及其定量评价仍存在一定的问题.通过对莺歌海盆地中深层高温高压层系盖层进行系统的分析,明确盖层的封闭机理为毛细管封闭和水力封闭.利用泥岩盖层排替压力、声波时差及孔隙度之间的关系,对莺歌海盆地区域性盖层的毛细管封闭能力进行预测.莺歌海盆地中深层盖层普遍具有较强的毛细管封闭能力.因此,超压诱发的水力破裂是油气多层位聚集的根本原因,进而提出了盖层水力破裂压力系数定量评价盖层水力破裂风险性.评价结果显示,盖层发生水力破裂与底辟构造活动具有明显的相关性,盖层水力破裂风险由底辟中心向外围逐渐减弱.位于莺歌海盆地斜坡近凹带,且紧邻乐东三大底辟的LD-B区块是油气富集的有利区域.

       

    • 图  1  莺歌海盆地构造纲要

      Fig.  1.  The stuctural map of Yinggehai Baisn

      图  2  莺歌海盆地地层综合柱状图

      Fig.  2.  The comprehensive strata log diagram of Yinggehai Baisn

      图  3  莺歌海盆地莺歌海组二段下部-黄流组一段上部泥岩盖层厚度分布

      Fig.  3.  The thickness contour map of Second Member of Yinggehai to First Member of Huangliu Formation caprocks, Yinggehai Basin

      图  4  莺歌海盆地泥岩排替压力与气柱高度关系

      Fig.  4.  Relationship between mudstone displacement pressure and gas column height in Yinggehai Basin

      图  5  莺歌海盆地泥岩排替压力预测

      a.盖层孔隙度与声波时差的关系; b.盖层排替压力与孔隙度的关系

      Fig.  5.  Prediction of displacement pressure in Yinggehai Baisn

      图  6  莺歌海盆地黄流组顶部盖层排替压力分布特征

      Fig.  6.  The displacement pressure in Huangliu Formation in Yinggehai Baisn

      图  7  不同地应力及力学性质条件下盖层的水力破裂能力

      A1C1, A2C2, A3C3分别为完整盖层在不同破裂类型下的水力破裂能力;B1C1, B2C2, B3C3分别为先存水力裂缝盖层在不同应力条件下水力破裂能力

      Fig.  7.  Hydraulic fracturing of caprock in different stress and mechanical properties

      图  8  莺歌海盆地地应力和流体压力分布

      Fig.  8.  The distribution of geostress and fluid pressure in Yinggehai Baisn

      图  9  莺歌海盆地黄流组一段盖层水力破裂压力系数

      Fig.  9.  The hydraulic fracturing pressure coefficient of Huangliu caprocks in Yinggehai Basin

      表  1  不同差应力条件下岩石的破裂方式及破裂准则

      Table  1.   The fracture mode and criterion of rocks in different differential stress

      破裂模式 破裂准则 差应力条件
      张性破裂 P=S3+T ΔS < 4T
      张性剪切破裂 P=Sn+(4T2-τ2)/4T 4T < ΔS < 6T
      剪切破裂 P=Sn+(C-τ)/μ ΔS > 6T
      注:P为破裂压力(MPa);ΔS为差应力(MPa);S3为最小主应力(MPa);T为岩石抗张强度(MPa);τ为剪应力(MPa);μ为摩擦系数;据Phillips et al.(1972)
      下载: 导出CSV

      表  2  莺歌海盆地盖层岩石力学参数分布范围

      Table  2.   Distribution range of mechanical parameters of caprocks in Yinggehai Basin

      井名 DF-B3 DF-A12
      地层 黄一段 黄一段 莺二段 莺二段
      岩性 泥质粉砂岩 泥岩 粉砂质泥岩 粉砂质泥岩
      内聚力(MPa) 21.30 16.93 14.74 17.00
      摩擦系数(μ) 0.437 0.480 0.590 0.610
      抗张强度(T)(MPa) 10.65 8.47 7.37 8.50
      范围(Tμ) 7.37 < T < 10.65 0.437 < μ < 0.610
      下载: 导出CSV
    • [1] Berg, R. R., 1975. Capillary Pressures in Stratigraphic Traps. American Association of Petroleum Geologists Bulletin, 59(5):939-956.
      [2] Duan, W., Chen, J. D., Luo, C. F., et al., 2013. Effects of Formation Overpressure on Diagensis in the Dongfang Block of Yinggehai Basin. Acta Petrolei Sinica, 34(6):1049-059(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201306003
      [3] Duan, W., Luo, C. F., Huang, X. S., et al., 2015. Effects of Formation Overpressure on Mudstone Diagenesis and Its Geological Significance in LD Block of Yinggehai Basin. Geological Science and Technology Information, 34(4):43-50(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201504007
      [4] Engelder, T., Lacazette, A., 1990. Natural Hydraulic Fracturing. Rock Joints, Rotterdam, AA Balkema, 35-44.
      [5] Fan, C. W., 2018a. Tectonic Deformation Features and Petroleum Geological Significance in Yinggehai Large Strike-Slip Basin, South China Sea. Petroleum Exploration and Development, 45(2):190-198(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syktykf201802002
      [6] Fan, C. W., 2018b. The Evolution, Characteristics and Identification of Transportation System Caused by High Pressure in Yinggehai and Qiongdongnan Basin. Oil & Gas Geology, 39(2):254-267(in Chinese with English abstract).
      [7] Feng, C., Huang, Z. L., Tong, C. X., et al., 2011. Comprehensive Evaluation on the Sealing Ability of Mudstone Cap Rock in Member 2 of Yinggehai Formation of Yinggehai Basin. Journal of Earth Sciences and Environment, 33(4):373-377(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201104007
      [8] Fu, G., Chen, Z. M., Lü, Y. F., et al., 1998. Comprehensive Evaluation on Sealing Ability of Mudstone Caprock. Experimental Petroleum Geology, 20(1):80-86(in Chinese with English abstract).
      [9] Fu, G., Pang, X. Q., 1996. Method for Researching on Mud-Caprock Sealing Ability with the Use of Interval Transit Times. Oil Geophysical Prospecting, 31(4):521-529(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600509071
      [10] Fu, G., Wang, Y. G., Su, Y. P., 2006. Evolution Law for Sealing of Overpressured Mudstone Caprock and Its Research Significance. Acta Mineralogica Sinica, 26(4):453-458(in Chinese with English abstract).
      [11] Fu, X. F., Wu, T., Lv, Y. F., et al., 2018. Research Status and Development Trend of the Reservoir Caprock Sealing Properties. Oil & Gas Geology, 39(3):454-471(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201803004
      [12] Hao, F., Liu, J. Z., Zou, H. Y., et al., 2015. Mechanisms of Natural Gas Accumulation and Leakage in the Overpresssured Sequences in the Yinggehai and Qiongdongnan Basins, Offshore South China Sea. Earth Science Frontiers, 22(1):169-180(in Chinese with English abstract).
      [13] Huang, B. J., 2002. Genetic Types and Migration-Accumulation Dynamics of Natural Gases in the Ying-Qiong Basin, the South China Sea(Dissertation). State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Guangzhou(in Chinese with English abstract).
      [14] Huang, Y. T., Yao, G. Q., Zhou, F. D., 2016. Provenance Analysis and Petroleum Geological Significance of Shallow-Marine Gravity Flow Sandstone for Huangliu Formation of Dongfang Area in Yinggehai Basin, the South China Sea. Earth Science, 41(9):1526-1542(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201609008
      [15] Hubbert, M. K., Rubey, W. W., 1959.Role of Fluid Pressures in Mechanics of Over Thrust Faulting. Geological Society of America Bulletin, 70(2):115-206. doi: 10.1130/0016-7606(1959)70[115:ROFPIM]2.0.CO;2
      [16] Jia, R., 2018. The Integrity of Caprocks and Gas Accumulation in Yingqiong Basin(Dissertation). Northeast Petroleum University, Daqing(in Chinese with English abstract).
      [17] Jiang, F. J., Pang, X. Q., OuYang, X., et al., 2012. The Main Progress and Problems of Shale Gas Study and the Potential Prediction of Shale Gas Exploration. Earth Science Frontiers, 19(2):198-211(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201202030
      [18] Li, M. C., 2004. Oil and Gas Migration. Petroleum Industry Press, Beijing (in Chinese with English abstract).
      [19] Liu, Z. J., Lu, Z. Q., Zhang, W., et al., 2015. Assessment of Accumulation Conditions for Medium-Deep Oil in Ledong Area of the Central Diaper Belt, Yinggehai Basin. Marine Geology & Quaternary Geology, 35(4):49-61(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201504007
      [20] Lü, Y. F., Fu, G., Gao, D. L., et al., 1996. Research on Oil and Gas Reservoir Sealing. Petroleum Industry Press, Beijing (in Chinese with English abstract).
      [21] Mallon, A. J., Swarbrick, R. E., 2008. Diagenetic Characteristics of Low Permeability, Non-Reservoir Chalks from the Central North Sea. Marine and Petroleum Geology, 25(10):1097-1108. https://doi.org/10.1016/j.marpetgeo.2007.12.001
      [22] Mourgures, R., Gressier, J. B., Bodet, L., et al., 2011. "Basin Scale" Versus "Localized" Pore Pressure/Stress Coupling-Implications for Trap Integrity Evaluation. Marine and Petroleum Geology, 28(5):1111-1121. https://doi.org/10.1016/j.marpetgeo.2010.08.007
      [23] Ozkaya, I., 1986. Analysis of Natural Hydraulic Fracturing of Shales during Sedimentation. SPE Production Engineering, 1(3):191-194. https://doi.org/10.2118/13343-pa
      [24] Phillips, W. J., 1972. Hydraulic Fracturing and Mineralization. Journal of the Geological Society, 128(4):337-359. https://doi.org/10.1144/gsjgs.128.4.0337
      [25] Ren, J. Y., Lei, C., 2011. Tectonic Stratigraphic Framework of Yinggehai-Qiongdongnan Basins and Its Implication for Tectonic Province Division in South China Sea. Chinese Journal of Geophysics, 52(12):3303-3314(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201112028
      [26] Tian, D. M., Jiang, T., Zhang, D. J., et al., 2017. Genesis Mechanism and Characteristics OD Submarine Channel:a Case Study of the First Member of Yinggehai Formation in Ledong Area of Yinggehai Basin. Earth Science, 42(1):130-139(in Chinese with English abstract).
      [27] Wan, Z. F., Xia, B., Xu, L. F., et al., 2010. Study on the Dynamic Mechanism of Tectonic Evolution in Yinggehai Basin. Marine Science Bulletin, 29(6):654-657. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hytb201006010
      [28] Wang, Y., Pei, J. X., Liu, Y., 2016. Caprock Sealing Mechanism of High-Temperature and Overpressure Gas Reservoirs in the Dongfang Block, Yinggehai Basin, South China. Geology and Mineral Resources of South China, 32(4):397-405(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hndzykc201604010
      [29] Watts, N. L., 1987. Theoretical Aspects of Cap-Rock and Fault Seals for Single- and Two-Phase Hydrocarbon Columns. Marine and Petroleum Geology, 4(4):274-307. https://doi.org/10.1016/0264-8172(87)90008-0
      [30] Xie, Y. H., Li, X. S., Tong, C. X., et al., 2015a. High Temperature and High Pressure Gas Enrichment Condition, Distribution Law and Accumulation Model in Central Diapir Zone of Yinggehai Basin. China Offshore Oil and Gas, 27(4):1-12(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-gc201504001
      [31] Xie, Y. H., Li, X.S., Tong, C. X., et al., 2015b. High Temperature and High Pressure Natural Gas Accumulation Theory and Exploration Practice in YingQiong Basin. Petroleum Industry Press, Beijing (in Chinese with English abstract).
      [32] Xie, Y. H., Liu, P., Huang, Z. L., 2012. Geological Conditions and Pooling Process of High-Temperature and Overpressure Natural Gas Reservoirs in the Yinggehai Baisn. Natural Gas Industry, 32(4):19-23(in Chinese with English abstract).
      [33] Zhao, B. F., Chen, H. H., Kong, L., et al., 2014. Vertical Migration System and Its Control on Natural Gas Accumulation in Yinggehai Basin. Earth Science, 39(9):1323-1332(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201409008
      [34] Zhou, X. Y., Wei, K. S., 2000. Sequence Stratigraphy and Source Reservoir Cap Rock Assemblage of QDN Basin. Oil & Gas Geology, 21(3):244-248(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz200003012
      [35] Zhou, Y., Jin, Z. J., Zhu, D.Y., et al., 2012. Current Status and Progress in Research of Hydrocarbon Cap Rocks. Experimental Petroleum Geology, 34(3):234-251(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201203002
      [36] 段威, 陈金定, 罗程飞, 等, 2013.莺歌海盆地东方区块地层超压对成岩作用的影响.石油学报, 34(6):1049-1059. http://d.old.wanfangdata.com.cn/Periodical/syxb201306003
      [37] 段威, 罗程飞, 黄向胜, 等, 2015.莺歌海盆地LD区块地层超压对泥岩成岩作用的影响及其地质意义.地质科技情报, 34(4):43-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201504007
      [38] 范彩伟, 2018a, 莺歌海大型走滑盆地构造变形特征及其地质意义.石油勘探与开发, 45(2):190-198. http://d.old.wanfangdata.com.cn/Periodical/syktykf201802002
      [39] 范彩伟, 2018b.莺-琼盆地高压成因输导体系特征、识别及其成藏过程.石油与天然气地质, 39(2):254-267. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201802005
      [40] 冯冲, 黄志龙, 童传新, 等, 2011.莺歌海盆地莺歌海组二段泥岩盖层封闭性综合评价.地球科学与环境学报, 33(4):373-377. doi: 10.3969/j.issn.1672-6561.2011.04.007
      [41] 付广, 陈章明, 吕延防, 等, 1998.泥质岩盖层封盖性能综合评价方法探讨.石油实验地质, 20(1):80-86.
      [42] 付广, 庞雄奇, 1996.利用声波时差资料研究泥岩盖层封闭能力的方法.石油地球物理勘探, 31(4):521-529. doi: 10.3321/j.issn:1000-7210.1996.04.008
      [43] 付广, 王有功, 苏玉平, 2006.超压泥岩盖层封闭性演化规律及其研究意义.矿物学报, 26(4):453-458. doi: 10.3321/j.issn:1000-4734.2006.04.015
      [44] 付晓飞, 吴桐, 吕延防, 等, 2018.油气藏盖层封闭性研究现状及未来发展趋势.石油与天然气地质, 39(3):454-471. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201803004
      [45] 郝芳, 刘建章, 邹华耀, 等, 2015.莺歌海-琼东南盆地超压层系油气聚散机理浅析.地学前缘, 22(1):169-180.
      [46] 黄保家, 2002.莺琼盆地天然气成因类型及成藏动力学研究(博士学位论文).广州: 中国科学院广州地球化学研究所. http://cdmd.cnki.com.cn/Article/CDMD-80165-2003041927.htm
      [47] 黄银涛, 姚光庆, 周锋德, 2016.莺歌海盆地黄流组浅海重力流砂体物源分析及油气地质意义.地球科学, 41(9):1526-1542. http://earth-science.net/WebPage/Article.aspx?id=3358
      [48] 贾茹, 2018.莺琼盆地盖层完整性及与天然气成藏(硕士学位论文).大庆: 东北石油大学.
      [49] 姜福杰, 庞雄奇, 欧阳学, 等, 2012.世界页岩气研究概况及中国页岩气资源潜力分析.地学前缘, 19(2):198-211. http://d.old.wanfangdata.com.cn/Periodical/dxqy201202030
      [50] 李明诚, 2004.石油与天然气运移.北京:石油工业出版社.
      [51] 刘志杰, 卢振权, 张伟, 等, 2015.莺歌海盆地中央泥底辟带东方区域乐东区中深层成藏地质条件.海洋地质与第四纪地质, 35(4):49-61.
      [52] 吕延防, 付广, 高大岭, 等, 1996.油气藏封盖研究.北京:石油工业出版社.
      [53] 任建业, 雷超, 2011.莺歌海-琼东南盆地构造-地层格架及南海动力变形分区.地球物理学报, 52(12):3303-3314. doi: 10.3969/j.issn.0001-5733.2011.12.028
      [54] 田冬梅, 姜涛, 张道军, 等, 2017.海底水道特征及其成因机制:以莺歌海盆地乐东区莺歌海组一段为例.地球科学, 42(1):130-139. http://earth-science.net/WebPage/Article.aspx?id=3420
      [55] 万志峰, 夏斌, 徐力峰, 等, 2010.莺歌海盆地构造演化动力学机制探讨.海洋通报, 29(6):654-657. doi: 10.3969/j.issn.1001-6392.2010.06.010
      [56] 汪洋, 裴健翔, 刘亿, 2016.莺歌海盆地东方区高温超压气藏盖层封盖机制.华南地质与矿产, 32(4):397-405. doi: 10.3969/j.issn.1007-3701.2016.04.010
      [57] 谢玉洪, 李绪深, 童传新, 等, 2015a.莺歌海盆地中央底辟带高温高压天然气富集条件、分布规律和成藏模式.中国海上油气, 27(4):1-12. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201504001
      [58] 谢玉洪, 李绪深, 童传新, 等, 2015b.莺琼盆地高温超压天然气成藏理论与勘探实践.北京:石油工业出版社.
      [59] 谢玉洪, 刘平, 黄志龙, 2012.莺歌海盆地高温超压天然气成藏地质条件及成藏过程.天然气工业, 32(4):19-23. doi: 10.3787/j.issn.1000-0976.2012.04.005
      [60] 赵宝峰, 陈红汉, 孔令涛, 等, 2014.莺歌海盆地流体垂向输到体系及其对天然气成藏的控制作用.地球科学, 39(9):1323-1332. http://earth-science.net/WebPage/Article.aspx?id=2943
      [61] 周小鹰, 魏魁生, 2000. QDN盆地层序地层及生储盖组合分析.石油与天然气地质, 21(3):244-248. doi: 10.3321/j.issn:0253-9985.2000.03.012
      [62] 周雁, 金之钧, 朱东亚, 等, 2012.油气盖层研究现状与认识进展.石油实验地质, 34(3):234-251. doi: 10.3969/j.issn.1001-6112.2012.03.002
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  5215
    • HTML全文浏览量:  1800
    • PDF下载量:  56
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-01-26
    • 刊出日期:  2019-08-15

    目录

      /

      返回文章
      返回