Risk Assessment of Aquifer Destruction in Underground Mining Coal of North China: A Case Study of Hongshan Mine in Zibo City
-
摘要: 煤矿由建设到关闭后多年的生命过程都对含水层具有破坏作用,造成生态环境破坏、影响社会经济发展,其风险具有长期性.在华北煤田水文地质结构及矿山地质环境问题分析的基础上,总结了含水层破坏形式及其风险组成,提出了含水层破坏风险评估与管理的技术思路.利用淄博洪山煤矿从开采到关闭多年的试验和监测数据开展了实证研究.结果表明:(1)矿业活动对含水层破坏形式表现为含水层结构破坏、地下水流场变化和地下水污染3类,洪山煤矿奥灰水遭受破坏的可能性高,危险性低、中等和高的危险区面积分别为20.61、22.39、19.26 km2;(2)社会、经济和生态易损性由破坏性、脆弱性和可恢复性三项指标表达,洪山煤矿社会经济高度依赖奥灰水,其易损性高.(3)含水层破坏风险是可利用地下水资源量减少、生态环境恶化、社会经济负面影响及其长期效应的综合表达,洪山煤矿关闭后奥灰水遭受破坏的风险高.Abstract: The problem of aquifer destruction persists in the whole life cycle of coal mine, which has long-term effect on ecology and social economy. In order to analyze the risk of aquifer destruction in underground mining coal, this paper proposes a technical framework of risk assessment and management of aquifer destruction on the basis of analyses of the hydrogeologic structure and aquifer destruction mode of main coal mines of North China. The technical framework was applied to the risk analyses of the aquifer destruction of Hongshan mine, Zibo City, using the monitoring data. It is found that: (i) The aquifer destruction of mining coal includes three categories: aquifer structure's destruction, change of groundwater flow field, and groundwater contaminants. In Hongshan mine, Ordovician limestone water has a high probability of destruction, and hazard areas with high, moderate and low risk are 20.61 km2, 22.39 km2 and 19.26 km2 respectively. (ii) Vulnerabilities of society, economy and ecology depend on three indexes of damage, fragility and resilience. The social economy of Hongshan mine depends highly on Ordovician limestone water and has high vulnerability for limestone aquifer destruction. (iii) The risk of aquifer destruction is from available groundwater resources reduction, ecological degradation and social-economic recession. It is suggested that Hongshan mine closure increased the aquifer destruction risk.
-
Key words:
- coal mine /
- aquifer destruction /
- mine life cycle /
- risk assessment /
- hydrogeology
-
图 3 含水层破坏形式示意图
据李庭(2014)修改. 1.孔隙水水位;2.煤层水水位;3.岩溶水水位;4.矿山疏干降落后水位;5.开采期含水层间水流方向;6.闭矿后水流方向;7.关闭前后一致的水流方向
Fig. 3. Schematic diagram of aquifer destruction
图 4 矿山不同开采阶段含水层破坏风险组成
1.奥灰水;2.含煤地层内地下水;3.孔隙水;4.包气带水;5.矿山抽排或破坏水资源量;6.社会、经济发展需要水资源量(不包括矿山排水);7.含水层可利用资源量. ①②③④为矿山排水浪费的总水量以及来自奥灰水、煤层水和孔隙水的水量;⑤⑥⑦⑧为矿山地下水污染地下水总量以及分配到奥灰水、煤层水和孔隙水的水量. A、B、C为某时段社会经济发展对各含水层的需水量;a、b、c为某时段各含水层的可利用资源量;d、e、f为矿业活动造成各含水层可利用水资源的减少量;g为矿业活动造成包气带水资源的减少量.来自于淄川区用水结构分析,上述资源量均处于波动状态
Fig. 4. Risk of aquifer destruction at different mining stages
图 7 洪山矿区奥陶系岩溶水文地质图
1.裸露型1 000~5 000 m3/d;2.裸露型500~1 000 m3/d;3.裸露型 < 500 m3/d;4.隐伏型 > 5 000 m3/d;5.隐伏型1 000~5 000 m3/d;6.隐伏型500~1 000 m3/d;7.隐伏型 < 500 m3/d;8.背斜轴线;9.向斜轴线;10.行政边界;11.水文地质单元边界;12.实测断裂、推测断裂;13.本次施工水文地质勘察钻孔兼岩溶水替代供水井;14.岩溶地下水开采孔井;13.奥灰顶界埋深等值线(m);14.岩溶地下水流向;15.水文地质剖面线位置及编号;16.裂隙岩溶含水层埋深类型界线及富水性分区界线
Fig. 7. The karst hydrogeologic map of Hongshan mining area
图 8 洪山矿区水文地质剖面
1.第四系临沂组;2.奎山组砂岩裂隙含水层;3.万山组泥岩夹砂岩裂隙含水层;4.黑山组砂岩裂隙含水层;5.山西组砂岩裂隙含水层;6.太原组砂岩夹灰岩裂隙为主含水层;7.本溪组隔水层;8.马家沟组灰岩裂隙岩溶含水层;9.三山组白云岩裂隙岩溶含水层;10.炒米店组灰岩弱含水层;11. 2014年9月21日枯水期地下水等水位线;12.含水层界线及代号;13.煤系地下水或矿坑水边界范围;14.煤层及代号;15.推测断裂及产状;16.岩溶地下水流向;17.煤系地下水流向
Fig. 8. Hydrogeologic profile of Hongshan mining area
表 1 华北典型煤矿地质环境问题
Table 1. Geo-environment problems of the typical coal mines in North China
生产基地 典型煤矿 主要矿山地质环境问题 山西基地 西山矿区 地面塌陷、地裂缝、煤矸石压占土地、岩溶地下水位下降,年下降速度1~2 m、晋祠泉流量减少、酸性矿坑水等(徐友宁,2006; 冉曦等,2018) 阳泉矿区 地面塌陷、地裂缝、煤矸石压占土地、地下水位下降,河水断流、水质恶化(王慧明和余波,2014) 冀中基地 开滦矿区 地面塌陷、地裂缝、煤矸石压占土地、局部地下水位下降(杨居荣等,1999) 峰峰矿区
邯郸矿区地面塌陷、地裂缝、煤矸石压占土地、局部地下水位下降,黑龙洞泉群发生断流,矿区地下水硝酸盐氮超标数占总监测点数的86%,岩溶突水(闫玉梅等,2010; 郝春明等,2015) 鲁西基地 兖州矿区 煤矸石压占土地、地面塌陷积水、地裂缝、岩溶突水 淄川矿区 煤矸石压占土地、串层污染奥灰水,酸性矿坑水、岩溶突水(常允新等,1999;张秋霞等,2015) 河南基地 永城矿区 地面塌陷积水、地裂缝、煤矸石压占土地、地表水,地下水污染(李树志等,2014) 焦作矿区 地面塌陷、地裂缝、煤矸石压占土地、地下水位下降、孔隙水污染、矿坑突水(孙越英等,2006) 两淮基地 淮南和淮北 地面塌陷积水、地裂缝、煤矸石压占土地、煤矸石堆滑塌、地表水和地下水污染(李树志等,2014) 表 2 含水层破坏可能性指标体系分级
Table 2. Index system and classification of mine aquifer destruction possibility
序号 评价指标 等级划分依据 含水层破坏可能性及评分 高(7,10] 中(4,7] 低[1,4] 1 A1 断层性质 张性
断层扭性
断层压性
断层2 A2 煤矿“三下”开采规程 导通隔水底板 接近隔水底板 远离隔水底板 3 A3 煤矿“三下”开采规程 导通隔水顶板 接近隔水顶板 远离隔水顶板 4 B1(km) 《环境影响评价技术导则地下水环境》(HJ 610-2011) ≥1.5 0.5~1.5 ≤0.5 5 B2 已闭坑的,真实的回弹水位;未闭坑的,闭坑回弹水位用矿井开始开采时的水位代替 高于 近似 低于 6 B3 (m) 统计数据 ≥60 30~60 ≤30 7 B4 (m/d) 含水层渗透系数经验值 ≥50 10~50 ≤10 8 B5 《环境影响评价技术导则地下水环境》(HJ 610-2011) 复杂 中等 简单 9 C1 (km2) 统计数据 ≥100 30~100 ≤30 10 C2 《地下水质量标准(GB-T14848-93)》 V类 IV类 I~III类 11 C3 地下水流向 正下游 侧下游 上游 12 C4 (个) 专家咨询 ≥6 3~6 ≤3 表 3 社会经济易损性分析
Table 3. The vulnerability analysis of social economic
一级指标 二级指标 等级划分依据 易损性等级及分值 高(7,10] 中(4,7] 低[1, 4] 破坏性(D) 可利用资源量减少比例(D1) 专家咨询 ≥30% 10%~30% ≤10% 居民接触有毒有害地下水的频率和方式(D2) 参见《中国人群暴露参数手册》* 经口暴露,长期以污染地下水为主要饮用水源,或摄入以污染水灌溉的植物和农作物,受污染水源影响的鱼、虾、贝类以及其他动物等 经口暴露,摄入以污染水灌溉的植物和农作物,受污染水源影响的鱼、虾、贝类以及其他动物等 经皮肤暴露,在污染地下水中洗澡或游泳 脆弱性(F) 对目标含水层的依赖性(F1) 统计数据 目标含水层供水率≥50% 50% > 目标含水层供水率 > 20% 目标含水层供水率≤20% 当地用水紧张程度(F2) 统计数据 F2≤50% 50% < F2 < 80% F2≥80% 是否存在可替代水源(F3) 专家咨询 不存在 存在但不充分 存在且较充分 恢复能力(R) 含水层自我修复能力(R1) 相关文献**及专家咨询 含水层系统相对封闭;主要污染物衰减率≤5% 含水层系统水循环速度较慢;5% < 主要污染物衰减率 < 15% 含水层系统水循环较快;主要污染物衰减率≥15% 社会经济调整或恢复能力(R2) 参见《取水用水定额标准与法律法规汇编》*** 重点发展需水量大的火力发电、造纸、纺织、化工等产业 发展需水量中等的食品加工、建材等产业 重点发展需水量小的金融、旅游、餐饮、教育、高新产业作为替代产业 注:D1 = d/(a+d),a为某时段目标含水层的可利用资源量,d为矿业活动造成目标含水层可利用水资源的减少量. F2为人均可利用资源量与国家标准的比值,国家标准为2 300 m3/人. *.环境保护部, 2013.中国人群暴露参数手册.北京:中国环境出版社. **.钟春里, 2011.岩溶管道系统中污染物扩散及地下水自净能力研究——贵州某磷石膏堆场为例.贵州地质, 2(28): 126-130. ***.中国水利水电科学研究院, 2006.取水用水定额标准与法律法规汇编.北京:中国标准出版社. 表 4 洪山矿区含水层破坏可能性指标体系及评分
Table 4. The possibility index system and score of aquifer destruction in Hongshan mining area
破坏形式 指标层 研究区状态 评价等级 评分 权值 含水层
结构破坏A1 部分压性断层转变为张性断层 高 8 0.043 0 A2 破坏带影响深度在10~20 m,接近隔水底板 中 7 0.065 3 A3 部分直接导通隔水底板,大多接近隔水底板 高 10 0.099 0 地下水流场变化 B1 (km) ≥1.5 高 9 0.114 5 B2 高于 高 9 0.075 7 B3 (m) > 60 中 6 0.114 5 B4 (m/d) 9.5 低 4 0.173 2 含水层水质恶化 B5 复杂 高 9 0.060 0 C1 (km2) 27.6 低 4 0.047 6 C2 V类 高 9 0.068 4 C3 正下游 高 10 0.042 8 C4 (个) > 6 高 10 0.099 6 表 5 洪山矿区含水层破坏易损性指标体系及评分
Table 5. The vulnerability index system and score of aquifer destruction in Hongshan mining area
破坏形式 指标层 研究区状态 评价等级 评分 权值 破坏性 D1 ≥30% 高 8 0.117 4 D2 饮用水源经口暴露 高 10 0.364 0 脆弱性 F1 供水率为56% 高 9 0.058 0 F2 人均地下水可利用资源量较全国人均值少66.7% 高 9 0.087 6 F3 存在但不充分 中 6 0.132 9 恢复能力 R1 含水层系统水循环较快 低 4 0.058 6 R2 需水量大的第二产业在地方产业结构中占比最大 高 8 0.181 7 -
[1] Cardona, O. D.. 2011. Disaster Risk and Vulnerability: Concepts and Measurement of Human and Environmental Insecurity. In: Brauch, H.G., ed., Hexagon Series on Human and Environmental Security and Peace. Springer, Berlin. https://doi.org/10.1007/978-3-642-17776-7_3 [2] Chai B., Li, Y. Y., Tang, Z. H., et al. 2014. Study on Coal Mine Geological Environment Risk in Heshan, Guangxi. China University of Geosciences Press, Wuhan (in Chinese). [3] Chang Y.X., Feng Z.M., Han D.G.. 1999. Origin and Prevention of Underground Water Pollution in Hongshan and Zhaili Coal Mine Areas in Zibo City. Geology of Shandong, 15(1): 41-45 (in Chinese with English abstract). [4] Duzgun, H. S. B., Einstein, H. H.. 2004. Assessment and Management of Roof Fall Risks in Underground Coal Mines. Safety Science, 42(1): 23-41. https://doi.org/10.1016/s0925-7535(02)00067-x http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9ca6a83f67d1ebb499af68654b0d12cd [5] Einstein, H. H..1988.Landslide Risk Assessment Procedure. Landslides, 2(5): 1075-1090. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ022390902/ [6] Fan, N. 2007. The Research on the Characteristic and Evolution Tendency of Water Resources in Zichuan Area of Zibo City (Dissertation). Hohai University, Nanjing (in Chinese with English abstract). [7] Fell R.. 1994. Landslide Risk Assessment and Acceptable Risk. Canadian Geotechnical Journal, 31(2): 261-272. https://doi.org/10.1139/t94-031 http://d.old.wanfangdata.com.cn/Periodical/zhx201501026 [8] Fell R., Corominas J., Bonnard C., et al. 2008. Guidelines for Landslide Susceptibility, Hazard and Risk Zoning for Land Use Planning. Engineering Geology, 102(3-4): 85-98. https://doi.org/10.1016/j.enggeo.2008.03.022 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=85dc8c69cc09e1b8acedd9536059e1da [9] Fourie A., Brent A.C.. 2006. A Project-Based Mine Closure Model (MCM) for Sustainable Asset Life Cycle Management. Journal of Cleaner Production, 14(12-13): 1085-1095. https://doi.org/10.1016/j.jclepro.2004.05.008 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=899b0785fa442d0442183a6d045b1440 [10] Hao C.M., Sun W., He P.Y., et al. 2015. The Impact of nearly 30 Years Mining Activities on the Hydrochemistry Characteristic of Karst Groundwater in Fengfeng Coal Mining Area. China Mining Magazine, 24(1): 45-51 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgky201501010 [11] Jin D.W.. 2002. Research Status and Outlook of Water Outburst from Seam Floor in China Coal Mines. Coal Science and Technology, 30(6): 1-4 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtkxjs200206001 [12] Kim, J. Y., Kim, K. W., Ahn, J. S., et al. 2005. Investigation and Risk Assessment Modeling of as and Other Heavy Metals Contamination around Five Abandoned Metal Mines in Korea. Environmental Geochemistry and Health, 27(2): 193-203. https://doi.org/10.1007/s10653-005-0127-2 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=90d600a1c756048acc452538516e72f3 [13] Lee, S. W., Lee, B. T., Kim, J. Y., et al. 2006. Human Risk Assessment for Heavy Metals and as Contamination in the Abandoned Metal Mine Areas, Korea. Environmental Monitoring and Assessment, 119(1-3): 233-244. https://doi.org/10.1007/s10661-005-9024-5 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8d7f24c24fddb08d0e50747882f6c888 [14] Li, B.Y. 1999. "Down Three Zones" in the Prediction of the Water Inrush from Coalbed Floor Aquifer Theory, Development and Application. Journal of Shandong Mining Institute, 18(4): 11-18 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=7c3efd3edcca375d7ea93993b78d2e3e&encoded=0&v=paper_preview&mkt=zh-cn [15] Li Q.M., Zhai L.J., Fu Y.J., et al. 2012. A Study on Coal Mining Aquifer Destruction Mode in North China Typed Coalfields. Coal Geology of China, 24(7): 38-43 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgmtdz201207009 [16] Li, S.Z.. 2014. Present Status and Outlook on Land Damage and Reclamation Technology of Mining Subsidence Area in China. Coal Science and Technology, 42(1): 93-97 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/mtkxjs201401023 [17] Li, T.. 2014. Study on Groundwater Pollution Risk Assessment of Abandoned Coal Mine (Dissertation). China University of Mining and Technology, Xuzhou (in Chinese with English abstract). [18] Liu X., Song Q., Tang Y., et al.2013.Human Health Risk Assessment of Heavy Metals in Soil-Vegetable System: A Multi-Medium Analysis. Science of the Total Environment, 463-464:530-540. https://doi.org/10.1016/j.scitotenv.2013.06.064 http://cn.bing.com/academic/profile?id=0617b2f8210ef7b098c380b2ef5d812b&encoded=0&v=paper_preview&mkt=zh-cn [19] Lu G.P., Wang G.Z., Wang Y.B.. 1989. Study on the Influence of Groundwater Contamination Polluted by Coal Gangue Leachate. Environmental Science and Technology, 9(5): 32-45 (in Chinese). https://www.sciencedirect.com/science/article/pii/S0964830517300719 [20] Lü H., Liu H.L., Ma Z.M., et al. 2005. Formation and Influential Factors of Zibo City Hongshan and Zhaili Coalmines Underground Water Cross Strata Pollution. Coal Geology of China, 17(4): 24-27, 31 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgmtdz200504008 [21] Mei S.H., Sheng Q., Li W.X.. 2004. Research Advances in Surface and Rock-Mass Movement. Chinese Journal of Rock Mechanics and Engineering, 23(S1): 4535-4539 (in Chinese with English abstract). [22] Qin Z.J., Lin Y.S., Yuan D.X., et al. 2012. A Discussion on Mine and Water Pollution Problems in Karst Areas in Southwest China. Acta Geoscientica Sinica, 33(3): 341-348 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201203008 [23] Ran X., Gu P., Lian L.L., et al. 2018. Impact of Coal Mining and Karst Water Exploitation on Outflow of Jinci Spring: Stochastic Model Analysis. Journal of Yangtze River Scientific Research Institute, 35(6): 154-158 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/cjkxyyb201806028 [24] Sun, Y.Y., Wang, X.M., Yang, J.H.. 2006. The Influence of Mine Drainage on the Environment of Underground Water in Jiaozuo Coal Mine. Resources Survey & Environment, 27(4): 317-324 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hsdzykc200604012 [25] Tang Z.H..2013.Limestone Mine Geological Environment Risk Assessment and Management.China University of Geosciences Press, Wuhan (in Chinese). [26] Voulvoulis N., Skolout, J. W. F., Oates, C. J., et al. 2013. From Chemical Risk Assessment to Environmental Resources Management: The Challenge for Mining. Environmental Science and Pollution Research, 20(11): 7815-7826. https://doi.org/10.1007/s11356-013-1785-8 http://cn.bing.com/academic/profile?id=3c4e66a1b6e76d642170c43897b98e8e&encoded=0&v=paper_preview&mkt=zh-cn [27] Wang F., Yin K.L., Gui L., et al. 2018. Risk Analysis on Individual Reservoir Bank Landslide and Its Generated Wave. Earth Science, 43(3): 899-909 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201803018 [28] Wang H.M., Yu B.. 2014. Mine Geological Environment Impact Evaluation and Protection Management Research: Taking Yangquan Mining Area in Shanxi Province as An Example. Soil and Water Conservation Science and Technology in Shanxi, (1): 17-21 (in Chinese). https://www.sciencedirect.com/science/article/pii/S2211464516302019 [29] Wei Y., Gu H.B., Xue L., et al. 2012. Review of Studies on Reclamation and Ecological Restoration of Abandoned Land of Mine. Science of Soil and Water Conservation, 10(2): 107-114 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgstbckx201202019 [30] Wu Q., Chen, Q.. 2008. An Analysis of Environmental Effects Induced by Environmental Problems in Mines. Hydrogeology & Engineering Geology, 35(5): 81-85 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz200805019 [31] Wu Q., Zhao S.Q., Sun W.J., et al. 2013. Classification of the Hydrogeological Type of Coal Mine and Analysis of Its Characteristics in China. Journal of China Coal Society, 38(6): 901-905 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/mtxb201306001 [32] Xu Y.X..2006.Investigation and Evaluation of Mine Environmental Geological Problems in Northwest China. Geological Publishing House, Beijing (in Chinese). [33] Xu Y.N., Li Z.P., Chen H.Q., et al. 2008. Environmental-Geological Problems of Coal Mine Areas Induced by Coal Exploitation in Frangible Eco-Environment Areas: A Case Study of the Daliuta Coal Mine Area, Shenmu County, Shaanxi, China. Geological Bulletin of China, 27(8): 1344-1350 (in Chinese with English abstract). [34] Yan Y.M., Qin P., Wu Z.L., et al. 2010. Influence on the Karst Groundwater Environment by Coal Mining in the Fengfeng Coalmine Area. China Mining Magazine, 19(S1): 120-125 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=effe7c838129269127d9c923678b610b&encoded=0&v=paper_preview&mkt=zh-cn [35] Yang J.R., Tian R.N., Zhao Y.X., et al. 1999. The Ecological Reclamation of Subsided Land Aroused by Coal Mine—A Case Study from Kailuan Coal Mine in Tangshan. China Environmental Science, 19(1): 85-90 (in Chinese with English abstract). [36] Yang, Y.. 2017. Evalution on High Pobabilistic Seismic-Led Heavy Metal Non-Point Source Pollution. Earth Science, 42(10): 1842-1850 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201710017 [37] Younger, P. L..2002.Coalfield Closure and the Water Environment in Europe.Transactions of the Institutionof Mining and Metallurgy (Section A:Mining Technology), 111(3): A201-A209. http://cn.bing.com/academic/profile?id=8c411106a0cfe30c2e708e0f6cd09540&encoded=0&v=paper_preview&mkt=zh-cn [38] Yu F.F.. 2017. Research on the Construction of New Industrial System in Zibo. Modern Society, (10): 70-72 (in Chinese). [39] Zhang Q.X., Zhou J.W., Lin S.H., et al. 2015. Characteristics and Causes of Groundwater Pollution after Hongshan-Zhaili Mine Closure in Zibo. Safety and Environmental Engineering, 22(6): 23-28 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzktaq201506005 [40] 柴波, 李远耀, 唐朝晖, 等.2014.广西合山煤炭矿山地质环境风险研究.武汉: 中国地质大学出版社. [41] 常允新, 冯在敏, 韩德刚. 1999.淄博市洪山、寨里煤矿地下水污染形成原因及防治.山东地质, 15(1): 41-45. [42] 范宁. 2007.淄博市淄川区水资源特性与演变情势研究(硕士学位论文).南京: 河海大学. [43] 郝春明, 孙伟, 何培雍, 等. 2015.近30年煤矿开采影响下峰峰矿区岩溶地下水水化学特征的演变.中国矿业, 24(1): 45-51. http://d.old.wanfangdata.com.cn/Periodical/zgky201501010 [44] 靳德武. 2002.我国煤层底板突水问题的研究现状及展望.煤炭科学技术, 30(6): 1-4. http://d.old.wanfangdata.com.cn/Periodical/mtkxjs200206001 [45] 李白英. 1999.预防矿井底板突水的"下三带"理论及其发展与应用.山东科技大学学报(自然科学版), 18(4): 11-18. http://www.cnki.com.cn/Article/CJFDTotal-SDKY199904004.htm [46] 李七明, 翟立娟, 傅耀军, 等. 2012.华北型煤田煤层开采对含水层的破坏模式研究.中国煤炭地质, 24(7): 38-43. http://d.old.wanfangdata.com.cn/Periodical/zgmtdz201207009 [47] 李树志. 2014.我国采煤沉陷土地损毁及其复垦技术现状与展望.煤炭科学技术, 42(1): 93-97. http://d.old.wanfangdata.com.cn/Periodical/mtkxjs201401023 [48] 李庭. 2014.废弃矿井地下水污染风险评价研究(博士学位论文).徐州: 中国矿业大学. [49] 卢广平, 王桂珍, 王玉彬. 1989.煤矸石山溢流水对地下水污染影响的研究.环境科技, 9(5): 32-45. http://www.cqvip.com/QK/90225X/198905/70724.html [50] 吕华, 刘洪量, 马振民, 等. 2005.淄博市洪山、寨里煤矿地下水串层污染形成原因及防治.中国煤田地质, 17(4): 24-27, 31. http://d.old.wanfangdata.com.cn/Periodical/zgmtdz200504008 [51] 梅松华, 盛谦, 李文秀. 2004.地表及岩体移动研究进展.岩石力学与工程学报, 23(S1): 4535-4539. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2004z1058 [52] 冉曦, 顾盼, 连雷雷, 等. 2018.采煤和岩溶水开采对晋祠泉出流影响的随机模型分析.长江科学院院报, 35(6): 154-158. http://d.old.wanfangdata.com.cn/Periodical/cjkxyyb201806028 [53] 孙越英, 王兴民, 阳结华. 2006.焦作煤矿区矿坑排水对地下水环境的影响.资源调查与环境, 27(4): 317-324. http://d.old.wanfangdata.com.cn/Periodical/hsdzykc200604012 [54] 覃政教, 林玉石, 袁道先, 等. 2012.西南岩溶区矿山与水污染问题探讨及建议.地球学报, 33(3): 341-348. http://d.old.wanfangdata.com.cn/Periodical/dqxb201203008 [55] 唐朝晖.2013.石灰岩矿山地质环境风险评价与管理.武汉: 中国地质大学出版社. [56] 王芳, 殷坤龙, 桂蕾, 等. 2018.单体库岸滑坡及其次生涌浪灾害风险分析.地球科学, 43(3): 899-909. doi: 10.3799/dqkx.2018.910 [57] 王慧明, 余波. 2014.矿山地质环境影响性评价及保护治理研究:以山西省阳泉矿区一矿为例.山西水土保持科技, (1): 17-21. http://d.old.wanfangdata.com.cn/Periodical/sxstbckj201401007 [58] 魏远, 顾红波, 薛亮, 等. 2012.矿山废弃地土地复垦与生态恢复研究进展.中国水土保持科学, 10(2): 107-114. http://d.old.wanfangdata.com.cn/Periodical/zgstbckx201202019 [59] 武强, 陈奇. 2008.矿山环境问题诱发的环境效应研究.水文地质工程地质, 35(5): 81-85. http://d.old.wanfangdata.com.cn/Periodical/swdzgcdz200805019 [60] 武强, 赵苏启, 孙文洁, 等. 2013.中国煤矿水文地质类型划分与特征分析.煤炭学报, 38(6): 901-905. http://d.old.wanfangdata.com.cn/Periodical/xzqykj201725068 [61] 徐友宁.2006.中国西北地区矿山环境地质问题调查与评价.北京: 地质出版社. [62] 徐友宁, 李智佩, 陈华清, 等. 2008.生态环境脆弱区煤炭资源开发诱发的环境地质问题:以陕西省神木县大柳塔煤矿区为例.地质通报, 27(8): 1344-1350. [63] 闫玉梅, 秦鹏, 吴振岭, 等. 2010.峰峰矿区煤炭开采对岩溶地下水环境的影响研究.中国矿业, 19(S1): 120-125. [64] 杨居荣, 田润浓, 赵玉霞, 等. 1999.采煤塌陷地的生态复垦——以唐山开滦煤矿为例.中国环境科学, 19(1): 85-90. http://d.old.wanfangdata.com.cn/Periodical/zghjkx199901021 [65] 杨妍. 2017.地震高概率区域潜在重金属面源污染风险评价.地球科学, 42(10): 1842-1850. doi: 10.3799/dqkx.2017.116 [66] 于菲菲. 2017.构建淄博市产业新体系问题研究.现代交际, (10): 70-72. http://d.old.wanfangdata.com.cn/Periodical/xiandaijj201710042 [67] 张秋霞, 周建伟, 林尚华, 等. 2015.淄博洪山、寨里煤矿区闭坑后地下水污染特征及成因分析.安全与环境工程, 22(6): 23-28. http://d.old.wanfangdata.com.cn/Periodical/dzktaq201506005