• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    琼东南盆地深水区频率域油气检测技术研究及应用

    刘仕友 孙万元 邓勇 廖键 汪锐

    刘仕友, 孙万元, 邓勇, 廖键, 汪锐, 2019. 琼东南盆地深水区频率域油气检测技术研究及应用. 地球科学, 44(8): 2603-2608. doi: 10.3799/dqkx.2019.087
    引用本文: 刘仕友, 孙万元, 邓勇, 廖键, 汪锐, 2019. 琼东南盆地深水区频率域油气检测技术研究及应用. 地球科学, 44(8): 2603-2608. doi: 10.3799/dqkx.2019.087
    Liu Shiyou, Sun Wanyuan, Deng Yong, Liao Jian, Wang Rui, 2019. Research and Application of Oil and Gas Detection Technology in Frequency Domain in Deep Water Area of Qiongdongnan Basin. Earth Science, 44(8): 2603-2608. doi: 10.3799/dqkx.2019.087
    Citation: Liu Shiyou, Sun Wanyuan, Deng Yong, Liao Jian, Wang Rui, 2019. Research and Application of Oil and Gas Detection Technology in Frequency Domain in Deep Water Area of Qiongdongnan Basin. Earth Science, 44(8): 2603-2608. doi: 10.3799/dqkx.2019.087

    琼东南盆地深水区频率域油气检测技术研究及应用

    doi: 10.3799/dqkx.2019.087
    基金项目: 

    国家重大专项:琼东南盆地深水区大中型气田形成条件与勘探关键技术 2016ZX05026-02

    详细信息
      作者简介:

      刘仕友(1982-), 高级工程师, 主要从事储层预测和烃类检测研究

    • 中图分类号: P588

    Research and Application of Oil and Gas Detection Technology in Frequency Domain in Deep Water Area of Qiongdongnan Basin

    • 摘要: 随着琼东南盆地勘探扩展到深水区勘探,勘探面临较大的水深差异的影响.不同目标含油气评价受制于埋深、水深差异影响,振幅属性可类比性差;仅用振幅类属性,比如亮点技术、反演技术,识别油气具有较大局限.以双相介质理论为基础,探究双相介质条件下含油气层地震波特征,发现含油气层的强衰减造成地震主频向低频移动的现象.应用匹配追踪和高分辨率Wigner分布时频分析方法,精确分析地震波经过含油气层前后频谱差异,应用频移特征属性进行含油气检测,在琼东南盆地深水区勘探取得较好的应用效果,同时,该技术不依赖于测井数据等因素,具有极大的推广应用前景.

       

    • 图  1  琼东南盆地构造

      Fig.  1.  Structural map of QDN Basin

      图  2  双相介质波场模拟

      a.正演模型;b.固相波场快照;c.流相波场快照

      Fig.  2.  simulation of dual-phase medium

      图  3  双相介质地震波特征

      a.横向分量;b.纵向分量

      Fig.  3.  Seismic wave characteristics of dual-phase medium

      图  4  双相介质与单相介质地震波能量特征对比

      Fig.  4.  Comparison of seismic wave energy characteristics between dual-phase and single-phase media

      图  5  双相介质地震波频谱特征

      红色.双相介质;蓝色.单相介质; 点线.双相介质地震频谱;直线.子波频谱

      Fig.  5.  Spectrum characteristics of seismic waves in dual-phase media

      图  6  合成地震记录

      Fig.  6.  The synthetic seismogram

      图  7  不同方法时频谱分析对比

      a.短时傅里叶变换时频谱;b.小波变换时频谱;c.匹配追踪Wigner分布时频谱

      Fig.  7.  Comparison of different time-frequency spectrum analysis methods.

      图  8  含气层顶底界面时频谱

      Fig.  8.  Time-frequency spectrum of top-bottom interface of gas-bearing formation

      图  9  主频偏移特征

      a.纯波地震剖面; b.主频剖面; c.频移特征

      Fig.  9.  Main frequency shift characteristics

      图  10  琼东南L5探区频移、振幅特征对比

      a.频移特征; b.振幅特征

      Fig.  10.  Application of main frequency shift in a exploration area in QDN

    • [1] Biot, M. A., 1956. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. Ⅰ. Low-Frequency Range. The Journal of the Acoustical Society of America, 28(2):168-178. https://doi.org/10.1121/1.1908239
      [2] Daubechies, I., 1990. The Wavelet Transform, Time-Frequency Localization and Signal Analysis. IEEE Transactions on Information Theory, 36(5):961-1005. https://doi.org/10.1109/18.57199
      [3] Dong, X. F., Qu, X. Y., You, L., et al., 2018. Provenance Analysis of the Canyon Channel Fillings of Huangliu Formation in the Ledong-Lingshui Sag. Marine Geology Frontiers. 34(10):12-22(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201810002
      [4] Gan, J., Zhang, Y. Z., Liang, G., et al., 2018. On Accumulation Process and Dynamic Mechanism of Natural Gas in the Deep Water Area of Central Canyon, Qiongdongnan Basin. Acta Geologica Sinica, 92(11):2359-2367(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201811011
      [5] Gassmann, F., 1951. Elastic Waves through A Packing of Spheres. Geophysics, 16(4):673-685. https://doi.org/10.1190/1.1437718
      [6] Griffin, D., Lim, J., 1984. Signal Estimation from Modified Short-Time Fourier Transform. IEEE Transactions on Acoustics, Speech, and Signal Processing, 32(2):236-243. https://doi.org/10.1109/tassp.1984.1164317
      [7] Li, H. X., Tao, C, H., Zhou, J.P., et al., 2009. Analysis on Velocity and Attenuation Feature of Wavefield in Biphase Anisotropic Medium. Oil Geophysical Prospecting, 44(4):457-465(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/sydqwlkt200904014
      [8] Li, Y., Chen, H. D., Xu, D., et al., 2010. Hydrocarbon Detection Methods Based on Dual Phase Media Theory and Its Applications. Journal of Southwest Petroleum University(Science & Technology Edition), 32(3):1-5(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnsyxyxb201003001
      [9] Li, Z. X., Song, G. Z., Wang, D. D., et al., 2018. Characteristics of (Fan) Braided River Delta in Oligocene Coal Measures of Qiongdongnan Basin. Earth Science, 43(10):3471-3484(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201810011
      [10] Mallat, S. G., Zhang, Z.F., 1993. Matching Pursuits with Time-Frequency Dictionaries. IEEE Transactions on Signal Processing, 41(12):3397-3415. https://doi.org/10.1109/78.258082
      [11] Matheney, M. P., Nowack, R. L., 1995. Seismic Attenuation Values Obtained from Instantaneous-Frequency Matching and Spectral Ratios. Geophysical Journal International, 123(1):1-15. https://doi.org/10.1111/j.1365-246x.1995.tb06658.x
      [12] Stockwell, R. G., Mansinha, L., Lowe, R. P., 1996. Localization of the Complex Spectrum:The S Transform. IEEE Transactions on Signal Processing, 44(4):998-1001. https://doi.org/10.1109/78.492555
      [13] Sun, W. Y., Zhang, H. X., Du, Y. K., 2011.Matching Trace Time-Frequency Analysis and Its Application in Oil Gas Detection. Journal of Shandong Univ. of Sci. and Technol.:Nat. Sci., 30(4):51-57(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdkjdxxb201104009
      [14] You, L., Zhong, J., Zhang, Y. Z., et al., 2018. Petrography-Geochemistry and Source Significance of Western Canyon Channel of Northern South China Sea. Earth Science, 43(2):514-524(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201802013
      [15] Zhang, H. X., He, B.S., Jiang, X. D., 2011. Utilizing Morlet Spectral Decomposition to Detect Oil and Gas.Computer Science for Environmental Engineering and Eco Informatics Communications in Computer and Information Science, 159:293-298. https://doi.org/10.1007/978-3-642-22691-5_51
      [16] 董晓芳, 曲希玉, 尤丽, 等, 2018.乐东-陵水凹陷古近系黄流组峡谷水道碎屑岩的源区分析.海洋地质前沿, 34(10):12-22.
      [17] 甘军, 张迎朝, 梁刚, 等, 2018.琼东南盆地深水区天然气成藏过程及动力机制研究.地质学报, 92(11):2359-2367. doi: 10.3969/j.issn.0001-5717.2018.11.011
      [18] 李红星, 陶春辉, 周建平, 等, 2009.双相各向异性介质中波场速度与衰减特征分析.石油地球物理勘探, 44(4):457-465 doi: 10.3321/j.issn:1000-7210.2009.04.014
      [19] 李勇, 陈洪德, 许多, 等, 2010.基于双相介质理论的油气检测方法及应用研究.西南石油大学学报(自然科学版), 32(3):1-5. doi: 10.3863/j.issn.1674-5086.2010.03.001
      [20] 李增学, 宋广增, 王东东, 等, 2018.琼东南盆地渐新统煤系(扇)辫状河三角洲特征.地球科学, 43(10):3471-3484. http://earth-science.net/WebPage/Article.aspx?id=3990
      [21] 孙万元, 张会星, 杜艺可, 2011.匹配追踪时频分析方法在油气检测中的应用.山东科技大学学报(自然科学版), 30(4):51-57 doi: 10.3969/j.issn.1672-3767.2011.04.009
      [22] 尤丽, 钟佳, 张迎朝, 等, 2018.南海北部中央峡谷水道的岩相-地球化学特征及其源区性质.地球科学, 43(2):514-524. http://earth-science.net/WebPage/Article.aspx?id=3741
    • 加载中
    图(10)
    计量
    • 文章访问数:  3795
    • HTML全文浏览量:  1819
    • PDF下载量:  30
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-01-16
    • 刊出日期:  2019-08-15

    目录

      /

      返回文章
      返回